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İnvaryant Ortalamalı Vektör Değerli Çarpanlar ve Kompakt Toplam Operatörleri 

Mahmut KARAKUŞ      

Öne Çıkanlar: 

• Çarpan yakınsaklık 

• Tam normlu 

uzaylar (Banach 

Uzaylar) 

• Kompakt 

operatörler 

• Sürekli operatörler 

 

Anahtar Kelimeler: 

• 𝜎 -yakınsaklık 

• Sınırlı çarpan 

yakınsak seriler 

• 𝑐0(𝑋)-çarpan 

yakınsak seriler 

• Toplam operatörler 

• Toplanabilme  

ÖZET:  

Çarpan yakınsaklık gösterimiyle, bir dizi uzayının genelleştirilmiş Köthe-Toeplitz duali 

kavramı yeniden tanımlanabilir. Bir dizi uzayı 𝑁 nin (𝑒𝑛) ile verilen bazı (𝑣𝑛) ∈ 𝑁𝛽 dizisini 

domine ettiğinden, 𝑁 nin β-(genelleştirilmiş Köthe-Toeplitz) duali 𝑁𝛽 =
{(𝑣𝑛)|(𝑒𝑛) >̃ (𝑣𝑛)} şeklinde temsil edilebilir. Alışılmış terminoloji ve kavramları 

kullanarak, bu makalede, sınırlı (sürekli) lineer operatörler dizisinin yanı sıra 𝜎 -

toplanabilirlik yöntemi aracılığıyla yeni vektör değerli çarpan uzaylarını tanıtıyoruz. Bu alt 

uzaylar sup norm topolojisi ile donatılmışlardır. Normlu uzayların tamlığı esasına 

dayanarak, çarpan uzayları ve genel normlu uzaylar arasında verilen 𝒮 toplam operatörünün  

bazı özelliklerini ayrıntılı bir şekilde inceliyoruz. Bu araştırma, operatörün çeşitli 

özelliklerinin detaylı bir karakterizasyonunu gerektirir. Bu özellikleri bazı tip çarpan serileri 

çerçevesinde inceleyerek, operatörün davranışının kapsamlı ve rafine bir analizini sunarak, 

işlevsel özelliklerine ilişkin daha geniş ve zenginleştirilmiş bir bakış açısı sağlıyoruz. 
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ABSTRACT:  

In notation of multiplier convergence, one can redefine the notion generalized Köthe-

Toeplitz dual of a sequence space. Since the basis (𝑒𝑛) of a sequence space 𝑁 dominates the 

sequence (𝑣𝑛) ∈ 𝑁𝛽, the 𝛽-(generalized Köthe-Toeplitz) dual of 𝑁 can be represented as 

𝑁𝛽 = {(𝑣𝑛)|(𝑒𝑛) >̃ (𝑣𝑛)}. Employing usual terminology and concepts, in this paper, we 

introduce novel vector-valued multiplier spaces through the 𝜎-summability method 

alongside a sequence of bounded linear operators. These spaces are equipped with the sup 

norm topology. Building on the foundational comprehension of completeness of normed 

spaces, we examine some properties of the summing operator 𝒮 in detail, which acts between 

multiplier spaces and general normed spaces. This investigation entails a meticulous 

characterization of the operator's various properties. By examining these properties through 

the frameworks of some types of multiplier series, we deliver a thorough and refined analysis 

of the operator’s behavior, providing a more expansive and enriched perspective on its 

functional characteristics. 
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INTRODUCTION 

In this context, 𝑁 and 𝐵 denote a real normed and Banach spaces, respectively. The continuous 

dual of 𝑁, denoted 𝑁∗, refers to the space of all bounded (continuous) linear functionals defined on 𝑁. 

The series ∑𝑘 𝑣𝑘 in 𝑁 is termed unconditionally convergent (denoted as 𝑢𝑐) or unconditionally Cauchy 

(denoted as 𝑢𝐶) if the series ∑𝑘 𝑣𝜋(𝑘) converges or if the sequence of partial sums is Cauchy for any 

permutation 𝜋 of ℕ, the set of positive integers. Furthermore, a series ∑𝑘 𝑣𝑘 in 𝑁 is classified as weakly 

unconditionally Cauchy, denoted 𝑤𝑢𝐶, if for every permutation 𝜋 of ℕ, the sequence (∑𝑛
𝑘=1 𝑣𝜋(𝑘)) 

forms a weakly Cauchy sequence. It is well-established that a series is 𝑤𝑢𝐶 if 𝑣∗(𝑣𝑘) ∈ ℓ1 for every 

𝑣∗ ∈ 𝑁∗. Let us recall that any 𝑤𝑢𝐶 series in 𝐵 is 𝑢𝑐 if and only if 𝐵 does not contain any copies of 𝑐0, 

space of all null sequences. For more detailed exploration of Banach spaces, readers are encouraged to 

consult Diestel’s comprehensive book on the theory of sequences and series (Diestel, 1984), as well as 

Albiac and Kalton’s work (Albiac & Kalton, 2006). 

The 𝛽-dual or known as the generalised Köthe-Toeplitz dual of sequence spaces have strongly 

connected to the theory of multiplier convergent series (briefly 𝑚𝑐-series). The duality theory also has 

significant implications in the fields of topological sequence space theory and the theory of summability. 

Let 𝑐𝑠 denote the space of sequences has convergent sum, then the 𝛽-dual is defined as 

 𝑆𝛽: = {𝑡 = (𝑡𝑘) ∈ ℝℕ: 𝑡𝑠 = (𝑡𝑘𝑠𝑘) ∈ 𝑐𝑠, for all 𝑠 = (𝑠𝑘) ∈ 𝑆}. 

By 𝜔(𝑁), we mean the space of N-sequences where 𝑁 is normed space. We represent the sets of 

𝑁-bounded and  𝑁-sequences which converges zero, by ℓ∞(𝑁) and 𝑐0(𝑁), respectively. The spaces of 

sequences with the convergent and bounded sums in 𝑁 are denoted by 𝑐𝑠(𝑁) and 𝑏𝑠(𝑁), respectively. 

