
INTRODUCTION

The safety of the storage food is of great importance 
due to fungal contamination and their secondary metabolite, 
threatens food quality.  Inevitable interspesific and intraspesific 
interactions will happen among fungi due to the nutritional 
status of the grain and the prevailing environmental conditions. 
These environmental factors may cause a selective pressure 
influencing the community structure and the dominance of 
individual, especially, mycotoxigenic species [1].

The incidence of grain commodity contaminations by fungi 
are high in tropical and subtropical regions under suitable 
climatic conditions for fungal development [2]. More than 
100.000 fungal species are able to contaminate feeds and foods 
and have the ability to synthesise mycotoxin molecules [3].

Aspergillus, Penicillium, Fusarium and Alternaria are 
important contaminants of cereal grains [4]. These fungal 
contaminants cause fungal growth and ability to produce 
mycotoxin on some commodity. Some factors such as moisture 
content and water activity provide a suitable situation for fungal 
development and mycotoxin production [5, 6].

Dichloran Medium Base with Rose Bengal (DRBC) Agar 
is a selective medium that supports good growth of yeasts and 
moulds. DRBC, is formulated as described by King et al. [7], 
is a modification of Rose Bengal Chloramphenicol Agar [8]. 
The substances in the DRBC are dichloran (is added to the 
medium to reduce colony diameters of spreading fungi), rose 
bengal (suppresses the growth of bacteria and restricts the size 
and height of colonies of the more rapidly growing moulds) 
and chloramphenicol (is included in this medium to inhibit the 
growth of bacteria present in environmental and food samples). 
The reduced pH of the medium from 7.2 to 5.6 helps inhibition 
of the spreading fungi [8].

Dichloran Glycerol Agar Base (DG-18), is also medium for 
enumeration of fungal growth. It is recommended for dried and 
semi-dried foods, including fruits, spices, cereals, nuts, meat, 
and fish products, is based on the formulation by Hocking and 
Pitt [9].

Aflatoxins, are produced by three closely related species 
Aspergillus flavus Link, A. parasiticus Speare, A wentii Wehmer 
and A. nomius Kurtzman et al. [10-11], are carcinogenic 
metabolites produced by A. flavus and probably bring up 
infection by A. flavus in drought stressed plants [12]. Aflatoxin 
B1 is accepted carcinogen by International Agency of Research 
on Cancer (IARC) under group I [13]. 

Aspergillus ochraceus, an ochratoxin producing fungus,  
can be found on stored cereal grains [14].  Ochratoxin A, under 
IARC, group 2B, [13] is also known as an important mycotoxin 
produced by Aspergillus ochraceus K. Wilh, A. carbonarius 
(Bainier) Thom., A. tubingensis Mosseray and A. niger van 
Tieghem.

[15-17]. Fumonisins are produced by Fusarium 
verticilloides (Sacc.) Nirenberg, F. proliferatum (Matsush.) 
Nirenberg, F. nygamai Burgess & Trimboli and F.  oxyporum 
Schlecht.:Fr. [18-19]. There are excessive amount of evidence 
about morphological, cellular and biochemical damage in farm 
animals fed on fumonisin-contaminated diets [20]. Placinta 
et al. [21] declared that cereal grains and animal feed can be 
exposed to the risk of multi-contamination with fumonisin, 
zearalenone (ZEN) and trichothecenes by Fusarium species all 
over the world. ZEN is of relatively low toxicity. There are lots 
of reports notified on trichothecenes, deoxynivalenol (DON) 
and nivalenol (NIV), contamination in cereal grains from 
Poland, Germany, New Zealand, Japan and America [1, 4]. 
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The aims of the study are to determine fungal contamination 
of wheat and feed, to comparing both media, DRBC and 
DG18, as a general enumeration medium, to investigate fungal 
growth and research isolated and identified fungi coming from 
two media to determine their species diversity and ascertain 
potential mycotoxin producer species within both media.

MATERIALS AND METHODS

A total of twenty-two samples were collected and all of 
them were not less than 1-2 kilogram-size. Fifteen collected 
wheat samples were taken from big sacks in grain depots, 
bazaars and outlets, at random, representing wheat lots. Seven 
feed samples were taken from feed factory in Balikesir, Turkey.  
This study was carried out at following steps; samples were 
collected between 2002 and 2004, isolations were performed, 
fungi associated with wheat and feed products were identified. 
Distribution of fungal species and their potential mycotoxin 
producing capability were evaluated. 

Preparation of samples
All the samples were held –20 ºC for 72 h to remove mites 

and insects. 
Media
Two different media, Dichloran Rose Bengal 

Chloramphenicol Agar (DRBC), (Difco 0587) [7-8] and 
Dichloran 18% Glycerol Agar (DG18) [9] for xerophylic fungi 
were used for the isolation and enumeration of fungi from wheat 
and feed. Czapex dox agar (CZ) (Oxoid CM97), Malt extracts 
agar (MEA) (Oxoid CM59) and Potato Dextrose agar (PDA) 
(Merck 110130) were used for identification. DRBC Agar was 
prepared by adding Chloramphenicol, (50 mg per liter before 
autoclaving) and chlortetracycline (50 mg per liter filtered to 
sterilize and added just before pouring to the plates) [22-23]. 
The plates were dried overnight before inoculating.

