
 

 
 

 

POLİTEKNİK DERGİSİ  
 
JOURNAL of POLYTECHNIC 
 
 
 
 
 
 
 
ISSN: 1302-0900 (PRINT), ISSN: 2147-9429  (ONLINE) 

URL: http://dergipark.gov.tr/politeknik 

 

 
Flexure analysis of laminated composite and 

sandwich beams using timoshenko beam 

theory   

Timoshenko kiriş teorisi kullanılarak lamine 

kompozit ve sandviç kirişlerin eğilme analizleri 

Yazar(lar)(Author((s)): Armağan KARAMANLI 

 

ORCID: 0000-0003-3990-6515 

 

 

Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Karamanlı A., “Flexure analysis of 

laminated composite and sandwich beams using timoshenko beam theory ”, Politeknik Dergisi, 21(3): 

633-643, (2018). 

  
Erişim linki (To link to this article): http://dergipark.gov.tr/politeknik/archive 

DOI: 10.2339/politeknik.386958 

http://dergipark.gov.tr/politeknik
http://dergipark.gov.tr/politeknik/archive


Politeknik Dergisi, 2018; 21(3) : 633-643  Journal of Polytechnic, 2018; 21 (3) : 633-643 

     

633 

Flexure Analysis of Laminated Composite and 

Sandwich Beams Using Timoshenko Beam Theory 
Araştırma Makalesi / Research Article 

Armağan KARAMANLI* 

Mühendislik ve Mimarlık Fakültesi, Mekatronik Mühendisliği Bölümü, İstanbul Gelişim Üniversitesi, Türkiye 

(Received : 12.07.2017 ; Accepted : 23.08.2017) 

 ABSTRACT 

The static behaviour of laminated composite and sandwich beams subjected to various sets of boundary conditions is investigated 

by using the Timoshenko beam theory and the Symmetric Smoothed Particle Hydrodynamics (SSPH) method. In order to solve 

the problem, a SSPH code which consists of up to sixth order derivative terms in Taylor series expansion is developed. The 

validation and convergence studies are performed by solving symmetric and anti-symmetric cross-ply composite beam problems 

with various boundary conditions and aspect ratios. The results in terms of mid-span deflections, axial and shear stresses are 

compared with those from previous studies to validate the accuracy of the present method. The effects of fiber angle, lay-up and 

aspect ratio on mid-span displacements and stresses are studied. At the same time, the problems not only for the convergence 

analysis but also for the extensive analysis are also solved by using the Euler-Bernoulli beam theory for comparison purposes.  

Keywords: Meshless method, composite beam, SSPH method, Timoshenko beam theory. 

Timoshenko Kiriş Teorisi Kullanılarak Lamine 

Kompozit ve Sandviç Kirişlerin Eğilme Analizleri  

ÖZ 

Timoshenko kiriş teorisi ve Simetrik Düzgünleştirilmiş Parçacık Hidrodinamiği (SDPH) yöntemi kullanılarak çeşitli sınır 

koşullarına sahip lamine kompozit ve sandviç kirişlerin static davranışları incelenmiştir. Problemin çözümü için Taylor serisi 

açılımında 6.mertebeye kadar türev ifadelerini içeren SDPH algoritması geliştirilmiştir. Çeşitli sınır koşullarına ve en boy 

oranlarına sahip simetrik ve simetik olmayan çapraz destekli kompozit kiriş problemleri çözülerek doğrulama ve yakınsaklık 

çalışmaları gerçekleştirilmiştir. Sunulan yöntemin doğruluğunu sağlamak üzere boyutsuz formda elde edilen orta nokta çökmesi, 

eksenel ve kayma gerilme değerleri daha önceki çalışmalardan elde edilen sonuçlarla karşılaştırılmıştır. Fiber açısının, lamine 

yerleşimlerinin, ve en boy oranlarının orta nokta çökmesi ve gerilmeler üzerindeki  etkileri çalışılmıştır. Aynı zamanda, 

karşılaştırma amacıyla hem yakınsaklık hem de detaylı analiz çalışmaları için çözülen problemler Euler-Bernoulli kiriş teorisi 

kullanılarak da çözülmüştür.    

Anahtar Kelimeler: Ağsız yöntem, kompozit kiriş, SSPH yöntemi, Timoshenko kiriş teorisi 
1. INTRODUCTION 

In recent years, the use of the structures which are made 

of composite materials have been increasing in many 

modern engineering applications such as aerospace, 

marine, automotive, and civil engineering due to 

attractive properties in strength, stiffness and lightness.  

Researchers have been developed various beam theories 

for analysis of the structural behaviour of the composite 

beams during the last decade, the review of these theories 

is given in [1]. The Euler-Bernoulli beam theory (EBT) 

is widely used to solve the bending behaviour of the thin 

beams. When the beam is thick or short, the effect of the 

transverse shear deformation cannot be neglected and 

refined shear deformation theories are needed. One of the 

theories which have been developed to eleminate the 

assumption which is that the cross sections which are 

normal to the mid-plane before deformation remain 

plane/straight and normal to the mid-plane after 

deformation in the EBT is the first order shear 

deformation theory called as Timoshenko beam theory 

(TBT). In the TBT, the normality assumption of the EBT 

is relaxed and the cross sections do not need to normal to 

the mid-plane but still remain plane. The TBT requires 

the shear correction factor (SCF) to compensate the error 

due to the assumption of the constant transverse shear 

strain and shear stress through the beam thickness. The 

SCF depends on the geometric and material parameters 

of the beam but the loading and boundary conditions are 

also important to determine the SCF [2-3]. 

Many higher order beam theories (HBT) including quasi-

3D ones have been used to study the bending behaviour 

of composite beams and only some of them [4-14] are 

referenced here. In [4], a set of theoretical models which 

include all the secondary effects such as the transverse 

shear stress, shear strains and their variation across the 

cross section is developed. Exact solutions have been 

developed for symmetric and antisymmetric cross-ply 

beams with arbitrary boundary conditions subjected to 

arbitrary loadings based on EBT, TBT and RBT by using 
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the state space concept in [5]. A general four-degrees-of-

freedom beam theory (G4DOFBT) which takes into 

consideration the effects of both transverse shear and 

normal deformation is presented in [6]. A third-order 

composite beam element which possesses a linear 

bending strain is presented for the analysis of composite 

beams and plates based on the RBT [7]. In [8], a shear 

deformation theory which includes two variables 

considering the effect of the normal strain and satisfies 

the zero tangential traction boundary conditions on the 

surfaces of the beam is developed. A multi-layered 

laminated composite structure model which satisfies the 

continuity condition of displacements and transverse 

shear stresses at interfaces, as well as the boundary 

conditions for a laminated composite with the help of the 

Heaviside step function is presented in [9]. A refined 2-

node, 4 DOF/node beam element is derived based on the 

RBT theory for axial–flexural-shear coupled deformation 

in asymmetrically stacked laminated composite beams is 

developed [10]. In [11], the kinematics of the laminated 

composite beam is presented by using a sinus function 

for the transverse shear strain distribution. The numerical 

assessment of different finite element models (FEM) for 

the static analysis of laminated composite beams of 

various cross-sections, considering equivalent single 

layer theories is presented in [12]. A refined formulation 

ZigZag theory is presented for the analysis of laminated 

composite beams (RZT) [13]. A four unknown shear and 

normal deformation theory is used to flexural analysis of 

laminated composite and sandwich beams in [14].  

