

Genetic Relationship of Wild Einkorn Based on Geographical Distribution in Anatolia and Thrace using AFLP Markers

Elif U\ 1,2 Figen YKNF KTKO 'ETUQ[1,3 ''' ''''''''''''''''''''''''''''Mahinur S. AMMC[C¹* Middle East Technical University¹, Department of Chemistry, Biochemistry and Biotechnology Programs, Ankara, TURKEY; Bilkent University², Molecular Biology Graduate Program, Ankara, TURKEY Uludag University³, Department of Biology, Bursa, TURKEY; Selcuk University⁴, Faculty of Agriculture, Department of Field Crops, Konya, TURKEY

*Corresponding Author	Received:	March 26, 2009
e-mail: akkayams@metu.edu.tr	Accepted:	May 08, 2009

ABSTRACT

Triticu m monococcum L. ssp *boe oticum* Boiss., is the wild progenitor of domesticated einkorn. High throughput AFLP genetic analysis showed that the domestication of einkorn started in the northern part of the Fertile Crescent, near the Karacadag Mountains, Southeastern Turkey [1]. This study assesses the genetic distribution and the diversity of wild einkorn throughout Turkey, using total of 59 accessions from 22 locations in four different geographical regions. In our study, the four selective combinations of AFLP markers (E+ACC/M+ACT, E+ACC/M+ATA, E+ACT/M+ATA, and E+ATC/M+AAG) resulted in 161 AFLP marker loci. Phylogenetic trees for individual accessions and populations based on geographical regions were obtained using 'PopGen-32' population genetic analysis software. East and Southeast samples were genetically closest to each other among the samples from other regions. The samples from West, Northwest, and Central Anatolia were clustered together.

Key Words: T. boeoticum, wild einkorn, Turkey, geographical distribution, AFLP, genetic diversity

INTRODUCTION

Genetic improvement of crop plants started with the emergence of agriculture 10,000 years ago. These crops evolved from the wild and cultivated crops by chance, natural selection, or by arrival of new types from distant landscapes [2]. Various supports exist that wheat first grew in Mesopotamia and in the Tigris and Euphrates River valleys in the Middle East nearly 10,000 years ago [3]. Harlan [4] reported in 1981, that Southeast Turkey is the native home of wild einkorn, suggesting that this species might have been domesticated in South Anatolia and then spread into Europe as an agricultural crop [2, 4, 5]. Finally, a large scale genetic analysis revealed that the cultivated form *T. boeoticum*, einkorn (2n=14), originated from the Southeast part of modern

Turkey [1]. *T. boeoticum* still exists in ample amounts in Turkey. In another study, AFLP analysis of a collection of tetraploid wheats indicated that the origin of emmer and the domestication site of hard wheat are also the Southeast Turkey [6].

Amplified fragment-length polymorphism (AFLP) is PCR-based fingerprinting technology [7], in its most basic form; AFLP involves the restriction of genomic DNA, followed by ligation of adaptors complimentary to the restriction sites and selective PCR amplification of a subset of the Amplified fragment-length polymorphism (AFLP) is PCR-based fingerprinting technology [7], in its most basic form; AFLP involves the restriction of genomic DNA, followed by ligation of adaptors complimentary to the restriction sites and selective PCR amplification of a subset of the adapted restriction fragments. These fragments are visualized on denaturing polyacrylamide gels either through autoradiography or fluorescence methodologies. AFLP technique is abundantly used in genetic diversity studies in plants [1, 6, 8-18].

MATERIALS AND METHODS

Plant materials

The seeds from different regions of Turkey of wild einkorn (*Triticum mono coccum* L. ssp. *boeoticum*) accessions (Table 1) were obtained from Dr. Jan Valkoun, Head, Genetic Resources Unit of ICARDA (http://www.icarda.org/GeneBank.htm).

DNA isolation

DNA samples from each of the accession were isolated from the seedlings grown dark for 10-15 days using 'Qiagen DNeasy Plant Mini Kit' according to instructions of the manufacturers.