Isolations and Identifications of Fungi

Sub samples were prepared to form representative sample 
for each.  50 g of sub sample was weighted, sample were put 
into sterile a beaker and disinfected by adding 1% commercial 
chlorine bleach for 2 minutes by hurling in both sides delicately, 
then rinsed with sterile distilled water for a few times to remove 
chlorine and wheat was dried in sterilized towel paper and feed 
was on filter paper.

Enumeration of fungal propagates was done on DRBC and 
DG18 agar, using the surface spreading method by blending 50 
g portion of each sample with 450 ml sterilized distile water. 
Serial dilutions were made from 10-2 to 10-5 from each sample 
and 0.1 ml aliquots were inoculated in duplicate on DRBC and 
DG18  agar surface.

All the plates were incubated at 27 ºC for 3-5 days for 
DRBC and DG18 agar respectively.  Fungal colonies were 
cultured on Czapex Dox agar; Malt extracts agar and Potato 
Dextrose agar for identification. Fungal colonies were 
selected for identification according to the methods proposed 
for each fungus. Fungal genera and species were identified 
by macroscopic and microscopic characters according to 
taxonomic keys for each genus [11, 24-33].

Relative density (RD) was calculated for each species or 
genus in each group as the number of isolates or genus / Total 
number of fungi isolated x 100 [34].

RESULTS

Wheat and feed samples were collected from Balikesir, 
Turkey during 2002-2004.  As demonstrated in Table 1, the 
isolated fungi were broadly divided into filamentous fungi. 
Totally 307 isolates were obtained from 22 samples. 

Thirty-two species in 158 isolates were recovered from 
DRBC Agar and 37 species in 149 isolates were recovered 
from DG18 Agar and identified.  Twenty-four common species 
were determined in both media. Species diversity except 
common species was 8 in DRBC and 13 in DG18. The results 

Table 1. Distribution of mould genera within 22 samples.

DRBC DG18
Genus  Frekans %RD  Frekans %RD
Aspergillus 31 19.74 35 23.48
Fusarium 19 12.1 21 14.09
Penicillium 18 11.46 17 11.4
Acremonium 16 10.12 10 6.71
Rhizopus 14 8.91 10 6.71
Cladosporium 9 5.73 6 4.02
Trichoderma 7 4.4 9 6.04
Mucor 4 2.53 3 2.01
Absidia 4 2.53 7 4.69
Aerobasidium 3 1.89 3 2.01
Alternaria 2 1.26 6 4.02
Other 10 6.36 5 3.35
Unidentified 21 13.36 17 11.4
Total 158 149
General Total 307
Total species 32 37
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of determined genera dominancy and species diversity in both 
media were given below (Table 1, Table 2).

Potential mycotoxin producer fungi within 307 isolates 
from wheat and feed samples were given in the list (Table 3). 
As shown from the table, 10 species (56 strains) were recovered 
from DRBC agar and 11 species (55 strains) were recovered 
from DG18 agar including Aspergillus candidus Link: Fries,  
Aspergillus flavus Link, Aspergillus niger van Tieghem,  
Aspergillus wentii Wehmer,  Aspergillus parasiticus Speare, 

Penicillium crustosum Thom, Penicillium expansum Link,  
Fusarium oxyporum Schlecht.:Fr.,  Fusarium culmorum (W.G. 
Smith) Saccardo and Alternaria alternata, (Fries) Kiessler.

Total colony forming units (CFU/ml) were calculated.  As 
shown Figure 1, calculating number of colony forming units 
(CFU) per ml of counts ranged from 0.05x104 to 1.92x105 for 
DRBC and, 0.2x104 to 9.0 x 104 CFU/ml for DG18.

Table 2. Species diversity and common species recovered DRBC and DG18 Agar from wheat and feed samples.

Species recovered from wheat and feed samples
No Species from DRBC agar Frequency No Species from DG18 agar Frequency
1 Absidia corymbifera 4 1 Absidia corymbifera 7
2 Acremonium fusidioides 4 2 Acremonium fusidioides 1
3 Acremonium sordidudilum 4 3 Acremonium sordidudilum 1
4 Acremonium strictum 8 4 Acremonium strictum 8

5 Aerobasidium pullulans var. melanigrium 3 5 Aerobasidium pullulans var. 
melanigrium 3

6 Alternaria alternata 2 6 Alternaria alternate 6
7 Aspergillus candidus 5 7 Aspergillus aculatus* 1
8 Aspergillus flavus 13 8 Aspergillus candidus 3
9 Aspergillus flavus var. columnaris 2 9 Aspergillus ficuum* 5
10 Aspergillus niger 7 10 Aspergillus flavus 12

