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ABSTRACT: The effect of climatic variables on soil moisture is quite high.  In this study, the soil moisture status in 
Turkey has been analyzed by using satellite data between 2016 and 2022 for Land Surface Temperature (LST), surface 
pressure (PS) and precipitation variables. The effects of temperature changes, surface pressure and precipitation on soil 
moisture and how these interactions differ in different regions of Turkey are analyzed. Surface soil moisture (SSM) was 
highly correlated with rainfall (R 0.74). There was a high correlation between SSM and LST (R 0.74). Subsurface soil 
moisture (SUSM) was highly correlated with precipitation (R 0.73). There was a high correlation between SUSM and 
LST (R 0.74).  Greenhouse gas emission data were taken from the Turk Stat data portal and the relationship between 
soil moisture was examined. A high level of correlation was observed between SSM and SUSM, f gases (R 0.97, R 0.96). 
This study can be considered as an important step in understanding the effects of Turkey's climatic variables on soil 
moisture. The findings emphasize that soil moisture is important for sustainable agriculture and environmental factors 
and provide an in-depth understanding of how climatic variables affect it. Such analyses can provide strategic 
information in areas such as agricultural planning, water resources management and environmental sustainability, and 
contribute to a more robust basis for future decisions.  
 
Keywords:: Soil moisture, land surface temperature, surface pressure and precipitation. 
 
ÖZ: İklimsel değişkenlerin toprak nemi üzerindeki etkisi oldukça yüksektir. Bu çalışmada, Türkiye'deki toprak nem 
durumu, 2016-2022 yılları arasında uydu verileri kullanılarak Kara Yüzey Sıcaklığı (LST), yüzey basıncı (PS) ve yağış 
değişkenleri için analiz edilmiştir. Sıcaklık değişimlerinin, yüzey basıncının ve yağışın toprak nemi üzerindeki etkileri 
ve bu etkileşimlerin Türkiye'nin farklı bölgelerinde nasıl farklılık gösterdiği analiz edilmiştir. Yüzey toprak nemi (SSM), 
yağışla yüksek oranda ilişkiliydi (R 0,74). SSM ve LST arasında yüksek bir korelasyon vardı (R 0,74). Yeraltı toprak nemi 
(SUSM) yağışla yüksek oranda ilişkiliydi (R 0,73). SUSM ve LST arasında yüksek bir korelasyon vardı (R 0,74). Sera gazı 
emisyon verileri TÜİK veri portalından alınmış ve toprak nemi arasındaki ilişki incelenmiştir. SSM ve SUSM, f gazları 
arasında yüksek düzeyde korelasyon gözlenmiştir (R 0,97, R 0,96). Bu çalışma, Türkiye'nin iklim değişkenlerinin toprak 
nemi üzerindeki etkilerinin anlaşılmasında önemli bir adım olarak değerlendirilebilir. Bulgular, toprak neminin 
sürdürülebilir tarım ve çevresel faktörler için önemli olduğunu vurgular ve iklim değişkenlerinin bunu nasıl 
etkilediğine dair derinlemesine bir anlayış sağlar. Bu tür analizler, tarımsal planlama, su kaynakları yönetimi ve çevresel 
sürdürülebilirlik gibi alanlarda stratejik bilgiler sağlayabilir ve gelecekteki kararlar için daha sağlam bir temel 
oluşturmaya katkıda bulunabilir. 
 
Anahtar Kelimeler: Toprak nemi, arazi yüzey sıcaklığı, yüzey basıncı ve yağış. 
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1. INTRODUCTION 

Climate plays a vital role in the complexity of 
natural systems. The relationship between soil 
moisture and climatic variables has decisive effects 
on ecological balance. In this context, the geography 
of Turkey draws attention with its diverse climatic 
characteristics.  