Analytical, experimental and numerical methods have 

been used to explore the static behaviours of composite 

and sandwich beams. However, in some cases it is 

impossible to obtain the analytical solution and the cost 

of experimental studies are being expensive. By the 

advancement in the computer technology, the solution of 

these complex problems becomes possible via different 

numerical approaches such as the finite element methods 

(FEM), meshless methods, generalized differential 

quadrature method (GDQM), etc. The finite element 

method (FEM) is one of the most commonly used 

numerical methods for engineering problems. However, 

they have some drawbacks which can be eleminated by 

using meshless methods, for instance avoiding the re-

mesh at every step during the evolution of the analysis. 

Meshless methods are the most promising and have 

attracted considerable attention for the analysis of 

engineering problems with intrinsic complexity. 

Meshless methods are widely used in static and dynamic 

analyses of the isotropic, laminated composite and 

functionally graded beam problems [15-23].  However, 

the studies are very limited regarding to the flexure 

analysis of laminated composite and sandwich beams by 

employing a meshless method [24-27]. 

As it is seen form above literature survey, the studies 

related to flexure analysis of the laminated composite and 

sandwich beams by employing a meshless method are 

very limited in the literature. The main scope of this work 

is to investigate the flexure behaviour of the laminated 

composite and sandwich beams based on various beam 

theories such as Euler Bernoulli Beam Theory (EBT) and 

Timoshenko Beam Theory (TBT) by using the 

Symmetric Smoothed Particle Hydrodynamics (SSPH) 

method. In this paper, the elastostatic analysis of the 

laminated composite and sandwich beams are presented 

by considering fibre angles, lay-ups, aspect ratios and 

sets of boundary conditions.  

In section 2, the formulation of the basis function of the 

SSPH method is given. In section 3, the constitutive 

equations of the composite and sandwich beams are 

presented. The formulation of the EBT and TBT based 

on the studied beam problems are given in Section 4. In 

Section 5, numerical results are given for the problems 

with four different boundary conditions which are simply 

supported (SS), clamped-simply supported (CS), 

clamped-clamped (CC) and clamped-free (CF). 

 

2. FORMULATION OF SYMMETRIC 

SMOOTHED PARTICLE HYDRODYNAMICS 

METHOD 

A scalar function for 1D case can be presented by using 

Taylor Series Expansion (TSE) as follows 

𝑓(𝜉) = 𝑓(𝑥) + (𝜉 − 𝑥)𝑓′(𝑥) +
1

2!
(𝜉 − 𝑥)2𝑓′′(𝑥) + 

+
1

3!
(𝜉 − 𝑥)3𝑓′′′(𝑥) +

1

4!
(𝜉 − 𝑥)4𝑓(𝐼𝑉)(𝑥) + 

1

5!
(𝜉 − 𝑥)5𝑓(𝑉)(𝑥) +

1

6!
(𝜉 − 𝑥)6𝑓(𝑉𝐼)(𝑥)+. ..               (1) 

where 𝑓(𝜉) is the value of the function at ξ located in near 

of x. The Eq. (1) can be given by employing the zeroth to 

sixht order terms and neglecting the higher order terms 

𝑓(𝜉) = 𝑷(𝜉, 𝑥)𝑸(𝑥)                                           (2) 

where 

 𝑸(𝑥) = [𝑓(𝑥),
𝑑𝑓(𝑥)

𝑑𝑥
,

1

2!

𝑑2𝑓(𝑥)

𝑑𝑥2  , … ,
1

6!

𝑑6𝑓(𝑥)

𝑑𝑥6 ]
𝑇

              (3) 

𝑷(𝜉, 𝑥) = [1, (𝜉 − 𝑥), (𝜉 − 𝑥)2, … , (𝜉 − 𝑥)6]             (4) 

The number of terms employed in the TSE can be 

increased to improve the accuracy depending on the order 

of the governing equations. However, increasing the 

number of terms to be employed definitely increases the 

CPU time and may decrease the effectiveness of the 

method. Determination of the number of terms mainly 

depends on the experience of the researcher. To 

determine the unknown variables given in the 𝐐(x), both 

sides of Eq. (2) are multiplied with W(ξ, x)𝐏(ξ, x)T and 

evaluated for every node in the CSD. In the global 

numbering system, let the particle number of the jth 

particle in the compact support of W(ξ, x) be r ( j ). The 

following equation is obtained 

∑ 𝑓(𝜉𝑟(𝑗))

𝑁(𝑥)

𝑗=1

𝑊(𝜉𝑟(𝑗), 𝑥)𝑷(𝜉𝑟(𝑗), 𝑥)
𝑇
 

= ∑ [𝑷(𝜉𝑟(𝑗), 𝑥)
𝑇

𝑊(𝜉𝑟(𝑗), 𝑥)𝑷(𝜉𝑟(𝑗), 𝑥)]
𝑁(𝑥)
𝑗=1 𝑸(𝑥)   (5) 
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where N(x) is the number nodes in the compact support 

domain (CSD) of the W(ξ, x) as shown in Figure 1. 

Then, Eq. (5) can be given by 

𝑪(𝜉, 𝑥)𝑸(𝑥) = 𝑫(𝜉, 𝑥)𝑭(𝑥)(𝜉, 𝑥)                                (6) 

Where 𝐂(ξ, x) = 𝐏(ξ, x)T𝐖(ξ, x)𝐏(ξ, x) and 𝐃(ξ, x) =

𝐏(ξ, x)T 𝐖(ξ, x). 