AFLP

A single seed from each accession was germinated and the AFLP was performed on this single plant DNA representing each accession. The protocol was based on technique developed by Zabaeu and coworkers [7, 19]. AFLP marker production conditions were the same as previously reported [20]. In selective amplification reactions, four primer sets (E+ACC / M+ACT, E+ACC / M+ATA, E+ACT /

M+ATA, and E+ATC / M+AAG) were labeled with 3000mCi/mmole $[\gamma^{33}P]$ -ATP (Institute of Isotopes Co., Ltd., Hungary).

Cluster analysis

PopGen-32 software [21] was used for genetic relationship analysis. DNA samples of 59 accessions *Triticum monococcum* ssp. *boeoticum* from different regions were grouped. Scored data were used as input as dominant and diploid data. Homogeneity test, genetic distance, dendrogram, F statistics, Shannon index, gene flow, neutrality test, polymorphic loci, gene frequency, allele number, gene diversity, and effective allele number were applied under Hardy-Weinberg equilibrium [22, 23].

Principal Co-ordinates Analysis (PCoA) was performed using Syntax multivariate data analysis (version 5.1) software [24, 25]. Genetic distance matrixes for both individuals and populations (Nei's unbiased measures of genetic distance) [26] obtained from 'PopGen-32' were modified and used as input for Syntax program to obtain PCoA of individuals and populations.

Table 1. *T. boe oticum* accessions from different locations. (IG and crop numbers are as specified by ICARDA).

(IG)	Crop	Sample	Longitude	Latitude	Altitude	Location	
No.	No.	No.		(m)	(m)		
44872	300063	1	E27 31	N41 36	300	Kırklareli	
44873	300064	2	E27 17	N41 50	560	Kırklareli	
44871	300062	3	E27 36	N41 35	200	Kırklareli	
44870	300061	5	E28 02	N41 08	100	Tekirdağ	
44860	300051	6	E26 42	N40 20	30	Çanakkale	
44863	300054	10	E27 35	N39 38	250	Balıkesir	
44864	300055	11	E28 01	N40 03	60	Balıkesir	
44867	300058	12	E29 06	N40 20	250	Bursa	
44869	300060	13	E29 35	N40 20	625	Bursa	
44866	300057	14	E29 06	N40 20	200	Bursa	
44868	300059	15	E29 35	N40 20	480	Bursa	
44853	300044	17	E26 58	N38 48	15	İzmir	
44876	300067	19	E32 27	N40 05	850	Ankara	
44879	300070	20	E33 32	N39 32	700	Ankara	
44877	300068	22	E32 35	N40 00	580	Ankara	
44878	300069	23	E32.28	N39 27	850	Ankara	
44880	300071	24	E32 50	N37 49	650	Konya	
44881	300072	25	E33.03	N37 17	700	Konya	
44815	300006	26	E33 43	N39 22	1.020	Kırsehir	
44816	300007	28	E35 59	N38 37	1,020	Kayseri	
44010	300010	30	E36 30	N38 /8	1,200	Kayseri	
44812	300013	31	E36 47	N38 51	1,510	Kayseri	
11883	300074	32	E36.02	N38 32	1,150	Kaysen	
44884	300075	33	E36 15	N38 40	1,130	Kayseri	
44885	300075	34	E36 25	N38 20	1,130	Kaysen	
44005	300070	35	E35 26	N28 59	800	Kayseri	
44887	300078	37	E37 15	N30 /0	970	Siver	
44888	300078	38	E37 30	N30 10	1 590	Sivas	
116130	300194	40	E37 31 06	N36 52 51	635	Gazianten	
116136	300191	40	E37 28 31	N36 45 07	530	Gazianten	
116133	300188	42	E37 00	N36 51	640	Gazianten	
116150	300204	46	E37 28 02	N37 19 22	750	Gazianten	
116147	300204	40	E37 14 45	N37 1651	910	Gazianten	
116148	300201	47	E37 10 50	N37 15 11	830	Gaziantep	
116153	500624	40	E37 11 57	N36 53 02	840	Gazianten	
116140	300195	50	E37 35 30	N36 49 44	700	Gaziantep	
116163	500633	51	E36 57 00	N36 5202	700	Gazianten	
116151	500622	52	E37 11 08	N36 58 06	1.035	Gazianten	
116154	500625	53	E37 13 02	N36 48 19	755	Gaziantep	
44897	300088	54	E39.01	N36 52	600	Sanhurfa	
44898	300089	55	E39.00	N36 50	600	Sanluerfo	
44944	300135	56	E39 50	N37 45	1 000	Sanluurfa	
44892	300083	57	F38 49	N37 11	660	Sanluurfa	
46100	600611	58	E37 57	N37 12	615	Sanluurfa	
46152	600663	59	E39 33	N37 40	1 100	Sanlurfa	
40132	300014	60	E37 35	N38 23	1,100	Şallılulla K Maraa	
44850	300041	61	E39.48	N38 19	890	N.Iviaiaş Divarbakır	
44908	300099	62	E38 13	N38 34	675	Malatya	
44933	300124	63	E38 13	N38 27	650	Malatya	
44825	300016	64	E39.04	N38 37	1 160	Elazığ	
44826	300017	65	E39 33	E38 30	1 310	Flazič	
44889	300080	66	E38 40	N38 49	1 100	Flaziğ	
44890	300081	67	E39 33	N38 30	1 270	Elaziğ	
44906	300097	68	E39 28	N38 57	850	Tunceli	
44907	300098	69	E43 30	N38 33	2 100	Van	
44909	300100	70	E44 28	N37 14	1,125	Hakkari	