11 Aspergillus penicilloides* 1 11 Aspergillus flavus var. 
columnaris 2

12 Aspergillus pulverulentus* 2 12 Aspergillus foetidus var. 
pallidus* 2

13 Aspergillus wentii 1 13 Aspergillus niger 2
14 Cladosporium cladosporoides 6 14 Aspergillus parasiticus* 2
15 Cladosporium herbarum 2 15 Aspergillus terreus* 1
16 Cladosporium macrocarpum* 1 16 Aspergillus tubingensis* 2
17 Epicoccum sp.* 4 17 Aspergillus wentii 2
18 Fusarium culmorum 8 18 Byssochlamys sp* 1
19 Fusarium oxyporum 11 19 Cladosporium cladosporoides 2
20 Mucor hiemalis 4 20 Cladosporium herbarum 4
21 Neosortaria sp* 1 21 Fusarium culmorum 8
22 Nigrospora musae* 5 22 Fusarium oxyporum 13
23 Penicillium  crustosum 5 23 Mucor hiemalis 2
24 Penicillium charlesii* 2 24 Mucor racemosus* 1
25 Penicillium expansum 4 25 Penicillium corylophylum* 2
26 Penicillium funiculosum 1 26 Penicillium crustosum 3
27 Penicillium nalgiovense* 3 27 Penicillium expansum 6
28 Penicillium oxalicum 2 28 Penicillium funiculosum 1
29 Penicillium stoloniferum 1 29 Penicillium ochraceum* 1
30 Rhizopus oligosporus 8 30 Penicillium oxalicum 3
31 Rhizopus oryzae 6 31 Penicillium stoloniferum 1
32 Trichoderma viridae 7 32 Rhizoctonia sp.* 4

Unidentified 21 33 Rhizopus oligosporus 5
  34 Rhizopus oryzae 5

35 Trichoderma harzianum* 1
36 Aspergillus clavatus* 1
37 Trichoderma viridae 8

 Unidentified 17
Total 158 Total 149

Species diversity was shown by “*”.
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DISCUSSION

When compared two moulds population growing DG18 
Agar  and DRBC agar, we found lower population means for 
mould recovered from DG18 Agar  than DRBC agar (p<0.05). 
According to our findings on mould enumeration, DG18 gave 
significantly lower numbers of colonies than DRBC did. We 
decided that the use of DG18 Agar as a general enumeration 
medium for food borne moulds may cause lower population 
counts.

Thirty-two species (158 isolates) recovered from DRBC agar 
and 37 species (149 isolates) recovered from DG18 agar were 
isolated and   identified.  There were no significant differences 
between DRBC agar and DG18 agar according to isolated and 

identified species (t = -0,944, p > 0.05). Eight in 32 species 
from DRBC and 13 in 37 species from DG18 showed diversity. 
Especially DG18 is valuable to isolate xerophilic fungi in wheat 
and feed in reduced water activity. There were no significant 
differences between DRBC and DG18 according to species 
diversity (t = 0.63, p >0.05). We found 24 common species 
recovered both media. There were no significant differences 
between DRBC and DG18 agar according to common species 
(t = 0.638, p >0.05). 

As compare of DRBC colony forming units with DG18, 
there was a meaningful difference between DRBC and DG18 
agar. As demostrated in Figure 1, colony forming units in 
DRBC agar were significantly higher (t = 2.39, p< 0.05) than 
that from DG18.  

Table 3. Incidence of potential mycotoxin producing species in wheat and feed samples.

Mainly capable of potential mycotoxin producing species
Species DRBC DG18 Mycotoxins References
Aspergillus candidus 5 6 Ochratoxin-A [36, 37]
Aspergillus flavus 13 7 Aflatoxin B1, B2 [2] 
Aspergillus niger 7 2 Ochratoxin-A [15, 38]
Aspergillus wentii 1 2 Ochratoxin-A, Aflatoxin [10, 39]
Aspergillus parasiticus 2 Aflatoxin B1, B2, G1, G2 [40]
Aspergillus foetidus var. pallidus 2 3 Ochratoxin A [41]
Penicillium crustosum 3 3 Ochratoxin-A, Viomellein [36]
Penicillium expansum 4 6 Patulin [42-43]
Fusarium oxysporum 11 13 Fumonisin B1, B2, B3, Zeralenon [5, 18-19] 

Fusarium culmorum 8 5
Fumonisin B1, B2, T1 ve T2 toksin, Yavanisin, 

DON, NIV
[44-45]

Alternaria alternata 2 6 Altertoksin, Alternariol [46-48]
Total 56 55  

8
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Other striking fact about the present study was that we 
couldn’t isolated F. proliferatum from wheat and feed samples 
even though we recovered it from maize kernels abundantly in 
our former research [35]. 

Fifty-six  potential mycotoxin producer strains were 
recovered from DRBC agar and 55 strains were recovered from  
DG18 agar [2,5,10,15,18-19,36-38,39-46]. Fusarium is the 
most important genera  producing different mycotoxins such as 
trichothecene toxins, deoxynivalenol and nivalenol. Although, 
F. culmorum was the dominant species in cooler growing areas 
[47], this species was isolated in high temperature and moisture 
growing areas in our study and identified. According to the 
recent studies, F. culmorum, regardless temperature and water 
availability, was dominant against other grain fungi and this 
explained of why F. culmorum was important during pre and 
post harvest [1]. 

Statistics
Significant differences were determined using Students’ t-

test, (P < 0.05).
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