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Öz 

Diyabetik Retinopati (DR), diyabet hastalığının retina damarlarını etkileyen ciddi ve yaygın bir komplikasyondur. 

Hastalığın ilerlemesiyle retina dokusunda mikro anevrizmalar, kanamalar ve ödem gelişmekte; tedavi edilmediği takdirde 

ileri evrelerde görme kaybı ve körlüğe yol açabilmektedir. Bu nedenle DR’nin erken evrede tespiti ve teşhisi klinik açıdan 

büyük önem taşımaktadır. Bu çalışmada, Kaggle APTOS 2019 Körlük Tespiti yarışmasından elde edilen retina 

görüntüleri kullanılarak farklı Evrişimli Sinir Ağı (ESA) ve Transformer (Dönüşüm) tabanlı derin öğrenme mimarilerinin 

karşılaştırmalı olarak performansı değerlendirilmiştir. Modellerin performansları, uygulanan gelişmiş ön işleme ve veri 

artırma stratejilerinin etkileri bağlamında detaylı olarak incelenmiştir. Deneylerde ResNet18, EfficientNetB4, VGG16 ve 

DenseNet121 gibi ESA tabanlı mimariler ile Swin Transformer gibi Transformer tabanlı modeller kullanılmıştır. Tüm 

modeller, 5-katlı çapraz doğrulama yöntemi ile eğitilmiş ve performansları karşılaştırılmıştır. Elde edilen bulgular, veri 

artırma tekniklerinin DR sınıflandırma başarısını istatistiksel olarak anlamlı düzeyde artırdığını ortaya koymuştur. Ayrıca, 

Swin Transformer modeli %85.00 doğruluk ve %91.37 QWK (Quadratic Weighted Kappa) ile en yüksek performansı 

sergilemiş ve Transformer tabanlı modellerin geleneksel ESA tabanlı modellere kıyasla DR sınıflandırmasında daha iyi 

performans sergilediğini göstermiştir. 

Anahtar Kelimeler: Derin öğrenme, Diyabetik retinopati, Evrişimli sinir ağları, Görüntü işleme, Transformer tabanlı 

mimariler, Veri artırma. 

 

 

Utilization of Deep Learning Technologies in The Detection and Grading of 

Diabetic Retinopathy 

 

Abstract 

Diabetic Retinopathy (DR) is a serious and common complication of diabetes affecting the retinal vessels. As the disease 

progresses, microaneurysms, hemorrhages, and edema develop in the retinal tissue. If left untreated, it can lead to vision 

loss and blindness in advanced stages. Therefore, early detection and diagnosis of DR is of great clinical importance. In 

this study, we evaluated the comparative performance of different Convolutional Neural Network (CCN) and 

Transformer-based deep learning architectures using retinal images obtained from the Kaggle APTOS 2019 Blindness 

Detection Competition. The performance of the models is examined in detail in the context of the effects of the applied 

advanced preprocessing and data augmentation strategies. ESA-based architectures such as ResNet18, EfficientNetB4, 

VGG16, and DenseNet121, and Transformer-based models such as Swin Transformer were used in the experiments. All 

models were trained using 5-fold cross-validation, and their performances were compared. The findings revealed that data 

augmentation techniques significantly increased the accuracy of DR classification. Furthermore, the Swin Transformer 

model exhibited the highest performance with 85.00% accuracy and 91.37% QWK (Quadratic Weighted Kappa), and 

Transformer-based models performed better in DR classification compared to traditional ESA-based models. 

Keywords: Convolutional neural networks, Data augmentation, Deep learning, Diabetic retinopathy, Image processing, 

Transformer architectures.  
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1. Giriş 

 

Halk arasında şeker hastalığı olarak bilinen Diabetes Mellitus (DM), insulin hormonunun 

yokluğu, yetersizliği veya metabolizmasında gerçekleşen bozulmalar sonucunda oluşmaktadır. 