RESULTS AND DISCUSSION

The total bands of 321 were recorded of which 161 were corresponding to polymorphic loci when 4 different selective amplification primer sets were used in this study. Only the presence and the absence of AFLP bands were considered for scoring. The tree obtained with the individual samples of 59 is presented in Table 1. The clustering of individual accessions showed two distinct groups as west (Thrace, Marmara region and Central Anatolia) and east (Southeast and East), I and II, respectively (Figure 1). Single accessions from Tunceli and Kayseri appeared as out-group samples. Group I divided into two major arms I-A and I-B. The upper clade of I-A is all composed of the accessions from Kirklareli of Thrace. In the second arm of 1-A, accessions from the same cities in the Central Anatolia were all grouped as sub-clades of their own. The samples from Tekirdag/Canakkale are being located in Thrace and samples from Bursa/Balikesir from the southwest of Marmara Sea also clustered in this group. Konya and Kirsehir being in the south of the Central Anatolia clustered separately within the An accession from Izmir, far west of group. Turkey, (sample 17, Table 1) is clustered most distantly from all the other ones. As a result, all the accessions fell into subgroups with relative distances to each other almost with perfect colorations to geographical locations. The second arm of Group I, I-B, composed of accessions from the south and east of Central Anatolia, except an accession from Van at the east border (collected from the southwest of Lake Van) and from Cankiri, north of Ankara. The fact that sample from Van clustered within this branch may be due to the location of Van, which is not part of the "Fertile Crescent". It is rather on the northeast of the north edge of Fertile Crescent. Wild einkorn is suggested to be domesticated in the northwest of Fertile Crescent, Karacadag, and Diyarbakir and spread towards both east and west. The fact that the geographical distances from Diyarbakir to Van and Diyarbakir to Malatya are similar and the presence of water sources, a river and a lake, in both of the regions may indicate similar diversification and adaptation. Samples from Malatya, Kayseri and Sivas are on the cross-sections of the ancient roots from east to west, thus they appear as adapted wild einkorn to the region. Group II mostly composed of samples from the southeast and east, except sample number 18, another accession from Izmir, again most distantly linked to Group II, too.

This may be because of the reason that the germplasm was displaced by humans during the early spread of agriculture and followed by subsequent naturalization of these lines outside their primary habitats which results in wild lines growing in secondary habitats [6].