The solution of Eq. (6) is given by 

𝑸(𝑥) =  𝑲(𝜉, 𝑥)𝑭(𝜉)                                           (7) 

where 𝐊(x)(ξ, x) = 𝐂(ξ, x)−1𝐃(ξ, x). 

 

 

 

 

 

 

 

 

 

Figure 1.  Compact support of the weight function W(ξ, x) for 

the node located at x = (xi, yi). 

 

Eq. (7) can be also written as follows 

𝑄𝐼(𝑥) = ∑ 𝐾𝐼𝐽𝐹𝐽  
𝑀
𝐽=1 ,       𝐼 = 1,2, … ,7               (8) 

where M is the number of nodes and FJ = f(ξJ). Seven 

components of Eq. (8) for 1D case are written as 

𝑓(𝑥) = 𝑄1(𝑥) = ∑ 𝐾1𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝑑𝑓(𝑥)

𝑑𝑥
= 𝑄2(𝑥) = ∑ 𝐾2𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝑑2𝑓(𝑥)

𝑑𝑥2
= 2! 𝑄3(𝑥) = 2! ∑ 𝐾3𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝑑3𝑓(𝑥)

𝑑𝑥3
= 3! 𝑄4(𝑥) = 3! ∑ 𝐾4𝐽𝐹𝐽  

𝑀

𝐽=1

 

 
𝑑4𝑓(𝑥)

𝑑𝑥4
= 4! 𝑄5(𝑥) = 4! ∑ 𝐾5𝐽𝐹𝐽                 

𝑀

𝐽=1

 

 
𝑑5𝑓(𝑥)

𝑑𝑥5
= 5! 𝑄6(𝑥) = 5! ∑ 𝐾6𝐽𝐹𝐽  

𝑀

𝐽=1

            

𝑑6𝑓(𝑥)

𝑑𝑥6 = 6! 𝑄7(𝑥) = 6! ∑ 𝐾7𝐽𝐹𝐽  
𝑀
𝐽=1                              (9) 

 

3. CONSTITUTIVE EQUATIONS 

In Figure 2., a laminated composite beam which is made 

of many plies of orthotropic materials in different 

orientations with respect to x-axis is presented. The 

formulation of the constitutive equations following 

assumptions are done; 

1. A lamina is continuum; i.e. , no gaps or empty spaces 

exist, 

2.A lamina behaves as a linear elastic material 

3.Each lamina is bounded perfectly to each other. 

 
Figure 2. Geometry of a laminated composite beam. 

 

The stress-strain relationship of a kth orthotropic lamina 

in the material coordinate axes is given by: 

{
𝜎𝑥𝑥

𝜎𝑥𝑧
}

𝑘

= [
𝑄11 0

0 𝑄55
]

𝑘

{
𝜀𝑥𝑥

𝛾𝑥𝑧
}                           (10) 

where (𝜎𝑥𝑥, 𝜎𝑥𝑧) are the stresses and (𝜀𝑥𝑥, 𝛾𝑥𝑧) are the 

normal strain and shear strain, respectively, with respect 

to the laminate axes. 𝑄𝑖𝑗’s are the transformed elastic 

constants or stiffness matrix with respect to laminate axis 

x. The transformed elastic constant can be given by: 

𝑄11 = 𝐶11𝑐𝑜𝑠4𝜃 + 2(𝐶12 + 2𝐶66)𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃

+ 𝐶22𝑠𝑖𝑛4𝜃 

𝑄55 = 𝐶44𝑠𝑖𝑛2𝜃 + 𝐶55𝑐𝑜𝑠2𝜃                           (11) 

where  

𝐶11 =
𝐸1

1 − 𝜐12𝜐21

;  𝐶12 =
𝐸1𝜐21

1 − 𝜐12𝜐21

;  

𝐶22 =
𝐸2

1 − 𝜐12𝜐21

; 𝐶66 = 𝐺12; 𝐶55 = 𝐺13; 𝐶44 = 𝐺23; 

𝐸1, 𝐸2, 𝐺12, 𝐺13, 𝐺23, 𝜐12 and 𝜐21 are the six independent 

engineering constants. E is the Young’s Modulus, G is 

the Shear Modulus and  𝜐 is the Poisson’s ratio. 

 

4. THEORETICAL FORMULATION OF BEAM 

THEORIES 

The kinematics of deformation of a beam can be 

represented by using various beam theories. Among 

them, the Euler Bernoulli Beam Theory (EBT) and the 

Timoshenko Beam Theory (TBT) are commonly used. 

To describe the EBT and TBT the following coordinate 

system is introduced. The x-coordinate is taken along the 

axis of the beam and the z-coordinate is taken through the 

𝒙𝒊 
 

𝒙𝒈 

Compact 

Support 

Domain 
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height (thickness) of the beam. In the general beam 

theory, all the loads and the displacements (u,w,ϕ) along 

the coordinates (x,z) are only the functions of the x and z 

coordinates. The formulations of the beam theories based 

on the laminated composite beams are given below. 

4.1 Euler Bernoulli Beam Theory 

According to EBT, the displacement field is given by, 

𝑈(𝑥, 𝑧) = 𝑢(𝑥) − 𝑧
𝑑𝑤(𝑥)

𝑑𝑥
 

𝑊(𝑥, 𝑧) = 𝑤(𝑥)                                                        (12) 

where 𝑢 and 𝑤 are two variables to be determined. The 

only the axial strain which is nonzero is given by, 

𝜀𝑥𝑥 =
𝑑𝑈

𝑑𝑥
=

𝑑𝑢

𝑑𝑥
− 𝑧

𝑑2𝑤

𝑑𝑥2                                          (13) 

The virtual strain energy of the beam can be presented by 

using the axial stress and the axial strain as follows 

𝛿𝑈 = ∫ ∫ 𝜎𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝐴𝑑𝑥
𝐴

𝐿

0
                                         (14) 

where 𝛿 is the variational operator, A is the cross 

sectional area, L is the length of the beam, 𝜎𝑥𝑥 is the axial 

stress. The stress resultants can be given by, 

𝑀𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

                                                      (15a) 

𝑁𝑥 = ∫ 𝜎𝑥𝑥𝑑𝐴
𝐴

                                                        (15b) 

Using Eq. (13) and Eq. (15), Eq. (14) can be rewritten as, 

𝛿𝑈 = ∫ (𝑁𝑥
𝑑𝛿𝑢

𝑑𝑥
− 𝑀𝑥

𝑑2𝛿𝑤

𝑑𝑥2 ) 𝑑𝑥 
𝐿

0
                           (16) 