Additionally, 𝜙(𝑁) is the set of 𝑁 −finitely non-zero sequences. When 𝒩 is considered as the collection 

of 𝑁-sequences   endowed  with l.c. Hausdorff topology, then 𝒩 is defined to be a 𝐾 space if the 

mappings 𝑣 = (𝑣𝑘) ↦ 𝑣𝑘 from 𝒩 into 𝑁 are continuous for all 𝑘 ∈ ℕ. If 𝑣 ∈ 𝑁, 𝑒𝑘 ⊗ 𝑣 represents the 

sequence with 𝑣 as the only non-zero element at the 𝑘-th position for each 𝑘 ∈ ℕ. Suppose that 𝑁1 and 

𝑁2 are two normed spaces. We present the set of bounded linear operators from 𝑁1 to 𝑁2 by ℒ(𝑁1: 𝑁2). 

When 𝒩 is a vector space of 𝑁1-sequences such that 𝜙(𝑁1) ⊆ 𝒩, ∑𝑘 𝐿𝑘 is called 𝒩-𝑚𝑐-series if the 

series ∑𝑘 𝐿𝑘𝑣𝑘 converges in 𝑁2 for every (𝑣𝑘) ∈ 𝒩. Similarly, the series is named 𝒩-𝑚𝐶-series if the 

partial sums of ∑𝑘 𝐿𝑘𝑣𝑘 forms a norm Cauchy sequence in 𝑁2 for every (𝑣𝑘) ∈ 𝒩. Details on theory of 

multiplier spaces can be found in (Swartz, 2009). 

Certain helpful characterizations about the convergence of multipliers of a series ∑𝑘 𝑣𝑘 in 𝐵 can 

be represented by the following expressions, (Swartz, 2009):   

    i).  ∑𝑘 𝑣𝑘 is 𝑤𝑢𝐶 if and only if it is a 𝑐0-𝑚𝑐-series.  

    ii).  ∑𝑘 𝑣𝑘 is 𝑢𝑐 if and only if it is an ℓ∞-𝑚𝑐-series.  

    iii).  Let 𝜒𝔰 be the characteristic function of 𝔰 and consider the set 𝑀0 = {𝜒𝔰|𝔰 ⊂ ℕ}. Then 

∑𝑘 𝑣𝑘 is subseries convergent if and only if it is an 𝑀0-𝑚𝑐-series.  

An important reference without doubt for a detailed researching on the theory of multiplier 

convergence is (Swartz, 2009). For some of recent investigations on multiplier convergence involving 

various summability methods and vector valued multiplier spaces see also (McArthur, 1956; Aizpuru & 

Pérez-Fernández, 1999; Pérez-Fernández et al., 2000; Aizpuru et al., 2006; Aizpuru et al., 2008; Aizpuru 

et al., 2009; Swartz, 2009; Swartz, 2014; Aizpuru et al., 2014;  Kama & Altay, 2017; Altay & Kama, 

2018; Kama et al., 2018; Karakuş, 2019; Karakuş & Başar, 2019; Akın, 2020; Karakuş & Başar, 2020a; 

Karakuş & Başar, 2020b; Karakuş & Başar, 2022a; Karakuş & Başar, 2022b; Karakuş & Başar, 2024). 
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One of the most significant applications on theorem of Hahn-Banach rises the concept of Banach 

limits. These are non-negative, normalized, and shift-invariant linear functionals defined on ℓ∞. Banach 

limits generalize the ordinary limit and have numerous applications in various mathematical fields, 

(Lorentz, 1948; Eberlein, 1950; Semenov & Sukochev, 2010; Semenov et al., 2019). In their research 

paper on functional characteristics and extreme points of the set of Banach limits on ℓ∞, Semenov et al. 

provide a thorough introduction to recent results and developments in the theory of Banach limits and 

almost convergence, (Semenov et al., 2019). Banach limits effectively extend the limit functional on the 

space of convergent sequences, 𝑐, to ℓ∞. An important result in this area is due to Lorentz (Lorentz, 

1948), who, in 1948, presented a beautiful characterization of almost convergence by using Banach 

limits. Additionally, Eberlein introduced the concept of the Banach-Hausdorff limit, emphasizing the 

invariance of Banach limits under regular Hausdorff transformations, (Eberlein, 1950). The reader can 

refer to (Boos, 2000;Başar, 2012) and (Mursaleen, 2014) for the recent results and related topics in 

summability. 

MATERIALS AND METHODS  

Raimi described the concept of 𝜎-convergence as a slight generalization of Lorentz almost 

convergence by means of motion which has same role with Banach limit for linear functionals defined 

on ℓ∞, (Raimi, 1963). A motion 𝜎: ℕ → ℕ is a one-to-one function that does not contain any finite orbits. 

An invariant mean, often known as a 𝜎-mean, is a continuous linear functional 𝜑 defined on ℓ∞ that 

satisfies the following conditions:   

    1.  𝜑 is non-negative,  

    2.  𝜑(𝑥) = 𝜑(𝑥𝜎(𝑛)),  

    3.  𝜑(𝑒) = 1, where 𝑒 = (1,1,1, … ), (Raimi, 1963).  

 Let us note that 𝜎𝑘(𝑗) is assumed to be the 𝑘𝑡ℎ iteration of 𝜎 at 𝑗 and 𝜎𝑘(𝑗) ≠ 𝑗. It is said to be 

the bounded sequence 𝑥 = (𝑥𝑘) 𝜎-converges to the generalized limit 𝑙 ∈ ℂ if 𝜑(𝑥) = 𝑙 for all 𝜑. 

Invariant mean is a generalization of the well-known "𝑙𝑖𝑚" on 𝑐 which means 𝜑(𝑥) = lim𝑥, ∀𝑥 ∈ 𝑐 iff 

𝜎 has no finite orbits and 𝑐 ⊂ 𝑉𝜎 ⊂ ℓ∞, (Mursaleen, 1983; Mursaleen & Edely, 2009). Let us recall that, 

the functional 𝜑 is 1-1 such that 𝜎𝑘(𝑗) ≠ 𝑗. 