Figure 1. Phylogenic tree of 59 wild individuals based on Nei's [26] unbiased genetic distance and UPGMA modified from NEIGHBOR procedure PHYLIP version 3.5. The numbers on the left of the location names are the sample numbers as in Table 1. The genetic distances are presented in the tree.

Group II was also divided into two arms. The upper arm, II-A, mainly contains samples from Gaziantep except with Sanliurfa sample from a very close proximity to Gaziantep. The lower branch of II-B contains samples from remaining accessions from Gaziantep and the other samples from Southeastern and Eastern Anatolia. Gaziantep accessions appear to be two major type, accessions 40, 46, 48, 41, 42 are distant from the other accessions of Gaziantep. Additionally, Gaziantep samples most likely are the ones having the highest genetic diversity.

Figure 2 and 3 summarize the genetic distance relationships of the accessions analyzed by pooling samples into four major geographical locations (Figure 2C) and 22 sub-locations, cities, (Figure 2A). Cankiri and Isparta samples were not included, since we had only a single accession from each location and they were unexpectedly associated with samples from distant locations. Tunceli accession (location 22) as in Figure 1 appears as an out-group sample. In Figure 2A, samples from Bursa and Balikesir are genetically closer to Ankara than that of Tekirdag and Canakkale, although Balikesir and Bursa geographically much closer to Thrace where Canakale and Tekirdag are Nevertheless, Bursa and Balikesir are located. separated and isolated from Tekirdag and Canakkkale via huge inner sea, Marmara. That is why samples from Bursa and Balikesir are genetically closer to samples from geographically distant Ankara. Unlike Figure 1, when all four accessions of Kayseri and 2 accessions of Sivas were brought together as a population from Kayseri, and Sivas (number 10 and 12, respectively) they clustered as a separate clade within the group with samples from south east and east rather than that of Central Anatolia. In this group, samples from southeast form a core to which samples of east are linked to this core. The Gaziantep and Sanliurfa samples are most closely related ones to each other in this tree, to them Elazig and Malatya samples are closely linked. These four locations are in the root of the Firat River (Euphrates). On the other hand, although Diyarbakir (previously shown as the origin of domesticated einkorn) is in close proximity to these cities, it is located on the Dicle River (Tigris). That is why Diyarbakir samples are more distantly linked to the samples from these core locations.

The third group of classifications performed was based on the 4 major geographical regions.

As illustrated in Figure 2C, the genetic identity of wild wheat from Eastern Anatolian and Southeastern Anatolian are very close since they are neighboring each other.

Likely, there is a gradual transition towards Central Anatolian, Marmara and Aegean. All the pair wise distances and similarities are

Figure 2. Phylogenic tree of the wild accessions with relative distances from 20 (11 and 13 not included) different locations (A) and geographical regions (C), and places are indicated in B (map), based on Nei's [26] unbiased genetic distance (values are indicated in the trees) and UPGMA modified from NEIGHBOR procedure PHYLIP version 3.5. Western,

 \blacktriangle Central, \blacksquare South East, \blacklozenge East Anatolia. The numbers in the shapes are used to label the locations.

Figure 3. Principal Co-ordinate analysis of *T. boeoticum* subspecies with respect to locations (city) (Axis 1 versus Axis 2) applied on Syntax multivariate data analysis version 5.1. software by using Nei's unbiased measures of genetic distance matrix data.

The locations of cities are the same as in Figure 2. presented in Table 2. The most genetically distant samples are from, as it might be expected, Mediterranean has much diverse Mediterranean. climate and altitude than that of other regions, and may not be favoring the optimum conditions for growth of wheat The samples of Marmara and Aegean are clustered very close to each other. Central Anatolian samples are located just between southeastern-eastern. Anatolian cluster and Marmara-Aegean cluster. This distribution pattern of T. bo eoticum samples are expected based on the geographical features of the land and the climates differences.

Table 2. Nei's unbiased measures of genetic identity and distance [26] for populations' genetic relationship analysis.