The virtual potential energy of the load q(x) is given by 

𝛿𝑉 = − ∫ 𝑞𝛿𝑤𝑑𝑥
𝐿

0
                                         (17) 

If a body is in equilibrium, 𝛿𝑊 = 𝛿𝑈 + 𝛿𝑉, the total 

virtual work (𝛿𝑊) done equals zero and is given by, 

𝛿𝑊 = ∫ (𝑁𝑥
𝑑𝛿𝑢

𝑑𝑥
−𝑀𝑥

𝑑2𝛿𝑤

𝑑𝑥2 − 𝑞𝛿𝑤) 𝑑𝑥 = 0 
𝐿

0
           (18) 

After performing integration by parts in Eq. (18) and 

since 𝛿𝑢 and 𝛿𝑤 are arbitrary in (0 < x < L), one can 

obtain following equilibrium equations 

−
𝑑2𝑀𝑥

𝑑𝑥2 = 𝑞(𝑥) 𝑓𝑜𝑟 0 < 𝑥 < 𝐿                         (19a) 

− 
𝑑𝑁𝑥

𝑑𝑥
= 0 𝑓𝑜𝑟 0 < 𝑥 < 𝐿                                       (19b) 

It is useful to introduce the shear force 𝑄𝑥 and rewrite the 

Eq. (19a) in the following form 

−
𝑑𝑀𝑥

𝑑𝑥
+ 𝑄𝑥 = 0,   −

𝑑𝑄𝑥

𝑑𝑥
= 𝑞(𝑥)                               (20) 

Using Eqs. (10), (13) and (15), the followings can be 

written, 

𝑀𝑥 = 𝐵
𝑑𝑢

𝑑𝑥
− 𝐷

𝑑2𝑤

𝑑𝑥2                                         (21a) 

𝑁𝑥 = 𝐴
𝑑𝑢

𝑑𝑥
− 𝐵

𝑑2𝑤

𝑑𝑥2                                                    (21b) 

where 

(𝐴, 𝐵, 𝐷) = ∫ 𝑄11(1, 𝑧, 𝑧2)𝑑𝑧
+ℎ/2

−ℎ/2
                             (22) 

The EBT governing equations for a laminated composite 

beam subjected to the distributed load are given by 

𝑑2

𝑑𝑥2 (𝐷
𝑑2𝑤

𝑑𝑥2 − 𝐵
𝑑𝑢

𝑑𝑥
) = 𝑞(𝑥)                         (23a) 

−
𝑑

𝑑𝑥
(𝐴

𝑑𝑢

𝑑𝑥
− 𝐵

𝑑2𝑤

𝑑𝑥2 ) = 0                                          (23b) 

4.2 Timoshenko Beam Theory 

The following displacement field is given for the TBT, 

𝑈(𝑥, 𝑧) = 𝑢(𝑥) + 𝑧𝜙(𝑥) 

𝑊(𝑥, 𝑧) = 𝑤(𝑥)                                                        (24) 

where 𝑢, 𝜙 and 𝑤 are three variables to be determined. 

Using the Eq. (24), the non zero strains can be given 

𝜀𝑥𝑥 =
𝑑𝑈

𝑑𝑥
=

𝑑𝑢

𝑑𝑥
+ 𝑧

𝑑𝜙

𝑑𝑥
    

𝛾𝑥𝑧 =
𝑑𝑈

𝑑𝑧
+

𝑑𝑊

𝑑𝑥
= 𝜙 +

𝑑𝑤

𝑑𝑥
                                         (25) 

The virtual strain energy of the beam including the virtual 

energy associated with the shearing strain can be written 

as, 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝐴𝑑𝑥
𝐴

𝐿

0
             (26) 

where 𝜎𝑥𝑧 is the transverse shear stress and 𝛾𝑥𝑧 is the 

shear strain. The stress resultants can be given by, 

𝑀𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

                                                      (27a) 

𝑄𝑥 = ∫ 𝜎𝑥𝑧𝑑𝐴
𝐴

                                                        (27b) 

𝑁𝑥 = ∫ 𝜎𝑥𝑥𝑑𝐴 
𝐴

                                              (27c) 

Using Eqs. (25) and (27), one can rewrite the Eq.(26) as, 

𝛿𝑈 = ∫ [𝑁𝑥
𝑑𝛿𝑢

𝑑𝑥
+ 𝑀𝑥

𝑑𝛿𝜙

𝑑𝑥
+ 𝑄𝑥 (𝛿𝜙 +

𝑑𝛿𝑤

𝑑𝑥
)] 𝑑𝑥

𝐿

0
     (28) 

The virtual potential energy of the load q(x) is given by 

𝛿𝑉 = − ∫ 𝑞𝛿𝑤𝑑𝑥
𝐿

0
                                                     (29) 

If a body is in equilibrium, 𝛿𝑊 = 𝛿𝑈 + 𝛿𝑉, the total 

virtual work (𝛿𝑊) done equals zero and is given by, 

𝛿𝑊 = ∫ [𝑁𝑥
𝑑𝛿𝑢

𝑑𝑥
+ 𝑀𝑥

𝑑𝛿𝜙

𝑑𝑥
+ 𝑄𝑥 (𝛿𝜙 +

𝑑𝛿𝑤

𝑑𝑥
) −

𝐿

0

𝑞𝛿𝑤] 𝑑𝑥 = 0                                                              (30) 

Since the total virtual work done equals zero and the 

coefficients of 𝛿𝑢, 𝛿𝜙 and 𝛿𝑤in 0 < 𝑥 < 𝐿 are zero, the 

following governing equations can be given by, 

−
𝑑𝑀𝑥𝑥

𝑑𝑥
+ 𝑄𝑥 = 0                                                      (31a) 

−
𝑑𝑄𝑥

𝑑𝑥
= 𝑞(𝑥)                                                           (31b) 

− 
𝑑𝑁𝑥

𝑑𝑥
= 0                                                     (31c) 

Using Eqs. (10), (25)  and (27) the stress resultants can 

be written by, 

𝑀𝑥 = 𝐵
𝑑𝑢

𝑑𝑥
+ 𝐷

𝑑𝜙

𝑑𝑥
                                       (32a) 

𝑄𝑥 = 𝜅𝑠𝐴𝑠 (𝜙 +
𝑑𝑤

𝑑𝑥
)                                               (32b) 