We have the following:   

    i).  𝜎𝑗(𝑙) ≠ 𝑙 for all 𝑗, 𝑙 ∈ ℕ.  

    ii).  𝜎𝑙(𝑙) = 𝑙, since a motion has no finite orbit and 𝜎𝑙(𝑙) = (𝜎𝑙 ∘ 𝐼)(𝑙) = 𝜎𝑙[𝐼(𝑙)] = 𝐼(𝑙), 

where 𝐼 denotes the identity function.  

    iii).  𝜎𝑖+𝑗(𝑗) = 𝜎𝑖 , since 𝜎𝑖+𝑗(𝑗) = (𝜎𝑖 ∘ 𝜎𝑗)(𝑗) = 𝜎𝑖[𝜎𝑗(𝑗)] = 𝜎𝑖(𝑗) for all 𝑖, 𝑗 ∈ ℕ.  

 Here and after, we take 𝑠𝑗 = ∑𝑗
𝑘=1 𝑣𝑘, 𝑠𝜎𝑚+𝑛(𝑛) = 𝑠𝑛 + ∑𝑚

𝑘=1 𝑣𝜎𝑘(𝑛) and the summation without 

limits runs from 1 to ∞. 

Vector Valued Multiplier Spaces of 𝝈-Summable Sequences  

Definition 1. Let 𝑣 = (𝑣𝑘) ⊆ 𝑁. Then, it is said that 𝑣 = (𝑣𝑘) is 𝜎-convergent to 𝑣0 ∈ 𝑁, i.e., 

𝑉𝜎 − 𝑙𝑖𝑚𝑘𝑣𝑘 = 𝑣0 (weakly 𝜎-convergent to 𝑣′0 ∈ 𝑁, i.e., 𝑤𝑉𝜎 − 𝑙𝑖𝑚𝑘𝑣𝑘 = 𝑣0) if ∑𝑙
𝑘=0

𝑣
𝜎𝑘(𝑗)

𝑙+1
→ 𝑣0 as 

𝑙 → ∞ uniformly in 𝑗 ∈ ℕ (∑𝑙
𝑘=0

𝑣∗(𝑣
𝜎𝑘(𝑗)

)

𝑙+1
→ 𝑣∗(𝑣′0) as 𝑙 → ∞, ∀𝑣∗ ∈ 𝑁∗ uniformly in 𝑗 ∈ ℕ).  

 We denote the space of all 𝜎-convergent and weakly 𝜎-convergent sequences in 𝑁 by 𝑉𝜎(𝑁) and 

by 𝑤𝑉𝜎(𝑁), respectively. So, we have,  

 𝑉𝜎(𝑁): = {(𝑣𝑘) ∈ ℝℕ(𝑁): 𝑉𝜎 − lim
𝑘

𝑣𝑘 exists} 
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and  

 𝑤𝑉𝜎(𝑁): = {(𝑣𝑘) ∈ ℝℕ(𝑁): 𝑤𝑉𝜎 − lim
𝑘

𝑣𝑘  exists}. 

Definition 2. If 𝑣 = (𝑣𝑖) ⊆ 𝑁, then ∑𝑖 𝑣𝑖 is 𝜎-convergent (weakly 𝜎-convergent) to the point 

𝑣0 ∈ 𝑁 (𝑣′0 ∈ 𝑁) and is denoted by 𝑉𝜎 − ∑𝑖 𝑣𝑖 = 𝑣0 (𝑤𝑉𝜎 − ∑𝑖 𝑣𝑖 = 𝑣′0) if  𝑉𝜎 − 𝑙𝑖𝑚𝑘𝑠𝑘 = 𝑣0 

(𝑤𝑉𝜎 − 𝑙𝑖𝑚𝑘𝑠𝑘 = 𝑣′0) holds, where 𝑠𝑘 = ∑𝑘
𝑖=1 𝑣𝑖, for all 𝑘 ∈ ℕ. By a simple calculation, 𝑉𝜎 − ∑𝑖 𝑣𝑖 =

𝑣0 and 𝑤𝑉𝜎 − ∑𝑖 𝑣𝑖 = 𝑣′0 if  

 (∑𝑗
𝑖=1 𝑣𝑖 + ∑𝑙

𝑖=1

(𝑙−𝑖+1)𝑣
𝜎𝑖(𝑗)

𝑙+1
) → 𝑣0 

as 𝑙 → ∞ uniformly in 𝑗 ∈ ℕ and for all 𝑣∗ ∈ 𝑁∗  

 (∑𝑗
𝑖=1 𝑣∗(𝑣𝑖) + ∑𝑙

𝑖=1

(𝑙−𝑖+1)𝑣∗(𝑣
𝜎𝑖(𝑗)

)

𝑙+1
) → 𝑣∗(𝑣′0) 

as 𝑙 → ∞ uniformly in 𝑗 ∈ ℕ holds, respectively, (Akın, 2020).  

 We denote the space of all 𝜎-summable and weakly 𝜎-summable sequences in 𝑁 by 𝑉𝜎
𝑆(𝑁) and 

by 𝑤𝑉𝜎
𝑆(𝑁), respectively. So, we have,  

 𝑉𝜎
𝑆(𝑁): = {(𝑣𝑖) ∈ ℝℕ(𝑁): 𝑉𝜎 − ∑𝑖 𝑣𝑖 is convergent} 

and  

 𝑤𝑉𝜎
𝑆(𝑁): = {(𝑣𝑖) ∈ ℝℕ(𝑁): 𝑤𝑉𝜎 − ∑𝑖 𝑣𝑖 is convergent}. 

In (Karakuş & Başar, 2024), the authors demonstrated that 𝑉𝜎
𝑆(𝑁) and 𝑤𝑉𝜎

𝑆(𝑁) are closed in 

ℓ∞(𝑁), and 𝑉𝜎
𝑆(𝑁) and 𝑤𝑉𝜎

𝑆(𝑁) are also closed in 𝑏𝑠(𝑁) with their usual norm. Moreover, if 𝑁 is 

complete, then all of them are complete. 

In this study, we present and examine specific classes of vector valued spaces linked to an operator 

series ∑𝑘 𝐿𝑘 in ℒ(𝑁1: 𝑁2). These spaces are considered via 𝜎-summability. We also offer 

characterizations of 𝑐0(𝑁1)- and ℓ∞(𝑁1)-𝑚𝑐- (𝑚𝐶-) series in terms of these newly defined spaces. 