Geographical Regions	WA	CA	SEA	EA
West Anatolia (WA)	-	0.9398	0.8500	0.8163
Central Anatolia (CA)	0.0621	-	0.9182	0.8676
Southeast Anatolia (SEA)	0.1625	0.0853	-	0.8915
East Anatolia (EA)	0.2030	0.1420	0.1148	-

based on the origin of domestication being in the east.

GST, estimate of gene flow, in practice is used an index of genetic difference among populations [27] similar to

(Table 3) between the populations. This is not a great The authors are thankful for the METU research FST. The GST values range between 0.1251 and 0.3849,

genetic differentiation or high level of genetic variation as support funds.

expected, since samples are belonging to same **REFERENCES** subspecies, T. boeoticum.

Table 3. Gene flow, Nm* (above diagonal) and Nei's coefficient of gene variation, GST (below diagonal) estimates.

Geographical	Sample	Ht	Hs	Gst	Nm
Regions	Size				
WA vs CA	27	0.2228	0.1950	0.1251	3.4982
WA vs SEA	38	0.2694	0.2070	0.2316	1.6593
WA vs EA	14	0.2285	0.1406	0.3849	0.7992
CA vs SEA	42	0.2631	0.2288	0.1304	3.3352
CA vs EA	18	0.2276	0.1623	0.2866	1.2445
SEA vs EA	28	0.2290	0.1744	0.2383	1.5979

Standard deviations for Ht and Hs ranges from 0.312-0.317 and 0.0210-0.0250, respectively.

Nm = estimate of gene flow from Gst or Gcs. (Nm = 0.5(1 - 1)Gst)/Gst)

The number of polymorphic loci is: 161

The percentage of polymorphic loci is: 97.58

Table 4. A brief summary of genetic variation statistics results of T. boeoticum samples with respect to regions obtained from PopGen 32 software [26].

Regions	Ian	na	ne	h	I	Nb	% Poly.
WA	12	1.56 (0.50)	1.30 (0.37)	0.17 (0.20)	0.26 (0.28)	93	56.4
CA	16	1.67 (0.47)	1.37 (0.38)	0.22 (0.20)	0.33 (0.28)	111	67.3
SEA	26	1.80 (0.40)	1.40 (0.35)	0.24 (0.19)	0.37 (0.26)	132	80.0
EA	2	1.26 (0.44)	1.18 (0.31)	0.11 (0.18)	0.15 (0.27)	43	26.1
Total	55	1.98 (0.15)	1.46 (0.35)	0.27 (0.17)	0.42 (0.22)	161	97.6

CONCLUSION

From the results of genetic trees, the samples from Marmara, Aegean and Central Anatolian regions are clustered together whereas the samples from Eastern and Southeastern Anatolian regions are clustered The distribution of one species can be separately. monitored easily in genetic relationship analyses. In our study, the distribution pattern of Triticum monococcum ssp. boeoticum can be easily screened from the dendograms. Both with respect to cities and with respect to regions, the distribution pattern

In addition to the information obtained from phylogenetic appeared to be from east to west direction. In the trees, the heterozygosity values of the wild einkorn show dendogram, again samples from locations of west and us that the center of origin of *T. bo eoticum* samples is central Anatolian region are clustered in one branch Southeastern and Eastern Anatolia. The highest and samples from east and southeast of Anatolia are heterozygosity values belong to the samples from Eastern Van. Our results are very much in accordance with heterozygosity value belongs to the samples from Fertile Crescent being the center of origin of wild Marmara region (western Anatolian regions. The lowest Fertile Crescent being the center of origin of wild Marmara region (western Anatolia) confirming the einkorn indicating natural distribution starts from distribution of *T. bo eoticum* from west to east (Table 4) southeastern Anatolia and continues to east Anatolia extends towards central Anatolia, Aegean, and

Marmara regions (Western Anatolia).