𝑁𝑥 = 𝐴
𝑑𝑢

𝑑𝑥
+ 𝐵

𝑑𝜙

𝑑𝑥
                                            (32c) 

where 𝜅𝑠 is the shear correction factor to be used to 

compensate the error caused by the assumption of a 
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constant transverse shear stress distribution along the 

beam thickness and 

𝐴𝑠 = ∫ 𝑄55𝑑𝑧
+ℎ/2

−ℎ/2
                                                      (33) 

The governing equations of the TBT are given by 

−
𝑑

𝑑𝑥
(𝐵

𝑑𝑢

𝑑𝑥
+ 𝐷

𝑑𝜙

𝑑𝑥
) + 𝜅𝑠𝐴𝑠 (𝜙 +

𝑑𝑤

𝑑𝑥
) = 0           (34a) 

−
𝑑

𝑑𝑥
[𝜅𝑠𝐴𝑠 (𝜙 +

𝑑𝑤

𝑑𝑥
)] = 𝑞(𝑥)                                  (34b) 

−
𝑑

𝑑𝑥
(𝐴

𝑑𝑢

𝑑𝑥
+ 𝐵

𝑑𝜙

𝑑𝑥
) = 0                                     (34c) 

 

5. NUMERICAL RESULTS 

The flexure behaviour of the composite beams is 

investigated by a number of numerical examples 

considering the EBT and TBT formulations. The 

numerical results in terms of displacements and stresses 

of composite beams are obtained by using the SSPH 

method and considering various lay-ups, aspect ratios 

and boundary conditions. The results from previous 

studies [5,8] in terms of dimensionless mid-span 

deflections, axial and shear stresses are used for 

comparison purposes. After the verification of the 

developed code, the number of nodes to be used in the 

problem domain for the numerical calculations is 

determined and extensive analysis are performed.  The 

physical parameters of the beam are L=1m and b=0.1m. 

Three different two aspect ratios (L/h) 5, 10 and 50 are 

considered.  The distributed load 𝑞0 is set to 10000 N/m. 

The shear correction factor is set to 5/6. The material 

properties of the problems studied within this paper are 

given in Table 2. 

The following non-dimensional quantities are used for 

the representation of the results; 

Non-dimensional maximum transverse deflection of the 

beam: 

 𝑤̅ =
100𝐸𝑚𝑏ℎ3

𝑞0𝐿4 𝑤(𝐿/2, 𝑧)                                           (35) 

Non-dimensional axial and shear stresses of the beam: 

𝜎𝑥 =
𝑏ℎ2

𝑞0𝐿2
𝜎𝑥(

𝐿

2
, 𝑧) 

𝜎𝑥𝑧 =
𝑏ℎ

𝑞0𝐿
𝜎𝑥𝑧(0, 𝑧)                                                     (36) 

5.1 Verification, Comparison and Convergence 

Studies 

The developed SSPH code is verified by solving 

symmetric and anti-symmetric cross-ply composite 

beams subjected to uniformly distributed load with 

different boundary conditions (simply supported and 

cantilever) and aspect ratios. Three types of uniformly 

node distributions in the problem domain are employed 

for numerical calculations, 41, 81 and 161 nodes based 

on the experience of previous studies [22-23]. The 

following weight function used in [23] is employed for 

the analysis: 

Table 1. Boundary conditions used for the numerical computations. 

BC x=0 x=L 

EBT 

S-S u = 0, w = 0, Mx = 0 u = 0 or Nx = 0, w = 0, Mx = 0 

C-S u = 0, w = 0, w′ = 0 u = 0 or Nx = 0, w = 0, Mx = 0 

C-C u = 0, w = 0, w′ = 0 u = 0, w = 0, w′ = 0 

C-F u = 0, w = 0, w′ = 0  Nx = 0, Mx = 0, Mx
′ = 0 

TBT 

S-S u = 0, w = 0, Mx = 0 u = 0 or  Nx = 0, w = 0, Mx = 0 

C-S u = 0, w = 0, ϕ = 0 u = 0 or  Nx = 0, w = 0, Mx = 0 

C-C u = 0, w = 0, ϕ = 0 u = 0, w = 0, ϕ = 0 

C-F u = 0, w = 0, ϕ = 0  Nx = 0, Mx = 0, Qx = 0 

Table 2. Material properties of composite and sandwich beams. 

Problem Structure Material Properties 

1 Type A 

E1/E2 = 25;E3 = E2; G12 = G13 = 0.5E2; G23 = 0.2E2 

υ12 = υ13 = υ23 = 0.25 

2 Type B 

Face Layer: Type A 

Core Layer: 

 E1/E2 = 1;E3 = E2; G12 = G13 = 1.5E2; G23 = 0.4E2 

υ12 = υ13 = υ23 = 0.25 
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𝑊(𝑥, 𝜉) = {(1 −
𝑑

𝜌
)

7
35 (

𝑑

𝜌
)

6
+ 245 (

𝑑

𝜌
)

5
+ 720 (

𝑑

𝜌
)

4
+

0
        

1120 (
𝑑

𝜌
)

3

+ 928 (
𝑑

𝜌
)

2

+ 336 (
𝑑

𝜌
) + 48     

0

0 ≤ 𝑑 ≤ 𝜌

𝑑 > 𝜌
}   (37) 

where 𝑑 = |𝑥 − 𝜉|/ℎ is the radius of the compact support 

domain, ℎ is the smoothing length. 

 

The numerical calculations are performed according to 

the following meshless parameters; the radius of the 

Table 3. Verification and convergence studies of the SSPH code, dimensionless mid-span deflections for different  

number of nodes. 

Theory Reference 
Symmetric (0°/90°/0°) Anti-symmetric (0°/90°) 

L/h=5 10 50 L/h=5 10 50 

a. Simply Supported Beams (S-S) 

EBT 
Khdeir and Reddy [5] 

0.646 0.646 0.646 3.322 3.322 3.322 

TBT 2.146 1.021 0.661 5.036 3.750 3.339 

EBT 

SSPH - 41 nodes 0.6464 0.6464 0.6464 3.3216 3.3216 3.3216 

SSPH - 81 nodes 0.6464 0.6464 0.6464 3.3216 3.3216 3.3216 

SSPH - 161 nodes 0.6464 0.6464 0.6464 3.3216 3.3216 3.3216 

TBT 

SSPH - 41 nodes 2.1464 1.0214 0.6614 5.0359 3.7502 3.3387 

SSPH - 81 nodes 2.1464 1.0214 0.6614 5.0359 3.7502 3.3387 

SSPH - 161 nodes 2.1464 1.0214 0.6614 5.0359 3.7502 3.3387 

b. Cantilever Beams (C-F) 

EBT 
Khdeir and Reddy [5] 