Furthermore, we obtain some results on summing operator. 

Lemma 3.  The formal series ∑𝑘 𝑣𝑘 in 𝑁 is 𝑤𝑢𝐶 if and only if  

𝐻 = sup
𝑛∈ℕ

{‖∑𝑛
𝑘=1 𝛼𝑘𝑣𝑘‖: 𝛼𝑘 ∈ [−1,1], 𝑘 = 1,2, … , 𝑛. }                                                                          (1) 

holds for some 𝐻 > 0, (Diestel, 1984).  

RESULTS AND DISCUSSION  

We now present the definition of multiplier space associated with 𝜎-convergence, which is 

essential for the results related to the characterizations of 𝑐0(𝑁)- and ℓ∞(𝑁)-𝑚𝑐-series.  

Main Theorems on the Space 𝑴𝝈
∞(∑𝒌 𝑳𝒌) and Summing Operator  

Definition 4. Let 𝑁1 and 𝑁2 be normed spaces (from now on, we assume that 𝑁1 and 𝑁2 are 

normed spaces) with 𝐿𝑘 ∈ ℒ(𝑁1: 𝑁2) for every 𝑘 ∈ ℕ. The space 𝑀𝜎
∞(∑𝑘 𝐿𝑘) is defined as follows:  

𝑀𝜎
∞(∑𝑘 𝐿𝑘) = {𝑣 = (𝑣𝑘) ∈ ℓ∞(𝑁1): 𝑉𝜎 − ∑𝑘 𝐿𝑘𝑣𝑘 exists}.                                                              (2) 

 This space is also a normed space with the sup norm and one can simply check if the following 

inclusions hold:  

𝜙(𝑁1) ⊆ 𝑀𝜎
∞(∑𝑘 𝐿𝑘) ⊆ ℓ∞(𝑁1).                                                                                                        (3) 

 We define the summing operator 𝒮 as follows:  

𝒮 : 𝑀𝜎
∞(∑𝑘 𝐿𝑘) ⟶ 𝑁2

𝑣 = (𝑣𝑘) ⟼ 𝒮(𝑣) = 𝑉𝜎 − ∑𝑘 𝐿𝑘𝑣𝑘 .
                                                                         (4) 

Theorem 5.  If 𝐵1 and 𝐵2 are complete (from now on, we assume that 𝐵1 and 𝐵2 are Banach 

spaces) with 𝐿𝑘 ∈ ℒ(𝐵1: 𝐵2) for every 𝑘 ∈ ℕ. Then, ∑𝑘 𝐿𝑘 is a 𝑐0(𝐵1)-𝑚𝑐-series if and only if 

𝑀𝜎
∞(∑𝑘 𝐿𝑘) is complete.   
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Proof. By using (1), if ∑𝑘 𝐿𝑘 is 𝑐0(𝐵1)-𝑚𝑐-series, then we can find 𝐻 > 0 satisfying  

 𝐻 = sup
𝑛∈ℕ

{‖∑𝑛
𝑘=1 𝐿𝑘𝑣𝑘‖: ∥ 𝑣𝑘 ∥≤ 1, 𝑘 ∈ {1,2, … , 𝑛}}. 

 Now, suppose that 𝑣𝑚 = (𝑣𝑘
𝑚) is a Cauchy sequence in the space 𝑀𝜎

∞(∑𝑘 𝐿𝑘). So, we get 𝑣0 =

(𝑣𝑘
0) ∈ ℓ∞(𝐵1) satisfying 𝑣𝑚 → 𝑣0, as 𝑚 → ∞, since ℓ∞(𝐵1) is complete and from the inclusions (3). 

We shall prove 𝑣0 ∈ 𝑀𝜎
∞(∑𝑘 𝐿𝑘). For this, suppose that 𝑢𝑚 = 𝑉𝜎 − ∑𝑘 𝐿𝑘𝑣𝑘

𝑚 for all 𝑚 ∈ ℕ. Since 𝑣𝑚 

is a Cauchy sequence, ∀𝜖 > 0 we can find 𝑚0 ∈ ℕ satisfying ∥ 𝑣𝑝 − 𝑣𝑞 ∥< 𝜖/(3𝐻), ∀𝑝, 𝑞 ≥ 𝑚0. So, if 

𝑝, 𝑞 ≥ 𝑚0 are fixed, then there exist 𝑚 ∈ ℕ such that the following inequalities hold, uniformly in 𝑛 ∈

ℕ: 

𝑢𝑝
𝐶 = ‖𝑢𝑝 − [∑𝑛

𝑘=1 𝐿𝑘𝑣𝑘
𝑝 + ∑𝑚

𝑘=1
(𝑚−𝑘+1)

𝑚+1
𝐿𝜎𝑘(𝑛)𝑣

𝜎𝑘(𝑛)

𝑝
]‖ <

𝜖

3
,                                                         (5) 

𝑢𝑞
𝐶 = ‖𝑢𝑞 − [∑𝑛

𝑘=1 𝐿𝑘𝑣𝑘
𝑞 + ∑𝑚

𝑘=1
(𝑚−𝑘+1)

𝑚+1
𝐿𝜎𝑘(𝑛)𝑣

𝜎𝑘(𝑛)

𝑞
]‖ <

𝜖

3
,                                                         (6) 

𝑢𝑝𝑞
𝐶 = ‖∑𝑛

𝑘=1 𝐿𝑘(𝑣𝑘
𝑝 − 𝑣𝑘

𝑞) + ∑𝑚
𝑘=1

(𝑚−𝑘+1)

𝑚+1
𝐿𝜎𝑘(𝑛)(𝑣

𝜎𝑘(𝑛)

𝑝
− 𝑣

𝜎𝑘(𝑛)

𝑞
)‖ <

𝜖

3
.                                     (7) 

 Therefore, by using the inequalities (5), (6), (7), ∀𝜖 > 0, ∃𝑛0 ∈ ℕ such that  

 ∥ 𝑢𝑝 − 𝑢𝑞 ∥≤ 𝑢𝑝
𝐶 + 𝑢𝑞

𝐶 + 𝑢𝑝𝑞
𝐶 < 𝜖, ∀𝑝, 𝑞 ≥ 𝑛0. 