Soil moisture is crucial for understanding the water, 
energy, and carbon cycles, impacting weather 
forecasts and flood or drought monitoring. The 
SMAP mission uses L-band microwave technology 
to monitor soil moisture, combining radar (high 
spatial resolution, low sensitivity) and radiometers 
(low spatial resolution, high sensitivity) to 
overcome their individual limitations. SMAP's 
objectives include measuring soil moisture at 40 km 
resolution, improving it to 10 km by merging radar 
and radiometer data, and detecting freeze/thaw 
states at 3 km resolution. This paper presents a 
downscaling algorithm to enhance the SMAP 10 km 
soil moisture product by optimizing both radar and 
radiometer data [1]-[10]. 

Understanding surface soil moisture is vital across 
disciplines. It impacts ecosystems, agriculture, and 
the environment. In ecosystems, it affects 
microorganisms and nutrient cycling. In 
agriculture, it's crucial for crop growth. Soil 
moisture also influences runoff, erosion, and air 
quality through dust. Moreover, it's linked to 
disease transmission. Monitoring it is key for 
sustainable practices and managing environmental 
impacts [10]-[14].  

Deeper soil moisture can serve as a more nuanced 
parameter for certain processes, diverging from 
surface soil moisture (SSM) notably under dry 
conditions. Yet, SSM often exhibits a strong 
correlation with moisture in deeper layers, 
indicating that focusing solely on SSM doesn’t 
result in substantial information loss. The duration 
of soil moisture retention is pivotal in forecasting 
extreme weather events like heatwaves, droughts, 
floods, and storms. This is due to the considerable 
memory capacity of soil moisture compared to the 
atmosphere. While atmospheric anomalies 
dissipate swiftly (within hours), anomalies in soil 
moisture persist for extended periods (from days to 
months). These lingering anomalies might 
influence subsequent atmospheric patterns, hinting 

at the potential for valuable insights in seasonal 
atmospheric predictions [15]-[17]. 

In this article, Turkey's above and below ground 
soil moisture, surface temperature, surface pressure 
and precipitation data were obtained by processing 
satellite images. It is aimed to contribute to the 
understanding of these interactions by emphasizing 
the effects of climate variables on soil moisture. 
Surface temperature, surface pressure and 
precipitation data are important data sources for 
understanding regional climatic variables as well as 
factors affecting surface and SSM. The analyses 
presented in this paper provide a comprehensive 
use of these data to explain the dynamics of soil 
moisture in different regions of Turkey.                                  

2. MATERIALS AND METHODS 

2.1 Study Area 

Google Earth image of Turkey is given in Figure 1. 
Turkey is a very diverse country in terms of its 
home location and topography, as well as soil 
moisture. While the northern and western regions 
of the country were wetter, the southern and 
eastern regions were drier. Soil moisture is 
important in many aspects such as agriculture, 
water resources and natural ecosystems. Without 
adequate soil moisture, plants cannot take in water 
and nutrients, which can lead to reduced yields. Soil 
moisture also plays a role in producing water and 
feeding rivers. Moist soil is essential for the survival 
of many plants and animals. Ground connections in 
Turkey have many factors. The most important 
precipitation, temperature and soil types. Soil 
moisture that receives adequate rainfall is higher. 
Soil moisture changes more through evaporation of 
the hot junction. Sandy soils retain less water than 
clay soils. It is important to preserve and 
sustainably use Turkey's soil moisture. This can be 
done through irrigation values, afforestation 
efforts, their control and home farming practices. 
Irrigation resistant, water waste can be prevented, 
and soil moisture can be preserved. It helps protect 
trees from their soil and retain moisture. It helps in 
erosion control and conservation of storage water. 
There are techniques that will help preserve soil 
moisture through conscious agricultural practices. 
Soil moisture is an important resource for Turkey's 
development and future generations. Protecting 
and using this resource sustainably, giving critical 
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importance to sustaining production in Turkey's 
management and preserving the protection of 
natural ecosystems. 

 
Figure 1: Google Earth image of Turkey. 

 

2.2. Materials 

The advancements in remote sensing technology in 
the last thirty years have significantly enhanced our 
capacity to regularly gather worldwide data on soil 
moisture levels [18]-[21]. Numerous thoroughly 
assessed soil moisture datasets have demonstrated 
their utility across diverse applications. They're 
instrumental in weather and climate prediction, 
monitoring droughts and wildfires, tracking floods 
and landslides, and improving agricultural output 
[22]-[25].  