Uluslararası Diyabet Federasyonu’nun (International Diabetes Federation, IDF)  2021 yılı raporuna 

göre dünya çapında 537 milyon kişi diyabet hastasıdır ve bu sayının 2045 yılına kadar 783 milyona 

ulaşması beklenmektedir (IDF 2021; Sun vd., 2022). DM, çok sayıda komplikasyonu da beraberinde 

getiren bir rahatsızlıktır. Bu komplikasyonlar arasında kardiyovasküler hastalıklar, böbrek 

yetmezliği, sinir hasarı ve göz hastalıkları önemli bir yer tutmaktadır (Zhang vd. 2010). DM’nin 

neden olduğu göz hastalıklarından biri görme kaybına neden olabilen DR olarak bilinmektedir. Uzun 

süreli yüksek kan şekeri seviyeleri retina damarlarında geçirgenlik artışı ve yapısal bozulmalara yol 

açarak DR gelişimine sebep olur (Zhang vd., 2010; Antonetti vd., 2012). Bu durum retina üzerinde 

kanamalar, eksüda birikimi, mikro anevrizmalar ve ilerleyen durumlarda retina dekolmanına sebep 

olmaktadır. Dünya Sağlık Örgütü 2023 raporuna göre DR, dünya genelinde önlenebilir körlüğün önde 

gelen nedenlerinden biridir (World Health Organization, WHO. 2023). 

DR genellikle erken evrelerde belirgin bir semptom göstermediğinden hastaların çoğu ileri 

evrelere ulaşana kadar hastalığı fark etmemektedir. Bu durum, tedaviye geç başlanmasına ve kalıcı 

görme kaybı riskinin artmasına neden olmaktadır (Yau vd., 2012). Bu gecikme tedavi süreçlerinin de 

daha karmaşık hale gelmesine neden olmaktadır. Geleneksel tanı yöntemleri uzmanların manuel 

değerlendirmelerine dayanmakta ve bu durum süreci hem zaman alıcı hem de iş gücüne bağımlı hale 

getirmektedir. Ancak artan hasta sayısı ile sağlık uzmanlarının sınırlı olduğu ve kaynakların yetersiz 

olduğu bölgelerde bu yöntem yetersiz kalmaktadır. Özellikle düşük ve orta gelirli ülkelerde düzenli 

göz taramalarına erişimin sınırlı olması DR’nin geç teşhis edilmesine ve kalıcı görme kaybına yol 

açmasına neden olabilmektedir (WHO, 2020). Bu bağlamda, derin öğrenme temelli otomatik tarama 

sistemlerinin önemi giderek artmaktadır. (Gulshan vd., 2016) tarafından geliştirilen bir yapay zekâ 

sistemi retina görüntülerinden otomatik DR tespiti yaparak uzman eksikliğinin olduğu bölgelerde 

tarama hizmetlerini daha erişilebilir hale getirme potansiyelini ortaya koymuştur. 

Günümüzde yapay zekâ ve özellikle derin öğrenme teknolojileri tıbbi görüntüleme ve tanı 

sistemlerinde önemli yenilikler sunmaktadır. Derin öğrenme, büyük veri kümelerinden karmaşık 

desenleri ve ilişkileri öğrenerek yüksek doğruluk oranları sağlayan bir yapay zekâ yaklaşımıdır 

(LeCun vd., 2015). Özellikle tıbbi görüntülerde kullanılan ESA'lar, DR gibi göz hastalıklarının 

fundus görüntülerinden lezyonları otomatik olarak tanıma yeteneği sayesinde hastalık teşhisinde 

önemli başarılar elde etmiştir (Gulshan vd., 2016). 

Bununla birlikte son yıllarda bilgisayarla görü alanında geleneksel ESA mimarilerine alternatif 

olarak Transformer tabanlı modeller öne çıkmaktadır. Transformer mimarisi ilk olarak (Vaswani vd., 



Karadeniz Fen Bilimleri Dergisi 15(4), 1426-1446, 2025 1428 

2017) tarafından doğal dil işleme (natural language processing - NLP) alanında geliştirilmiş ve dil 