 Since 𝐵2 is also complete, there exists a 𝑢0 ∈ 𝐵2 such that 𝑢𝑚 → 𝑢0, as 𝑚 → ∞. Let us show that 

𝑉𝜎 − ∑𝑘 𝐿𝑘𝑣𝑘
0 = 𝑢0. We see for every 𝜖 > 0 and fix 𝑗 that ∥ 𝑣𝑗 − 𝑣0 ∥< 𝜖/(3𝐻) and  

∥ 𝑢𝑗 − 𝑢0 ∥<
𝜖

3
.                                                                                                                                      (8) 

 Therefore, there exists 𝑚0 ∈ ℕ such that  

‖𝑢𝑗 − [∑𝑛
𝑘=1 𝐿𝑘𝑣𝑘

𝑗
+ ∑𝑚

𝑘=1
(𝑚−𝑘+1)

𝑚+1
𝐿𝜎𝑘(𝑛)𝑣

𝜎𝑘(𝑛)

𝑗
]‖ <

𝜖

3
,                                                                    (9) 

uniformly in 𝑛 ∈ ℕ, for all 𝑚 ≥ 𝑚0. Since ∑𝑘 𝐿𝑘 is a 𝑐0(𝐵1)-𝑚𝑐-series, by supposing  

𝑢𝑗 = 𝑉𝜎 − ∑
𝑘

𝐿𝑘𝑣𝑘
𝑗
 

for every 𝑗 ∈ ℕ, we achieve  

 𝐴𝐿 = [∑𝑛
𝑘=1 𝐿𝑘

(𝑣𝑘
𝑗

−𝑣𝑘
0)

∥𝑣𝑗−𝑣0∥
+ ∑𝑚

𝑘=1
(𝑚−𝑘+1)

𝑚+1
𝐿𝜎𝑘(𝑛)

(𝑣
𝜎𝑘(𝑛)

𝑗
−𝑣

𝜎𝑘(𝑛)

0 )

∥𝑣𝑗−𝑣0∥
] ≤ 𝐻,  

from Lemma 3. So, ∀𝜖 > 0 and ∃𝑚0 ∈ ℕ,  

 ‖𝑢0 − [∑𝑛
𝑘=1 𝐿𝑘𝑣𝑘

0 + ∑𝑚
𝑘=1

(𝑚−𝑘+1)

𝑚+1
𝐿𝜎𝑘(𝑛)𝑣

𝜎𝑘(𝑛)
0 ]‖ ≤ (8) + (9) + 

 + ‖∑𝑛
𝑘=1 𝐿𝑘(𝑣𝑘

𝑗
− 𝑣𝑘

0) + ∑𝑚
𝑘=1

(𝑚−𝑘+1)

𝑚+1
𝐿𝜎𝑘(𝑛)(𝑣

𝜎𝑘(𝑛)

𝑗
− 𝑣

𝜎𝑘(𝑛)
0 )‖ < 

 <
2𝜖

3
+∥ 𝑣𝑗 − 𝑣0 ∥⋅ 𝐴𝐿 ≤

2𝜖

3
+

𝜖

3𝐻
⋅ 𝐻 = 𝜖, 

uniformly in 𝑛 ∈ ℕ, for every 𝑚 ≥ 𝑚0. This leads us to the result 𝑣0 = (𝑣𝑘
0) ∈ 𝑀𝜎

∞(∑𝑘 𝐿𝑘). 

On the other hand, let us assume that the space 𝑀𝜎
∞(∑𝑘 𝐿𝑘) is complete and consider 𝑣 = (𝑣𝑘) ∈

𝑐0(𝐵1). Then, we have 𝑐0(𝐵1) ⊆ 𝑀𝜎
∞(∑𝑘 𝐿𝑘) since the space 𝑀𝜎

∞(∑𝑘 𝐿𝑘) is closed and 𝜙(𝐵1) ⊂

𝑀𝜎
∞(∑𝑘 𝐿𝑘). So, we may assert that the series ∑𝑘 𝐿𝑘𝑣𝑘 is 𝜎-convergent for all 𝑣 = (𝑣𝑘) ∈ 𝑐0(𝐵1). 

Because 𝑐0(𝐵1) is monotone, we conclude that the series ∑𝑘 𝐿𝑘𝑣𝑘 is subseries 𝜎-convergent, and 

consequently weakly subseries 𝜎-convergent. By the Orlicz-Pettis theorem, ∑𝑘 𝐿𝑘𝑣𝑘 is subseries norm 

convergent, (Aizpuru et al., 2008).  

Remark 6. For each 𝑘 ∈ ℕ let 𝐿𝑘 ∈ ℒ(𝑁1: 𝑁2). The multiplier space 𝑀∞(∑𝑘 𝐿𝑘) is introduced 

in (Swartz, 2014) and defined as:  

𝑀∞(∑𝑘 𝐿𝑘): = {𝑣 = (𝑣𝑘) ∈ ℓ∞(𝑁1): ∑𝑘 𝐿𝑘𝑥𝑘  is convergent}.                                                         (10) 
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Therefore, we get the following inclusion concerning 𝑀𝜎
∞(∑𝑘 𝐿𝑘) and 𝑀∞(∑𝑘 𝐿𝑘) which are 

given by (2) and (10), respectively:  

 𝑀∞(∑𝑘 𝐿𝑘) ⊆ 𝑀𝜎
∞(∑𝑘 𝐿𝑘). 

Corollary 7.  Let 𝐿𝑘 ∈ ℒ(𝐵1: 𝐵2) for all 𝑘 ∈ ℕ. Then, the following assertions are equivalent:   

    1.  The series ∑𝑘 𝐿𝑘 is a 𝑐0(𝐵1)-𝑚𝑐-series.  

    2.  𝑀∞(∑𝑘 𝐿𝑘) is complete.  

    3.  𝑀𝜎
∞(∑𝑘 𝐿𝑘) is complete.  

    4.  𝑐0(𝐵1) ⊆ 𝑀∞(∑𝑘 𝐿𝑘).  