Soil moisture (θ) availability is critical for refining 
climate, weather, and hydrological models [26]-
[28]. Satellite-based microwave sensors have the 
potential to globally assess θ in the topsoil layer. 
Yet, existing sensors like the Advanced Microwave 
Scanning Radiometer (AMSR-E) at C-band (7.32 
GHz) face accuracy limitations in vegetated areas 
[29, 30]. This has led to the selection of L-band (1.4 
GHz) sensors for missions like Soil Moisture and 
Ocean Salinity and the upcoming Soil Moisture 
Active and Passive (SMAP) missions [31, 32]. SMAP 
data were processed and used in this study. 

The Modern-Era Retrospective analysis for 
Research and Applications (MERRA) project is a 
significant advancement in reanalysis products. It 
uses data from NASA Earth observing satellites to 
enhance existing reanalysis products by providing 
a more accurate depiction of the hydrological cycle, 
as highlighted in Rienecker et al.'s work from 2011. 
This improvement aims to offer a more realistic 
understanding of Earth's hydrological processes 
compared to previous reanalysis products [33]. 

Surface pressure data provided by the Merra 
satellite. 

The precipitation data sets used were sourced from 
the Climate Hazards Group Infrared Precipitation 
with Station (CHIRPS) database. This database is a 
result of collaboration between the United States 
Geological Survey (USGS) and the Earth Resource 
Observation and Science (EROS) center. CHIRPS 
combines satellite imagery with on-site 
observations from various national and regional 
meteorological departments. These data sets cover 
a wide temporal range, starting from 1981 to near 
the present, providing information at pentanal, 
decadal, and monthly intervals. The spatial 
resolution of this data is quite high, at 0.05°, and it 
offers almost global coverage, spanning from 50° S 
to 50° N and from 180° E to 180° W. This 
comprehensive coverage and resolution make 
CHIRPS a valuable resource for studying 
precipitation patterns and trends across different 
spatial and temporal scales [34].  

The CHIRPS dataset, introduced in early 2014, is a 
new climate database with a particular focus on 
land-based precipitation, integrating three different 
sources of information: global climatology’s, 
satellite forecasts and in situ observations [35]. 
What distinguishes CHIRPS from others is that it 
contains a larger amount of station data compared 
to other similar products. In addition, it utilizes a 
high-resolution background climatology, which 
enables more accurate forecasting of rainfall 
averages and fluctuations. This development leads 
to a better assessment of the hydrological situation 
[36]. In conclusion, CHIRPS is characterized by its 
ability to provide more refined and reliable data on 
precipitation patterns and contributes significantly 
to a better understanding of hydrological processes. 
Precipitation values were extracted from CHIRPS 
datasets. 

Land Surface Temperature (LST) refers to the 
temperature of the Earth's land surface, and it can 
be determined through satellite data or direct field 
measurements. The impact of increasing 
greenhouse gases in the atmosphere is significant 
on LST. This temperature metric offers valuable 
insights into surface physical properties and climate 
changes on both global and regional scales. The 
Moderate Resolution Imaging Spectroradiometer 
(MODIS)–LST is a useful tool that enables the rapid 
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acquisition of surface temperature data across large 
areas. Standardized processes for MODIS–LST are 
implemented to maintain consistency and ensure 
the accuracy of temperature measurements [37]-
[40]. 

2.3. Methods 

With the onset of data from ESA's Soil Moisture and 
Ocean Salinity (SMOS) and NASA's Soil Moisture 
Active and Passive (SMAP) L-band missions, a 
significant increase in our ability to obtain surface 
soil moisture using L-band satellite remote sensing 
is predicted over the next five years [41, 42].  

These developments are important in terms of 
significantly increasing our capacity to monitor and 
understand soil moisture and enabling space-based 
L-band observations to be used more effectively in 
a variety of applications. 

 

Figure 2: L2_SM_P SPS process data and soil 
moisture. 