- Heun M, Schäfer-Pregl R, Klawan D, Castagna [1] R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314
- [2] Renfrew JM (1969) The Archeological evidence for the domestication of plants: methods and problems. The Domestication and Exploitation of Plants and Animals (Peter J. Uoko and G.W. Dimbley, eds). Duckworth, London.
- [3] Ucko PJ, Dimbleby GW(eds.) (1969) The Domestication and Exploitation of Plants and Animals. Proc Meeting Institute of Archaeology, London University. Duckworth, London pp.581
- Harlan JR (1981) The early history of wheat: [4] Earliest traces to the sack of Rome. in L.T. Evans and W. Peacock (eds.) Wheat Science Today or Tomorrow. Cambridge, U.K.: Cambridge University Press.

- [5] Perrino P, Hammer K (1984) The Farro: further information on its cultivation in Italy, utilization, and conservation (1). Genet Agr 38:303-311
- [6] Özkan H, Brandolini A, Schäfer-Pregl R, Salamini F (2002) AFLP Analysis of a Collection of Tetraploid Wheats Indicates the Origin of Emmer and Hard Wheat Domestication in Southeast Turkey. Mol Biol Evol 19:1797–1801
- [7] Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabaeu M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 23:4407-4414
- [8] Marsan A., Castiglioni P, Fusari F, Kuiper M, Motto M (1998) Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96:219-227
- [9] Altintas S, Toklu F, Kafkas S, Kilian B, Brandolini A, Ozkan H (2008) Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers. Plant Breeding 127:9-14
- [10] Barrett BA, Kidwell KK, Fox PN (1998) Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest. Crop Sci, 38:1271-1278
- [11] Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65-73
- [12] Eivazi AR, Naghavi MR, Hajheidari M, Pirseyedi SM, Ghaffari MR, Mohammadi SA, Majidi I, Salekdeh, GH, Mardi M (2008) Assessing wheat (Triticum aestivum L.) genetic diversity using quality traits, amplified fragment length polymorphisms, simple sequence repeats and proteome analysis. Ann Appl Biol 152:81-91
- [13] Ellis RP, McNicol JW, Baird E, Booth A, Lawrence P, Thomas B, Powell W (1997) The use of AFLPs to examine genetic relatedness in barley. Mol Breed 3:359-369
- [14] Hongtrakul V, Huestis G, Knapp SJ (1997) Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theor Appl Genet 95:400-407
- [15] Keim P, Schupp JM, Travis SE, Clayton K, Zhu T, Shi L, Ferreira A, Webb DM (1997) A highdensity soybean genetic map based on AFLP markers." Crop Sci 37:537-543
- [16] Maheswaran M, Subudhi PK, Nandi S, Xu JC, Parco A, Yang DC, Huang N (1997) Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94:39-45

- [17] Qi X, Stam P, Lindhout P (1998) Use of locusspecific AFLP markers to construct a highdensity molecular map in barley. Theor Appl Genet 96:376-384
- [18] Schut JW, Qi X, Stam P (1997) Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theor Appl Genet 95:1161-1168
- [19] Zabaeu M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application. publication no. EP 534858A1.
- [20] Yildirim F, Akkaya MS (2006) DNA fingerprinting and genetic characterization of Anatolian Triticum sp. using AFLP markers. Genet Resour Crop Evol 53:1033-1042.
- [21] Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J Botany 129:157.
- [22] Nei M (1987) Molecular Evolutionary Genetics. Columbia University press, New York, NY USA.
- [23] McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Ann Rev Phytopathol, 31:353–373.
- [24] Podani J (1994) Multivariate data analysis in ecology and systematics– a methodological guide to the SYN-TAX 5.0 package. Ecol Comp Ser 6: 1–316. SPB Academic Publishing.
- [25] Podani J (1997) SYN-TAX 5.1-pc. Multivariate Data AnalysisPackage. Scientia, Budapest.
- [26] Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals." Genetics 89:583-590.
- [27] Crow JF (1986) Basic Concepts in Population. Quantitative, and Evolutionary Genetics. W.H. Freeman & Co, New York.