    5.  𝑐0(𝐵1) ⊆ 𝑀𝜎
∞(∑𝑘 𝐿𝑘).  

Proposition 8.  Let 𝐿𝑘 ∈ ℒ(𝑁1: 𝑁2) for all 𝑘 ∈ ℕ and define the space 𝐶𝑀∞(∑𝑘 𝐿𝑘) as:  

𝐶𝑀∞(∑𝑘 𝐿𝑘): = {𝑣 = (𝑣𝑘) ∈ ℓ∞(𝑁1): ∑𝑘 𝐿𝑘𝑣𝑘  is Cauchy series}.                                                  (11) 

 Then, the equality,  

 𝐶𝑀𝜎
∞(∑𝑘 𝐿𝑘) = 𝑀𝜎

∞(∑𝑘 𝐿𝑘) ∩ 𝐶𝑀∞(∑𝑘 𝐿𝑘) = 𝑀∞(∑𝑘 𝐿𝑘) 

 holds.  

Proof. If 𝑣 = (𝑣𝑘) ∈ 𝑀∞(∑𝑘 𝐿𝑘), then it is evident that 𝑣 = (𝑣𝑘) ∈ 𝑀𝜎
∞(∑𝑘 𝐿𝑘) ∩ 𝐶𝑀∞(∑𝑘 𝐿𝑘), 

meaning the inclusion 𝑀∞(∑𝑘 𝐿𝑘) ⊆ 𝐶𝑀𝜎
∞(∑𝑘 𝐿𝑘) holds true. 

Consider that 𝑣 = (𝑣𝑘) ∈ 𝐶𝑀𝜎
∞(∑𝑘 𝐿𝑘). Thus, ∑𝑘 𝐿𝑘𝑥𝑘 is 𝜎-convergent and is also a Cauchy 

series. Consequently, ∑𝑘 𝐿𝑘𝑣𝑘 converges according to Theorem 5.1 of (Karakuş & Başar, 2022a). This 

concludes the proof.  

Corollary 9.  Let 𝐿𝑘 ∈ ℒ(𝐵1: 𝐵2) for all 𝑘 ∈ ℕ. Then the following assertions are equivalent:   

    1.  ∑𝑘 𝐿𝑘 is 𝑐0(𝐵1)-𝑚𝑐-series.  

    2.  𝐶𝑀∞(∑𝑘 𝐿𝑘) is complete.  

    3.  𝐶𝑀𝜎
∞(∑𝑘 𝐿𝑘) is complete.  

    4.  𝑐0(𝐵1) ⊆ 𝐶𝑀∞(∑𝑘 𝐿𝑘).  

Theorem 10. Let 𝐵 be a complete normed space and 𝑁 be any normed space. If 𝐿𝑘 is element of 

ℒ(𝐵: 𝑁) for all 𝑘 ∈ ℕ, then the following i). and ii). are equivalent:   

    i). 𝑁 is complete.  

    ii). 𝑀𝜎
∞(∑𝑘 𝐿𝑘) is complete for every 𝑐0(𝐵)-𝑚𝐶-series.  

Proof. We omit the details; see (Altay & Kama, 2018), (Swartz, 2014) and (Karakuş & Başar, 

2020b).  

Next, we characterizes the continuity property of the summing operator 𝒮 with 𝑐0(𝑁1)-𝑚𝐶-series.  

Theorem 11. Let 𝐿𝑘 ∈ ℒ(𝑁1: 𝑁2) for every 𝑘 ∈ ℕ. Then, 𝒮 given by (4) is continuous if and 

only if  ∑𝑘 𝐿𝑘 is 𝑐0(𝑁1)-𝑚𝐶-series.  

Proof. Assume that 𝒮 is continuous and consider 𝒢 given by  

𝒢: = {‖∑𝑛
𝑘=1 𝐿𝑘𝑣𝑘‖: ∥ 𝑣𝑘 ∥≤ 1, 𝑘 = 1,2, … , 𝑛}.                                                                                  (12) 

 Given that the inclusion 𝜙(𝑋) ⊂ 𝑀𝜎
∞(∑𝑘 𝐿𝑘) is valid, the series ∑𝑘 𝐿𝑘 is 𝑐0(𝑁1)-𝑚𝐶-series due 

to the inequality 𝐻 = sup𝑛∈ℕ𝒢 ≤ |𝒮|. 

In the other hand, let ∑𝑘 𝐿𝑘 be a 𝑐0(𝑁1)-𝑚𝐶-series. Consequently, the set 𝒢 defined by (12) is 

bounded which implies 𝐻 = sup𝑛∈ℕ𝒢, (Swartz, 2014). Now, suppose that 𝑣 = (𝑣𝑘) ∈ 𝑀𝜎
∞(∑𝑘 𝐿𝑘), then 

we complete the proof because of the following inequality:  

 ∥ 𝒮(𝑣) ∥= ‖𝑉𝜎 − ∑𝑘 𝐿𝑘𝑣𝑘‖ ≤ 𝐻 ∥ 𝑣 ∥. 

Corollary 12. Let 𝐿𝑘 ∈ ℒ(𝑁1: 𝑁2) for all 𝑘 ∈ ℕ. Then, the following assertions are equivalent:   

    1.  The series ∑𝑘 𝐿𝑘 is 𝑐0(𝑁1)-𝑚𝐶-series.  
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    2.   
𝒮 : 𝑀∞(∑𝑘 𝐿𝑘) ⟶ 𝑁2

𝑣 = (𝑣𝑘) ⟼ 𝒮(𝑣) = ∑𝑘 𝐿𝑘𝑣𝑘
 

 is continuous, (Swartz, 2014).  

    3.  𝒮: 𝑀𝜎
∞(∑𝑘 𝐿𝑘) → 𝑁2 is continuous.  

 In the next theorem, we provide the description of the compact summing operator 𝒮 by using 

ℓ∞(𝑁)-𝑚𝑐-series.  

Theorem 13. Let 𝐿𝑘 ∈ ℒ(𝑁: 𝐵) for every 𝑘 ∈ ℕ. Then, the following assertions regarding the 

formal series ∑𝑘 𝐿𝑘 are equivalent:   

    (i).  𝒮: 𝑀𝜎
∞(∑𝑘 𝐿𝑘) → 𝐵 is compact (weakly compact).  