The L2_SM_P SPS begins with Level 1B brightness 
temperature observations (L1B_TB) and converts 
them to the Level 1C Grating Radiometer Data 
Product (L1C_TB) on the 36 km EASEv2 Grid in a 
cylindrical equidistant projection. The fore and aft 
view grating brightness temperature observations 
are then combined in the L2_SM_P SPS. The 
processing continues with the addition of pre-
processed static and dynamic auxiliary data at finer 
grid resolutions. This data is used to assess the 
feasibility and expected quality of the retrieval. 
Once favorable surface conditions for soil moisture 
retrieval are identified in each grid cell, the retrieval 
process begins. Corrections for water pollution, 
surface roughness, effective soil temperature, and 
vegetation water content are applied using five pre-
determined candidate soil moisture algorithms. 

These algorithms are then used to generate the final 
output. The final output contains soil moisture 
retrieval areas on the same 36 km EASEv2 Grid as 
the input L1C_TB product. In this process, 
corrections are applied for surface roughness, 
effective soil temperature, vegetation water content, 
and the radiometric contribution of water bodies. 
The basic soil moisture retrieval algorithm is then 
invoked with TB observations and ancillary data as 
input to produce L2_SM_P_E on the same 9 km 
EASE Grid 2.0 global projection with input 
L1C_TB_E [43]-[48]. 

Figure 3 systematically shows the process of 
obtaining data and preparing models for in situ 
measurement. In this study, the process of 
preparing data and models for on-site 
measurement in Turkey is presented. In the first 
step, Greenhouse gas emission statistics data were 
obtained from the Turkish Statistical Institute 
(TUIK) Data Portal. SMAP, CHIRPS, MODIS 
images were provided from the Google earth 
engine platform. 
(https://earthengine.google.com/platform/ last 
accessed January 1, 2024) Downloaded data is 
analyzed using the Google Earth Engine platform. 
Relationships and patterns between data sets are 
determined with data visualization, statistical 
analysis and machine learning techniques. These 
analyzes help determine the most important data 
sets for in situ measurements and the parameters to 
be used in modelling. Considering the information 
obtained from data analysis, regression models are 
developed. These models mathematically express 
the relationship between the dependent variable 
(e.g., soil moisture) and the independent variables 
(e.g., precipitation, temperature). Statistical 
Analysis linear regression model was used. The 
resulting measurements can be used for various 
purposes, such as monitoring environmental 
conditions in the region, estimating agricultural 
production and assessing the effects of climate 
change. 

In this exercise, satellite image processing was 
performed using coding on the Google Earth 
Engine platform. Data analysis included thematic 
maps in ArcGIS, graphs in Excel and regression 
analysis in SPSS. 
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Figure 3: The chart of study design. 
 

2.4. Statistical Analysis 

Multiple regression analysis is a statistical method 
used to explore how a single dependent variable is 
influenced by multiple independent variables. 
Unlike simple regression, which looks at the 
relationship between one independent and one 
dependent variable, multiple regression allows for 
several independent variables to be considered at 
once. The goal is to identify how these variables 
together impact the dependent variable and to build 
a model that explains this relationship. In this 
analysis, the effect of each independent variable is 
examined while keeping the others constant, 
enabling a better understanding of how each 
contributes to changes in the dependent variable 
[49, 50]. 

In this study, a multiple regression model was used 
as a statistical analysis method. This method is used 
in many scientific and statistical analyses and helps 

researchers understand the effects of a set of 
independent variables on a dependent variable. 
Multiple linear regression is used to handle 
complexity in the dataset and model relationships 
between variables. This is particularly useful for 
understanding and predicting complex 
relationships. This method is used in many 
scientific and statistical analyzes and helps 
researchers understand the effects of a set of 
independent variables on a dependent variable. 
MLR is used to address complexity in the data set 
and model relationships between variables. This is 
especially useful for understanding complex 
relationships and making predictions. 

Figure 4 shows the soil moisture maps between 
2016 and 2022.  It is observed that soil moisture in 
Turkey is particularly intense in the Eastern Black 

Sea region. The lowest value of soil moisture was 
observed in 2019. In 2022, it was observed that soil 
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moisture increased in the Eastern Black Sea region 
and Eastern Anatolia region. 