çevirisi, soru-cevap gibi görevlerde büyük başarılar elde etmiştir. Bu mimari, veriler arasındaki uzun 

mesafeli ilişkileri modellemedeki başarısı sayesinde araştırmacılar tarafından görüntü verilerine 

uygulanabilirliği araştırılmaya başlanmıştır. Görüntü verilerine ilk uygulamalardan biri olan Vision 

Transformer (Görsel Dönüşüm - ViT), görüntüleri sabit boyutlu yamalara (patch) bölerek bu yamaları 

kelime örnekleri gibi işlemiş ve öz dikkat (self-attention) mekanizmaları ile tüm görüntü alanındaki 

küresel ilişkileri doğrudan modellemiştir (Dosovitskiy vd., 2020). Bu yöntem, görüntülerdeki küresel 

bağlamı etkili biçimde modelleyebilmekte ancak yüksek miktarda veri gereksinimi nedeniyle verinin 

sınırlı olduğu durumlarda yetersiz kalabilmektedir. 

Bu nedenle Transformer mimarisinin görüntü işleme görevlerine daha verimli şekilde 

uyarlanmasını hedefleyen Swin Transformer, dikkat hesaplamalarını yerel pencereler içinde  

gerçekleştirerek işlem verimliliğini artırmış ve hiyerarşik yapısıyla çok ölçekli özellik öğrenimini 

mümkün kılmıştır (Liu vd., 2021). Böylece ilk etapta dil tanıma problemleri için tasarlanmış olan 

Transformer mimarisi fundus görüntülerinin sınıflandırılması gibi yüksek çözünürlüklü ve detay 

odaklı tıbbi görüntüleme görevlerinde ESA’larla karşılaştırılabilir bir alternatif haline gelmiştir. Tüm 

bu gelişmeler yapay zekâ temelli modellerin tıbbi karar destek sistemlerinde etkin biçimde 

kullanılabileceğini göstermektedir. 

Bu çalışma, fundus görüntüleri üzerinde hem DR tespiti hem de derecelendirilme görevlerini 

gerçekleştiren derin öğrenme tabanlı bir sistem önermektedir. Modelin başarısı farklı ESA ve 

Transformer mimarileri kullanılarak test edilmiş ve görüntüler üzerinde gelişmiş ön işleme teknikleri 

uygulanarak sınıflandırma performansı artırılmaya çalışılmıştır. Çalışmanın devamında sırasıyla 

güncel literatür çalışmaları, kullanılan veri seti ve mimariler, gerçekleştirilen deneysel analizler ve 

sonuçlar detaylı olarak sunulacak ve tartışılacaktır. 

 

1.1. Literatür Araştırması 

 

Yi ve ark. (2021) DR tespiti için RA-EfficientNet adını verdikleri bir model geliştirmişlerdir. 

Bu model, EfficientNet mimarisine artık dikkat (Residual Attention - RA) bloğu ekleyerek DR 

sınıflandırmasında iyileşme sağlamıştır. Model, APTOS 2019 veri setinde test etmiş ve çoklu 

sınıflandırmada %93.55 doğruluk oranı elde etmişlerdir (Yi vd., 2021). Rao ve ark. (2020) DR tespiti 

için ImageNet üzerinde önceden eğitilmiş ResNet50 tabanlı bir derin öğrenme modeli 

kullanmışlardır. Çalışmada APTOS 2019 veri seti kullanarak modelin ikili sınıflandırma 

performansını değerlendirmişlerdir. Yapılan deney sonucunda %96.59 doğruluk oranı elde 

etmişlerdir (Rao vd., 2020). Bodapati ve ark. (2021), DR evrelerini sınıflandırmak için Xception ve 

VGG16 ağlarını kapılı dikkat (gated attention) mekanizmasıyla birleştirerek bir derin öğrenme modeli 
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geliştirmişlerdir. Çalışmada, Xception ve VGG16 ağlarının özelliklerini birleştirerek DR'nin çeşitli 

evrelerini sınıflandırmada  %82.5 doğruluk oranı elde etmişlerdir (Bodapati vd., 2021). Patel ve 

Chaware (2020), MobileNetV2 tabanlı bir model geliştirmiş ve modeli transfer öğrenme yöntemiyle 