2.198 2.198 2.198 11.293 11.293 11.293 

TBT 6.698 3.323 2.243 16.436 12.579 11.345 

EBT 

SSPH - 41 nodes 2.1978 2.1978 2.1978 11.2934 11.2934 11.2934 

SSPH - 81 nodes 2.1978 2.1978 2.1978 11.2934 11.2934 11.2934 

SSPH - 161 nodes 2.1978 2.1978 2.1978 11.2934 11.2934 11.2934 

TBT 

SSPH - 41 nodes 6.6978 3.3228 2.2428 16.4362 12.5791 11.3448 

SSPH - 81 nodes 6.6978 3.3228 2.2428 16.4362 12.5791 11.3448 

SSPH - 161 nodes 6.6978 3.3228 2.2428 16.4362 12.5791 11.3448 

Table 4. Verification and convergence studies of the SSPH code, dimensionless axial 𝜎̅𝑥 (
𝐿

2
,

ℎ

2
)  and shear 𝜎̅𝑥𝑧(0,0)  stresses of  

S-S beams for different number of nodes. 

Theory Reference 
Symmetric (0°/90°/0°) Anti-symmetric (0°/90°) 

L/h=5 10 50 L/h=5 10 50 

a. Axial (Normal) Stress 

EBT 
Zenkour [8] 

0.7776 0.7776 0.7776 0.2336 0.2336 0.2336 

TBT 0.7776 0.7776 0.7776 0.2336 0.2336 0.2336 

EBT 

SSPH - 41 nodes 0.7776 0.7776 0.7776 0.2336 0.2336 0.2336 

SSPH - 81 nodes 0.7776 0.7776 0.7776 0.2336 0.2336 0.2336 

SSPH - 161 nodes 0.7776 0.7776 0.7776 0.2336 0.2336 0.2336 

TBT 

SSPH - 41 nodes 0.7776 0.7776 0.7776 0.2336 0.2336 0.2336 

SSPH - 81 nodes 0.7776 0.7776 0.7776 0.2336 0.2336 0.2336 

SSPH - 161 nodes 0.7776 0.7776 0.7776 0.2336 0.2336 0.2336 

b. Shear Stress 

TBT Zenkour [8] 0.2994 0.2994 0.2994 0.8553 0.8553 0.8553 

TBT 

SSPH - 41 nodes 0.3000 0.3000 0.3000 0.8571 0.8571 0.8571 

SSPH - 81 nodes 0.3000 0.3000 0.3000 0.8571 0.8571 0.8571 

SSPH - 161 nodes 0.3000 0.3000 0.3000 0.8571 0.8571 0.8571 

 



FLEXURE ANALYSIS OF LAMINATED COMPOSITE AND SANDWICH BEAMS USING TIM … Politeknik Dergisi, 2018; 21 (3) : 633-643 

639 

support domain (d) is chosen as 8 and the smoothing 

length (h) equals to 1.3∆. ∆ can be defined as the 

minimum distance between two adjacent nodes. The 

meshless parameters are selected by performing trial and 

error method. 

Based on the various node distributions, aspect ratios, 

symmetric and anti-symmetric beam structures, 

nondimensional mid-span deflections, axial and shear 

stresses are obtained by using different beam theories. 

The results are given in Table 3-4 along with the results 

from previous studies. It is clear that the results obtained 

by using the SSPH method agree completely with those 

of previous papers [5,8]. The computed results obtained 

by using the EBT and TBT, the mid-span deflections, 

axial and transverse shear stresses are almost the same 

with those obtained from various authors. Due to this 

agreement, the verification of the developed code is 

established. For the sake of accuracy, uniformly 

distributed 161 nodes will be used in the problem domain 

for the extensive analysis. 

5.2 Elastostatic Analysis of Laminated Composite 

and Sandwich Beams 

Four different boundary conditions, SS, CS, CC and CF 

are considered respectively for the bending analysis of 

laminated composite and sandwich beams subjected to 

uniformly distributed load. The mid-span deflections, 

axial and shear stresses are computed based on the 

various beam theories, lay-ups, fiber angles and aspect 

ratios. 

5.2.1 Laminated Composite Beams: Type A 

By extending the problem which is solved for the 

convergence and verification analysis, symmetric 

[0°/θ/0°] and unsymmetric [0°/θ] composite beams are 

considered.  In Tables 5 and 6, variations of mid-span 

displacements, axial and shear stresses respect to the 

fiber angle are given. As the fiber angle increases, mid-

span deflections and axial stress values increase for all 

type of boundary conditions and aspect ratios. With the 

increasing of the aspect ratio, the mid-span deflections 

decrease. It is found that the axial stresses computed 

based on the EBT and TBT formulation are almost same. 

As it is expected, the difference between the EBT and 

TBT in terms of mid-span deflections is negligible for a 

thin beam. 

As it is seen from Figs. 3 and 4, as the fiber angle 

increases, the dimensionless axial and shear stresses 

increase for all type of boundary conditions and aspect 

ratios. The discontinuities are visible for all types of 

composite beam structures. 

 

 

 

 

 

 

a. Symmetric lay-up 

 
 

b. Anti-symmetric lay-up 

Figure 3. Axial stress distribution through the thickness of 

symmetric and anti-symmetric beams with S-S 

boundary condition based on TBT 

 

a. Symmetric lay-up 

 

b. Anti-symmetric lay-up 

Figure 4. Shear stress distribution through the thickness of 

symmetric and anti-symmetric beams with S-S 

boundary condition based on TBT, Type A,  L/h=5  
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5.2.2 Laminated Composite Sandwich Beams: Type B 

Cross-ply sandwich beams (Type B) under uniformly 

distributed load with the top and bottom face thickness 

(h1) and core thickness (h2) are studied, Fig. 5. The 

dimensionless mid-span deflections and stresses are 

computed by using different beam theories for various 

thickness and aspect ratios. 

 

Figure 5. Geometry of the laminated composite sandwich beam 

(Type B)  

Table 5. Dimensionless mid-span deflections of [0°/θ/0°] and [0°/θ] beams for various boundary conditions under  

a uniformly distributed load, Type A. 