3. RESULTS 

Figure 4 shows the soil moisture maps between 
2016 and 2022.  It is observed that soil moisture in 

Turkey is particularly intense in the Eastern Black 
Sea region. The lowest value of soil moisture was 
observed in 2019. In 2022, it was observed that soil 
moisture increased in the Eastern Black Sea region 
and Eastern Anatolia region. 
 

 

  
(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

 
(g) 

 
Figure 4: (a) 2022, (b) 2021, (c) 2020, (d) 2019, (e) 2018, (f) 2017, (g) 2016 soil moisture maps. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

(g) 

 
Figure 5: (a) 2022, (b) 2021, (c) 2020, (d) 2019, (e) 2018, (f) 2017, (g) 2016 SSM graphs. 

Figure 5 displays the surface soil moisture (SSM) 

graphs from 2016 to 2022. The highest SSM was 
recorded in January 2019, while the lowest occurred 
in August 2021. The high value in January 2019 can 

be attributed to winter precipitation and reduced 
evaporation, whereas the low value in August 2021  

 

is likely due to increased summer temperatures and 

higher evaporation rates. These seasonal variations 
highlight the significant influence of climatic factors 
such as precipitation and temperature on soil 

moisture levels. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 6: (a) 2022, (b) 2021, (c) 2020, (d) 2019, (e) 2018, (f) 2017, (g) 2016 SUSM graphs. 

Figure 6 presents the subsurface soil moisture 

(SUSM) graphs from 2016 to 2022. Like surface soil 
moisture, the highest SUSM value was recorded in 
January 2019, and the lowest in August 2021. The 

peak in January 2019 likely reflects the 
accumulation of winter precipitation, while the low 
in August 2021 can be attributed to increased  

 

evaporation during the hot summer months. This 

pattern underscores the strong seasonal 
dependence of subsurface soil moisture on 
precipitation and temperature, highlighting how 

deeper soil layers respond to climatic changes over 
time. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

(g) 

Figure 7: Surface pressure graphs for 2022, (b) 2021, (c) 2020, (d) 2019, (e) 2018, (f) 2017, (g) 2016. 

Figure 7 illustrates the surface pressure graphs from 

2016 to 2022. The surface pressure values range 
between 88,000 and 90,000 Pa throughout the years. 
Notably, the highest-pressure value was recorded 

in November 2020, indicating stable atmospheric 
conditions during that period. Conversely, the 
lowest pressure value was observed in July 2017,  

 

 

which could be associated with increased weather 

disturbances or storm activity typical of summer 
months. This variation in surface pressure 
underscores the influence of seasonal changes and 

weather patterns on atmospheric dynamics over the 
observed years. 
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(a) (b) 
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(e) (f) 

 

(g) 

Figure 8: (a) 2022, (b) 2021, (c) 2020, (d) 2019, (e) 2018, (f) 2017, (g) 2016 precipitation thematic maps. 

Figure 8 shows the thematic maps of precipitation 

between 2016-2022. It is observed that the amount 
of precipitation in Turkey is  

 

especially intense in coastal regions. The lowest 

value of precipitation was observed in 2017, and the 
highest value was observed in 2018. 
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(e) (f) 

 
(g) 

Figure 9: (a) 2022, (b) 2021, (c) 2020, (d) 2019, (e) 2018, (f) 2017, (g) 2016 precipitation graphs. 

Figure 9 presents the thematic maps of precipitation 
across Turkey from 2016 to 2022. The maps indicate 

that precipitation levels are particularly high in 
coastal regions, reflecting the influence of maritime 
weather patterns. Notably, the year 2017 recorded 

the lowest precipitation levels, which may have 
implications for water availability and agricultural 
practices in that year. In contrast, 2018 experienced 

the highest precipitation, potentially contributing to 
increased soil moisture and improved conditions 

for crops. Figure 10 shows the LST thematic maps 
between 2016-2022. The highest LST is observed in 
the Southeastern Anatolia region. The lowest values 

were observed in the Black Sea and Eastern 
Anatolia regions. In 2022, it was observed that soil 
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moisture increased in the Eastern Black Sea region 
and Eastern Anatolia region. 