DR tespiti için ince ayarlamışlardır. Çalışmada APTOS 2019 veri seti üzerinde veri artırma teknikleri 

ve farklı dönüşümler (dönme, yakınlaştırma vs.) uygulayarak modelin doğruluk oranını %81 olarak 

bildirmişlerdir (Patel vd., 2020). Minarno ve Bagaskara (2025), APTOS 2019 veri setinde 

InceptionV3 modeliyle yaptıkları denemede veri artırma uygulanmadığında modelde hızlıca aşırı 

uyum gözlendiğini uygun artırma teknikleriyle eğitim yapıldığında test doğruluğunun %82.7’ye 

ulaştığını raporlamışlardır. Çalışmada veri artırmanın yokluğunda eğitim ve test başarımı arasındaki 

farkın açıldığı yani modelin genelleme kabiliyetinin ciddi şekilde azaldığı gösterilmiştir (Minarno 

vd.,2025). Thota ve Reddy (2020), DR’nin şiddetini sınıflandırmak için transfer öğrenme yöntemini 

kullanmışlardır. Çalışmada önceden eğitilmiş bir VGG16 modeline ince ayar yapmışlardır. 

Çalışmada yüksek doğruluk seviyelerine ulaşmak için veri artırma, toplu normalleştirme ve öğrenme 

oranının ayarlanması gibi çeşitli teknikler kullanmışlardır. Çalışmada APTOS 2019 veri seti 

kullanılarak modelin performansı test edilmiş ve %74 doğruluk, %80 duyarlılık, %65 özgüllük ve 

%80 AUC elde etmişlerdir (Thota vd., 2020). Nguyen ve ark. (2020), derin öğrenme tekniklerini 

kullanarak DR tespitine yönelik çok sınıflı bir model geliştirmişlerdir. Çalışmada, ESA, VGG-16 ve 

VGG-19 gibi derin öğrenme modelleri kullanarak DR tespiti yapmışlardır. Çalışmada veri setini 

artırmak amacıyla yansıtma ve döndürme uygulamışlardır. Model EyePacs veri seti üzerinde test 

edilmiş ve %80 duyarlılık, %82 doğruluk, %82 özgüllük ve %90 AUC elde etmişlerdir (Nguyen vd., 

2020). Lavanya ve ark. (2020), DR tespiti ve sınıflandırılması için Raspberry Pi  kullanan bir sistem 

geliştirmişlerdir. Çalışmada DR tespiti için düşük maliyetli bir çözüm önerisi sunmayı 

amaçlamışlardır. Raspberry Pi cihazına entegre edilen ESA tabanlı derin öğrenme modeli ile retina 

görüntüleri analiz edilmiş ve %90 sınıflandırma doğruluğu ve %63 test doğruluğu elde etmişlerdir 

(Lavanya vd., 2020). Elzennary ve ark. (2020), DR'nin şiddetini belirlemek için transfer öğrenme ile 

DenseNet-121 sinir ağı mimarisini kullanmışlardır. Çalışmada APTOS 2019 veri setine Gauss 

bulanıklaştırma, kontrast artırma ve çeşitli görüntü işleme teknikleri uygulamışlardır. Çalışmada 

doktorların DR'yi tespit etmek için kullanabileceği arayüz oluşturmak için Flask adlı Python 

çerçevesinden yararlanmışlardır. Yapılan testler sonucunda %95.64 doğruluk oranı elde etmişlerdir 

(Elzennary vd., 2020) . Pamadi ve ark. (2022), MobileNetV2'yi kullanarak DR tespiti ve 

derecelendirilmesi için ikili ve çoklu sınıflandırma yapan bir model geliştirdiler. APTOS 2019 veri 

setine gauss bulanıklaştırma gibi görüntü işleme ve geometrik döndürme gibi veri artıma tekniklerini 

uygulamışlardır. Çalışmada ikili sınıflandırma için %97, çoklu sınıflandırma için %78 doğruluk oranı 

elde etmişlerdir (Pamadi vd., 2022). Saranya ve ark. (2022), DR tespiti için DenseNet tabanlı bir derin 

öğrenme modeli önermişlerdir. APTOS 2019 veri seti kullanılarak modeli eğitmiş ve retina 
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görüntülerinde DR’nin tespitine yönelik ikili sınıflandırma yapmışlardır. Çalışmada, eğitime 

başlamadan önce görüntü işleme ve veri dengeleme adımlarını uygulayarak %83 doğruluk elde 

etmişlerdir  (Saranya vd., 2022).  