Aspect 

Ratio 

(L/h) 

Theory Lay-ups 0° 15° 30° 45° 60° 75° 90° 

a. Simply supported beams (S-S) 

5 

EBT 

[0°/θ] 0.6234 0.6665 0.8303 1.2639 2.2352 3.1802 3.3216 

[0°/θ/0°] 0.6234 0.6263 0.6332 0.6404 0.6448 0.6463 0.6464 

10 
[0°/θ] 0.6234 0.6665 0.8303 1.2639 2.2352 3.1802 3.3216 

[0°/θ/0°] 0.6234 0.6263 0.6332 0.6404 0.6448 0.6463 0.6464 

50 
[0°/θ] 0.6234 0.6665 0.8303 1.2639 2.2352 3.1802 3.3216 

[0°/θ/0°] 0.6234 0.6263 0.6332 0.6404 0.6448 0.6463 0.6464 

5 

TBT 

[0°/θ] 1.8234 1.8910 2.1276 2.6757 3.7836 4.8467 5.0359 

[0°/θ/0°] 1.8234 1.8426 1.8964 1.9737 2.0566 2.1216 2.1464 

10 
[0°/θ] 0.9234 0.9726 1.1547 1.6169 2.6223 3.5968 3.7502 

[0°/θ/0°] 0.9234 0.9304 0.9490 0.9737 0.9978 1.0151 1.0214 

50 
[0°/θ] 0.6354 0.6787 0.8433 1.2780 2.2507 3.1969 3.3387 

[0°/θ/0°] 0.6354 0.6385 0.6458 0.6537 0.6590 0.6610 0.6614 

b. Clamped simply supported beams (C-S) 

5 

EBT 

[0°/θ] 0.2494 0.2666 0.3321 0.5056 0.8941 1.2721 1.3286 

[0°/θ/0°] 0.2494 0.2505 0.2533 0.2562 0.2579 0.2585 0.2587 

10 
[0°/θ] 0.2494 0.2666 0.3321 0.5056 0.8941 1.2721 1.3286 

[0°/θ/0°] 0.2494 0.2505 0.2533 0.2562 0.2579 0.2585 0.2587 

50 
[0°/θ] 0.2494 0.2666 0.3321 0.5056 0.8941 1.2721 1.3286 

[0°/θ/0°] 0.2494 0.2505 0.2533 0.2562 0.2579 0.2585 0.2587 

5 

TBT 

[0°/θ] 1.5899 1.6371 1.7929 2.1135 2.6811 3.2070 3.3197 

[0°/θ/0°] 1.5899 1.6087 1.6623 1.7409 1.8269 1.8953 1.9216 

10 
[0°/θ] 0.5983 0.6229 0.7107 0.9194 1.3500 1.7637 1.8345 

[0°/θ/0°] 0.5983 0.6041 0.6203 0.6432 0.6674 0.6860 0.6931 

50 
[0°/θ] 0.2636 0.2811 0.3475 0.5223 0.9125 1.2919 1.3490 

[0°/θ/0°] 0.2636 0.2649 0.2683 0.2720 0.2747 0.2760 0.2764 

c. Cantilever beams (C-F) 

5 

EBT 

[0°/θ] 2.1197 2.2660 2.8232 4.2973 7.5998 10.8128 11.2934 

[0°/θ/0°] 2.1197 2.1294 2.1529 2.1774 2.1925 2.1974 2.1978 

10 
[0°/θ] 2.1197 2.2660 2.8232 4.2973 7.5998 10.8128 11.2934 

[0°/θ/0°] 2.1197 2.1294 2.1529 2.1774 2.1925 2.1974 2.1978 

50 
[0°/θ] 2.1197 2.2660 2.8232 4.2973 7.5998 10.8128 11.2934 

[0°/θ/0°] 2.1197 2.1294 2.1529 2.1774 2.1925 2.1974 2.1978 

5 

TBT 

[0°/θ] 5.7197 5.9398 6.7150 8.5326 12.2449 15.8121 16.4363 

[0°/θ/0°] 5.7197 5.7783 5.9424 6.1774 6.4278 6.6232 6.6978 

10 
[0°/θ] 3.0197 3.1844 3.7961 5.3561 8.7611 12.0626 12.5791 

[0°/θ/0°] 3.0197 3.0416 3.1002 3.1774 3.2513 3.3038 3.3228 

50 
[0°/θ] 2.1557 2.3027 2.8621 4.3397 7.6462 10.8628 11.3448 

[0°/θ/0°] 2.1557 2.1659 2.1908 2.2174 2.2348 2.2416 2.2428 

d. Clamped clamped beams (C-C) 

5 

EBT 

[0°/θ] 0.1247 0.1333 0.1661 0.2528 0.4470 0.6360 0.6643 

[0°/θ/0°] 0.1247 0.1253 0.1266 0.1281 0.1290 0.1293 0.1293 

10 
[0°/θ] 0.1247 0.1333 0.1661 0.2528 0.4470 0.6360 0.6643 

[0°/θ/0°] 0.1247 0.1253 0.1266 0.1281 0.1290 0.1293 0.1293 

50 
[0°/θ] 0.1247 0.1333 0.1661 0.2528 0.4470 0.1293 0.6643 

[0°/θ/0°] 0.1247 0.1253 0.1266 0.1281 0.1290 0.6360 0.1293 

5 

TBT 

[0°/θ] 1.3247 1.3579 1.4634 1.6645 1.9954 2.3025 2.3786 

[0°/θ/0°] 1.3247 1.3416 1.3898 1.4614 1.5407 1.6046 1.6293 

10 
[0°/θ] 0.4247 0.4394 0.4904 0.6057 0.8341 1.0527 1.0929 

[0°/θ/0°] 0.4247 0.4293 0.4424 0.4614 0.4819 0.4981 0.5043 

50 
[0°/θ] 0.1367 0.1455 0.1790 0.2669 0.4625 0.6527 0.6815 

[0°/θ/0°] 0.1367 0.1374 0.1393 0.1414 0.1431 0.1440 0.1443 
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Table 6. Dimensionless axial 𝜎̅𝑥 (
𝐿

2
,

ℎ

2
)  and shear 𝜎̅𝑥𝑧(0,0) stresses of [0°/θ/0°] and [0°/θ] S-S beams under a 

uniformly distributed load, Type A. 