    (ii).  The series ∑𝑘 𝐿𝑘 is ℓ∞(𝑁)-𝑚𝑐-series.  

Proof. (i)⇒(ii): Assume that 𝒮 is compact and 𝑣 = (𝑣𝑘) is any 𝑁-valued bounded sequence. Then, 

the following set ℋ is also bounded:  

 ℋ: = {∑𝑙∈𝜎 𝑒𝑙 ⊗ 𝑣𝑙: 𝜎 finite, ∥ 𝑣𝑙 ∥≤ 1} ⊂ 𝑀𝜎
∞(∑𝑘 𝐿𝑘). 

 According to our assumption,  

 𝒮(ℋ): = {𝑉𝜎 − ∑𝑘∈𝜎 𝐿𝑘𝑣𝑘: 𝜎 finite, ∥ 𝑣𝑘 ∥≤ 1} 

is relatively compact. Consequently, the series ∑𝑘 𝐿𝑘𝑣𝑘 is subseries 𝜎-convergent in norm topology, 

and hence weakly subseries 𝜎-convergent, as stated in (Swartz, 2009). Moreover, according to the 

Orlicz-Pettis theorem, the series ∑𝑘 𝐿𝑘𝑣𝑘 is an ℓ∞(𝑁)-𝑚𝑐-series. 

(ii)⇒(i): Let ∑𝑘 𝐿𝑘 be an ℓ∞(𝑁)-𝑚𝑐-series. Consider the operators 𝒮𝑚
𝜎  by  

 
𝒮𝑚

𝜎 : 𝑀𝜎
∞(∑𝑘 𝐿𝑘) ⟶ 𝐵

𝑣 = (𝑣𝑘) ⟼ 𝒮𝑚
𝜎 (𝑣) = 𝑉𝜎 − ∑𝑚

𝑘=1 𝐿𝑘𝑣𝑘
 

for every 𝑚 ∈ ℕ. We need to show that ∥ 𝒮𝑚
𝜎 − 𝒮 ∥→ 0, as 𝑚 → ∞. Since the series ∑𝑘 𝐿𝑘 is ℓ∞(𝑁)-

𝑚𝑐-series, then ∑𝑘 𝐿𝑘𝑣𝑘 is uniformly 𝜎-convergent for ∥ 𝑣𝑘 ∥≤ 1, (Swartz, 2009). Consequently, if  

∥ 𝑥𝑘 ∥≤ 1, then  

 lim
𝑚→∞

‖𝒮𝑚
𝜎 − 𝒮‖ = lim

𝑚→∞
‖(𝑉𝜎 − ∑𝑚

𝑘=1 𝐿𝑘𝑣𝑘) − (𝑉𝜎 − ∑∞
𝑘=1 𝐿𝑘𝑣𝑘)‖ 

 = lim
𝑚→∞

‖𝑉𝜎 − ∑∞
𝑘=𝑚+1 𝐿𝑘𝑣𝑘‖ = 0 

holds.  

Corollary 14. The following assertions regarding the formal series ∑𝑘 𝐿𝑘 are equivalent:   

    1.  The series ∑𝑘 𝐿𝑘 is ℓ∞(𝑁)-𝑚𝑐-series.  

    2.  𝒮: 𝑀∞(∑𝑘 𝐿𝑘) → 𝐵 is compact (weakly compact).  

    3.  𝒮: 𝑀𝜎
∞(∑𝑘 𝐿𝑘) → 𝐵 is compact (weakly compact).  

Main Theorems on the Space 𝑴𝒘𝝈
∞ (∑𝒌 𝑳𝒌) and Weak Summing Operator 

We now present the definition of multiplier space associated with weakly 𝜎-convergence and 

obtain the results related to the characterizations of 𝑐0(𝑁)- and ℓ∞(𝑁)-𝑚𝑐-series.  

Definition 15. Let 𝐿𝑘 ∈ ℒ(𝑁1: 𝑁2) for every 𝑘 ∈ ℕ. Vector valued multiplier space 𝑀𝑤𝜎
∞ (∑𝑘 𝐿𝑘) 

of weakly almost convergence related to the operator series ∑𝑘 𝐿𝑘 is given by  

𝑀𝑤𝜎
∞ (∑𝑘 𝐿𝑘): = {𝑣 = (𝑣𝑘) ∈ ℓ∞(𝑁1): 𝑤𝑉𝜎 − ∑𝑘 𝐿𝑘𝑣𝑘 exists}                                                          (13) 

 and the weak summing operator 𝒮𝑤 is also defined as    

𝒮𝑤 : 𝑀𝑤𝜎
∞ (∑𝑘 𝐿𝑘) ⟶ 𝑁2

𝑣 = (𝑣𝑘) ⟼ 𝒮𝑤(𝑣) = 𝑤𝑉𝜎 − ∑𝑘 𝐿𝑘𝑣𝑘 .
                                                                  (14) 

 It is clear that the following inclusions hold:  

𝜙(𝑁1) ⊆ 𝑀𝜎
∞(∑𝑘 𝐿𝑘) ⊆ 𝑀𝑤𝜎

∞ (∑𝑘 𝐿𝑘) ⊆ ℓ∞(𝑁1).                                                                              (15) 

Theorem 16. If 𝐵1 and 𝐵2 are Banach spaces with 𝐿𝑘 ∈ ℒ(𝐵1: 𝐵2) for every 𝑘 ∈ ℕ. Then, ∑𝑘 𝐿𝑘 

is a 𝑐0(𝐵1)-𝑚𝑐-series if and only if 𝑀𝑤𝜎
∞ (∑𝑘 𝐿𝑘) is complete.  
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Proof. Since it is customary, we omit the details to avoid reiterating similar statements.  