 
 

  
(a) (b) 
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(e) (f) 

 
(g) 

 
Figure 10: (a) 2022, (b) 2021, (c) 2020, (d) 2019, (e) 2018, (f) 2017, (g) 2016 LST thematic maps. 
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Figure 11: (a) 2022, (b) 2021, (c) 2020, (d) 2019, (e) 2018, (f) 2017, (g) 2016 LST graphs. 

Figure 11 displays the surface temperature graphs 
for Turkey from 2016 to 2022. The data indicates 
that the highest surface temperatures occur 
predominantly in July and August, aligning with 
typical seasonal patterns of heat during the summer 
months. Conversely, the lowest surface  
 
 

temperatures are recorded in December, January, 
and February, reflecting the colder winter 
conditions. These seasonal fluctuations in surface 
temperature are crucial for understanding the 
climatic variations throughout the year and their 
potential impacts on ecological and agricultural 
practices. 
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(a) 

 
(b) 

(c) 

 
(d) 

Figure 12: Gas Emission Statistics; carbon dioxide 
(CO2) (a), methane (CH4) (b), nitrous oxide (N2O) 

(c), and fluorinated gases (F-gases) (d). 

Figure 12 illustrates the gas emission statistics for 
various greenhouse gases, including carbon dioxide 
(CO2) (a), methane (CH4) (b), nitrous oxide (N2O) 
(c), and fluorinated gases (F-gases) (d). The data, 
sourced from the Greenhouse Gas Emission 

Statistics newsletter, spans the period from 2016 to 
2021. It highlights emissions from key sectors such 
as energy, industrial processes and product use, 
agriculture, and waste.  

4. DISCUSSION 

The findings of this study shed light on the intricate 
relationship between climate variables and soil 
moisture dynamics in various regions of Turkey. 
The observed direct relationship between surface 
and subsurface soil moisture (SSM and SUSM) 
values with precipitation data underscores the 
significant influence of precipitation patterns on 
soil moisture content, aligning with the 
conventional understanding of how rainfall 
replenishes soil moisture, as also discussed by [51] 
in his analysis of large-scale meteorological drought 
control mechanisms. Increased precipitation 
contributes to higher soil moisture levels, which is 
crucial for maintaining ecosystem health and 
agricultural productivity in regions that experience 
seasonal fluctuations in rainfall. 
 
Moreover, the inverse relationship between SSM, 
SUSM, and land surface temperature (LST) 
highlights the complex interplay between 
temperature and soil moisture. Higher 
temperatures result in increased evaporation rates, 
leading to decreased soil moisture levels. This 
finding aligns with [52], who emphasized the 
importance of considering soil moisture in climate 
change scenarios, especially with rising global 
temperatures that exacerbate soil dryness and 
impact vegetation-atmosphere interactions. The 
strong correlation observed between soil moisture 
and LST further supports Berg’s assertion that soil 
moisture plays a pivotal role in understanding how 
climate variability influences hydrological cycles. 
 
The notable increase in SSM, SUSM, and surface 
pressure (PS) values during the winter months, 
particularly in December and January, highlights 
the seasonal variability of soil moisture. Factors 
such as increased precipitation, reduced 
evaporation due to lower temperatures, and 
snowmelt contribute to soil moisture accumulation 
during this period. These seasonal changes are 
essential for predicting soil moisture dynamics and 
their implications for environmental processes such 
as sustainable agricultural practices and water 
resource management, as observed in [53]. [53] 
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work on the role of climate variables in air quality 
further corroborates the importance of studying 
seasonal and climatic fluctuations in understanding 
soil-environment interactions. 
 