Aspect 

Ratio (L/h) 
Theory Lay-ups 0° 15° 30° 45° 60° 75° 90° 

a. Axial stress 

5 

EBT 

[0°/θ] 0.7500 0.7261 0.6597 0.5538 0.3921 0.2538 0.2336 

[0°/θ/0°] 0.7500 0.7534 0.7617 0.7704 0.7758 0.7775 0.7776 

10 
[0°/θ] 0.7500 0.7261 0.6597 0.5538 0.3921 0.2538 0.2336 

[0°/θ/0°] 0.7500 0.7534 0.7617 0.7704 0.7758 0.7775 0.7776 

50 
[0°/θ] 0.7500 0.7261 0.6597 0.5538 0.3921 0.2538 0.2336 

[0°/θ/0°] 0.7500 0.7534 0.7617 0.7704 0.7758 0.7775 0.7776 

5 

TBT 

[0°/θ] 0.7500 0.7261 0.6597 0.5538 0.3921 0.2538 0.2336 

[0°/θ/0°] 0.7500 0.7534 0.7617 0.7704 0.7758 0.7775 0.7776 

10 
[0°/θ] 0.7500 0.7261 0.6597 0.5538 0.3921 0.2538 0.2336 

[0°/θ/0°] 0.7500 0.7534 0.7617 0.7704 0.7758 0.7775 0.7776 

50 
[0°/θ] 0.7500 0.7261 0.6597 0.5538 0.3921 0.2538 0.2336 

[0°/θ/0°] 0.7500 0.7534 0.7617 0.7704 0.7758 0.7775 0.7776 

b. Shear stress 

5 

TBT 

[0°/θ] 0.6000 0.6123 0.6486 0.7059 0.7742 0.8332 0.8571 

[0°/θ/0°] 0.6000 0.5837 0.5368 0.4667 0.3882 0.3247 0.3000 

10 
[0°/θ] 0.6000 0.6123 0.6486 0.7059 0.7742 0.8332 0.8571 

[0°/θ/0°] 0.6000 0.5837 0.5368 0.4667 0.3882 0.3247 0.3000 

50 
[0°/θ] 0.6000 0.6123 0.6486 0.7059 0.7742 0.8332 0.8571 

[0°/θ/0°] 0.6000 0.5837 0.5368 0.4667 0.3882 0.3247 0.3000 

Table 7. Dimensionless mid-span deflections of [0°/90°/0°] beams for various boundary conditions under a uniformly  

distributed load, Type B. 

Theory 

ℎ2
ℎ1

⁄ = 3 
ℎ2

ℎ1
⁄ = 8 

L/h=5 10 50 L/h=5 10 50 

a. Simply supported beams (S-S) 

EBT 0.7860 0.7860 0.7860 1.2229 1.2229 1.2229 

TBT 2.1496 1.1269 0.7996 2.6515 1.5801 1.2372 

b. Clamped simply supported beams (C-S) 

EBT 0.3144 0.3144 0.3144 0.4892 0.4892 0.4892 

TBT 1.8438 0.7116 0.3306 2.1140 0.9077 0.5061 

c. Cantilever beams (C-F) 

EBT 2.6723 2.6723 2.6723 4.1580 4.1580 4.1580 

TBT 6.7634 3.6951 2.7133 8.4437 5.2294 4.2008 

d. Clamped clamped beams (C-C) 

EBT 0.1572 0.1572 0.1572 0.2446 0.2446 0.2446 

TBT 1.5208 0.4981 0.1708 1.6732 0.6017 0.2589 

Table 8. Dimensionless axial 𝜎̅𝑥 (
𝐿

2
,

ℎ

2
)  and shear 𝜎̅𝑥𝑧(0,0) stresses of [0°/90°/0°] S-S beams under a uniformly  

distributed load, Type B. 

Theory 

ℎ2
ℎ1

⁄ = 3 
ℎ2

ℎ1
⁄ = 8 

L/h=5 10 50 L/h=5 10 50 

a. Axial stress  

EBT 0.9455 0.9455 0.9455 1.4712 1.4712 1.4712 

TBT 0.9455 0.9455 0.9455 1.4712 1.4712 1.4712 

b. Shear stress 

TBT 0.5455 0.5455 0.5455 0.5714 0.5714 0.5714 
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a. Axial Stress 

b. Shear Stress 

Figure 6. Axial and shear stress distribution through the 

thickness of symmetric sandwich beams with S-S 

boundary condition based on TBT, Type B,  L/h=5.  

It is clear that from Tables 7 and 8, the dimensionless 

mid-span deflections and the stresses increase as the 

thickness ratio changes from 3 to 8. As the aspect ratio 

increase, the difference between the EBT and TBT in 

terms of mid-span deflections decreases. The maximum 

axial and shear stresses are obtained for the thickness 

value at 8 as it is seen from Figure 6. 

 

6. CONCLUSION 

The flexure behaviour of the laminated composite and 

sandwich beams are presented by using the EBT and 

TBT formulation employing the SSPH basis functions 

with strong formulation of the problem. The EBT and 

TBT formulations are developed regarding to different 

types of composite beam structures to evaluate the mid-

span deflections, axial and shear stresses. The 

verification of the developed code is established by 

solving symmetric and anti-symmetric cross-ply 

composite beams subjected to uniformly distributed load 

with different boundary conditions (simply supported 

and cantilever) and aspect ratios. The numerical 

calculations are performed by using 161 nodes uniformly 

distributed in the problem domain and by employing 7 

terms in the TSEs. The numerical results based on the 

TBT formulation are compared with those obtained by 

other authors and the computed results based on the EBT 

formulation to show the validity of the SSPH method.  

Composite and sandwich beams with various 

configurations are considered. The following results can 

be drawn from the computed results based on the TBT: 

• For the fiber angle value 0°, all coupling effects from 

material vanish. Thus, the axial displacement u cannot be 

obtained. 

• Bending behavior can be controlled to meet the desired 

goals by choosing suitable fiber angle. 

• The importance of the shear effect increases as the fiber 

angle increases for the anti-symmetric laminated 

composite beams (Type A) for all type of boundary 

conditions and aspect ratios. 

• The mid-span deflections, axial and shear stresses of the 

symmetric and anti-symmetric laminated composite 

beams (Type A) are affected by the fiber angles for all 

type of boundary conditions and aspect ratios. 

• The difference in terms of mid-span deflections, axial 

and shear stresses between the symmetric and anti-

symmetric laminated composite beams (Type A) increase 

as the fiber angle increases. 

• C-F laminated composite sandwich beam (Type B) is 

much more sensitive to the thickness ratio change than 

the other sandwich beam models. 

• For S-S laminated composite sandwich beam (Type B), 

the difference in terms of axial stress values between the 

studied thickness ratios is more obvious than shear stress 

values.   

It is found that the SSPH method provides satisfactory 

and expected results at least for the problems studied 

here. Based on the results obtained within the scope of 

the study, it is recommended that the SSPH method can 

be applied for solving linear laminated composite and 

sandwich beam problems by employing different shear 

deformation theories and strong form formulation.  
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