Remark 17. For each 𝑘 ∈ ℕ let 𝐿𝑘 ∈ ℒ(𝑁1: 𝑁2). The multiplier space 𝑀𝑤
∞(∑𝑘 𝐿𝑘) is introduced 

in (Swartz, 2014) and defined as:  

𝑀𝑤
∞(∑𝑘 𝐿𝑘): = {𝑣 = (𝑣𝑘) ∈ ℓ∞(𝑁1): ∑𝑘 𝐿𝑘𝑥𝑘  converges weakly}.                                                 (16) 

Corollary 18. Let 𝐿𝑘 ∈ ℒ(𝐵1: 𝐵2) for every 𝑘 ∈ ℕ. Then, the following are equivalent:   

    1.  The series ∑𝑘 𝐿𝑘 is a 𝑐0(𝐵1)-𝑚𝑐-series.  

    2.  𝑀𝑤
∞(∑𝑘 𝐿𝑘) is complete.  

    3.  𝑀𝑤𝜎
∞ (∑𝑘 𝐿𝑘) is complete.  

    4.  𝑐0(𝐵1) ⊆ 𝑀𝑤
∞(∑𝑘 𝐿𝑘).  

    5.  𝑐0(𝐵1) ⊆ 𝑀𝑤𝜎
∞ (∑𝑘 𝐿𝑘).  

Remark 19. Let 𝐿𝑘 ∈ ℒ(𝐵1: 𝐵2) for every 𝑘 ∈ ℕ and ∑𝑘 𝐿𝑘 be 𝑐0(𝐵1)-𝑚𝑐-series. Then, 

∑𝑘 𝑢∗(𝐿𝑘𝑣𝑘) converges for each 𝑣 = (𝑣𝑘) ∈ 𝑐0(𝐵1), ∀𝑢∗ ∈ 𝐵2
∗, this means that the series converges 

weakly. By Corollary 7., we have 𝑣 = (𝑣𝑘) ∈ 𝑀𝜎
∞(∑𝑘 𝐿𝑘), so 𝑣 = (𝑣𝑘) ∈ 𝑀𝑤𝜎

∞ (∑𝑘 𝐿𝑘). That is, there 

can be find 𝑢0 ∈ 𝐵2 with 𝑤𝑉𝜎 − ∑𝑘 𝐿𝑘𝑣𝑘 = 𝑢0 satisfies the following: 

                       ∑𝑘 𝑢∗(𝐿𝑘𝑣𝑘) = 𝑉𝜎 − ∑𝑘 𝑢∗(𝐿𝑘𝑣𝑘) = 𝑢∗(𝑢0). 

 Thus, the inclusion 𝑀𝜎
∞(∑𝑘 𝐿𝑘) ⊆ 𝑀𝑤

∞(∑𝑘 𝐿𝑘) is valid. Furthermore, if the series is an ℓ∞(𝐵1)-

𝑚𝐶-series, then the following also holds:  

 𝑀𝑤
∞(∑𝑘 𝐿𝑘) ⊆ 𝑀∞(∑𝑘 𝐿𝑘) ⊆ 𝑀𝜎

∞(∑𝑘 𝐿𝑘). 

 By the following theorem, one can prove completeness of ℒ(𝐵: 𝑁) due to completeness of 𝑁. By 

the way, since the proof is similar to the case of 𝑀𝐶
∞(∑𝑘 𝐿𝑘) given in (Altay & Kama, 2018), we omit 

the details.  

Theorem 20. Let 𝐵 be a complete normed space and 𝑁 be any normed space. If 𝐿𝑘 is element of 

ℒ(𝐵: 𝑁) for all 𝑘 ∈ ℕ, then 𝑁 is complete if and only if  𝑀𝑤𝜎
∞ (∑𝑘 𝐿𝑘) is complete for every 𝑐0(𝐵)-

𝑚𝐶-series.  

 Now, we present some theorems and corollaries that are analogous to the previous results. Since 

they are similar, we omit the details of proofs to avoid reiterating statements.  

Theorem 21. Let 𝐿𝑘 ∈ ℒ(𝑁1: 𝑁2) for every 𝑘 ∈ ℕ. Then, 𝒮𝑤 given by (14) is continuous if and 

only if  ∑𝑘 𝐿𝑘 is 𝑐0(𝑁1)-𝑚𝐶-series.  

Corollary 22. Let 𝐿𝑘 ∈ ℒ(𝑁1: 𝑁2) for all 𝑘 ∈ ℕ. Then, the following 1. 2. and 3. are equivalent:   

    1.  The series ∑𝑘 𝐿𝑘 is 𝑐0(𝑁1)-𝑚𝐶-series.  

    2.  
𝒮𝑤 : 𝑀𝑤

∞(∑𝑘 𝐿𝑘) ⟶ 𝑁2

𝑣 = (𝑣𝑘) ⟼ 𝒮𝑤(𝑣) = ∑𝑘 𝐿𝑘𝑣𝑘
 

 is continuous.  

    3.  𝒮𝑤: 𝑀𝑤𝜎
∞ (∑𝑘 𝐿𝑘) → 𝑁2 is continuous.  

Theorem 23. Let 𝐿𝑘 ∈ ℒ(𝑁: 𝐵) for every 𝑘 ∈ ℕ. Then, ∑𝑘 𝐿𝑘 is ℓ∞(𝑁)-𝑚𝑐-series iff 𝒮𝑤 is 

compact (weakly compact).  

Corollary 24. For the formal series ∑𝑘 𝐿𝑘 i), ii) and iii) are equivalent:   

    i). The series ∑𝑘 𝐿𝑘 is ℓ∞(𝑁)-𝑚𝑐-series.  

    ii). 𝒮𝑤: 𝑀𝑤
∞(∑𝑘 𝐿𝑘) → 𝐵 is compact (weakly compact).  

    iii). 𝒮𝑤: 𝑀𝑤𝜎
∞ (∑𝑘 𝐿𝑘) → 𝐵 is compact (weakly compact).  

CONCLUSION 

The study on the sequences, series and summability in Banach spaces have always been interesting 

and luxuriant research area in the theory of functional analysis. As a generalization of well-known 
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Banach limits which are considered as an extension of limit functional on 𝑐 to ℓ∞, in this study, we 

intend to generalize the results due to authors (Karakuş & Başar, 2020a) and (Karakuş & Başar, 2020b) 

by using 𝜎-convergence and 𝜎-summability methods. 
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