In addition to examining the relationship between 
soil moisture and climatic variables, this study also 
explored the correlation between soil moisture and 
greenhouse gases. A moderate relationship 
between SSM and methane (CH4) (R: 0.65, p < 0.05) 
suggests that soil moisture variations can influence 
methane emissions, a finding that aligns with 
Schubert's (2016) exploration of how moisture 
impacts atmospheric processes. Furthermore, the 
high correlation between SSM and nitrous oxide 
(N2O) (R: 0.89, p < 0.05), as well as between SSM and 
fluorinated gases (F-gases) (R: 0.97, p < 0.05), reveals 
a significant interaction between soil moisture and 
these greenhouse gases. These results are consistent 
with the findings of [54], who noted the influence of 
meteorological factors, including soil moisture, on 
environmental variables such as air quality and 
greenhouse gas emissions. 
 
Similarly, the strong correlations between 
subsurface soil moisture (SUSM) and N2O (R: 0.86, 
p < 0.05) and F-gases (R: 0.96, p < 0.05) suggest that 
deeper soil layers may also play a critical role in 
modulating greenhouse gas emissions. This aligns 
with research by Berg (2018), who emphasized the 
need to consider subsurface moisture conditions 
when examining soil-plant-atmosphere interactions 
under climate change. These findings underscore 
the potential feedback mechanisms between soil 
moisture and greenhouse gas emissions, 
highlighting the importance of integrating soil 
moisture data into climate models to predict future 
environmental changes more accurately. 
 
The results of this study also resonate with broader 
global research on soil moisture dynamics, 
particularly in the context of climate change. As 
indicated by [53] and [51], understanding the 
relationships between soil moisture, temperature, 
precipitation, and atmospheric conditions is 
essential for managing the impacts of climate 
variability on agricultural systems, water resources, 
and carbon cycling. The strong correlations 
between soil moisture and greenhouse gases 
emphasize the importance of monitoring soil 
conditions, as changes in moisture levels may 

directly influence the release of potent gases like 
N2O and F-gases, contributing to the global 
greenhouse effect. 
 
In conclusion, the relationship between soil 
moisture and climate variables, as identified in this 
study, offers valuable insights for agricultural 
planning, water resource management, and 
environmental sustainability. The strong 
correlations between soil moisture and greenhouse 
gases suggest that soil conditions should be closely 
monitored as part of climate mitigation strategies. 
As noted by [52], [54], and [53], integrating climate, 
soil, and atmospheric data into predictive models 
will be critical for understanding the full range of 
impacts associated with soil moisture dynamics and 
for developing effective climate adaptation 
measures. This study’s contributions provide a 
foundation for future research and strategic 
decision-making in the fields of environmental 
sustainability and climate change adaptation. 

5. CONCLUSION  

Overall, the findings of this study provide valuable 
insights into the complex interactions between 
climate variables and soil moisture dynamics in 
various regions of Turkey. It was determined that 
surface temperature and precipitation are the key 
factors influencing changes in soil moisture, with 
increased precipitation leading to significant rises 
in soil moisture levels. The relationship between 
surface pressure and soil moisture, particularly in 
different climate zones, underscores the complexity 
of environmental interactions and highlights the 
regional and seasonal variability of these dynamics. 
These results are critical for both agricultural 
production and the preservation of natural 
ecosystems. 
The study offers an essential resource for 
understanding the effects of climate change on soil 
moisture, which plays a crucial role in ecosystem 
dynamics, agriculture, and water resource 
management. Given the importance of soil moisture 
for a wide range of sectors, from agricultural output 
to natural habitats, such analyses hold significant 
value for environmental planning and resource 
management. The findings contribute to a better 
understanding of the potential impacts of climate 
change, laying the groundwork for more effective 
mitigation and adaptation strategies. 
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In addition, incorporating long-term data and 
considering future climate change impacts will 
further enhance our understanding of soil moisture 
dynamics on a broader scale. Future research could 
delve into the specific mechanisms driving soil 
moisture changes in different regions and assess 
their implications for ecosystems, agriculture, and 
water resources. This could pave the way for 
innovative approaches to managing soil moisture 
and mitigating the effects of climate variability. 
 
In conclusion, this study contributes significantly to 
the understanding of environmental complexity 
and the influence of climate variables on soil 
moisture. Such research will play a critical role in 
informing long-term planning efforts aimed at 
achieving environmental sustainability. 
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