 

Tablo 1. DR görüntülerinin sınıflandırılması üzerine farklı çalışmaların özeti. 

Çalışma Veri Seti Yöntem İkili 

Sınıflandırma 

Çoklu 

Sınıflandırma 

Rao ve ark. (2020) Aptos-19 ResNet50 (transfer öğrenme) %96.59 Doğruluk - 

Patel ve Chaware 

(2020) 

Aptos-19 İnce ayarlanmış MobileNetV2 - %81 Doğruluk 

Nguyen ve ark. 

(2020) 

Aptos-15 VGG16 - %82 Doğruluk 

Lavanya ve ark. 

(2020) 

EyePacs ESA, Raspberry Pi arayüzü - %63 Doğruluk 

Thota ve Reddy 

(2020) 

EyePacs VGG-16, Veri artırma - %74 Doğruluk, 

%80 Hassasiyet, 

%65 Özgüllük 

Elzennary ve ark. 

(2020) 

Aptos-19 Gauss, kontrast artırma, 

Transfer öğrenme, DenseNet-

121, Flask Arayüzü 

- %95.64 Doğruluk 

Taufiqurrahman ve 

ark. (2021) 

Aptos-19 MobileNetV2 + SVM(10-kat 

doğrulama),Veri artırma 

- %85 

Doğruluk,%92.5 
Kappa 

Bodapati ve ark. 

(2021) 

Aptos-19 Xception  & VGG16 hibrit + 

Kapılı Dikkat 

- %82.5 Doğruluk, 

%79.0 Kappa 

Yi ve ark. (2021) Aptos-19 

& EyePacs 

RA-EfficientNet-B4 %98.36 Doğruluk %93.55 Doğruluk, 

%89.20 Doğruluk 

(EyePacs) 

Majumder ve 

Kehtarnavaz (2021) 

Aptos-19 

& EyePacs 

SE-DenseNet201, Veri 

artırma 

- %88 Doğruluk 

(EyePacs), %90 

Kappa (Aptos-19) 

Pamadi ve ark. (2022) Aptos-19 Gauss, MobileNetV2 %97 Doğruluk %78 Doğruluk 

Saranya ve ark. 

(2022) 

Aptos-19 DenseNet-121, Veri 

dengeleme 

- %83 Doğruluk 

Batool ve ark. (2023) EyePacs&

DeepDRiD 

EfficientNet-B0-B6 modelleri 

(ön eğitimli), Gauss + veri 

artırma ile iyileştirme 

- EyePACS- %84 

F1; DeepDRiD- 

%87 F1 

İncir ve Bozkurt 

(2024) 

EyePacs Yedi farklı önceden eğitilmiş 

ESA mimarisinin 

karşılaştırılması; en iyi 

performans EfficientNetV2-M 

(afine dönüşümlerle veri ön 

işleme ve artırma) 

- %97.65 Doğruluk, 

%92.8 Kesinlik, 

%92.6 Hassasiyet, 

%92.4 F1 

Arora ve ark. (2024) EyePacs EfficientNet-B0 tabanlı 

ensemble model 

- %86.53 Doğruluk 

Yang ve ark. (2024) EyePacs Maskeli Oto kodlayıcı ile ön-

eğitimli ViT 

%93.42 Doğruluk - 

Minarno ve 

Bagaskara (2025) 

Aptos-19 Inception-V3, Veri artırma - %82.7 Doğruluk 

Akhtar ve ark. (2025) Messidor-1 RSG-Net + Histogram 

eşitleme 

%99.37 Doğruluk - 

     

 

Tablo 1’de literatürdeki benzer çalışmalar özetlenerek verilmiştir. Mevcut literatürde, 

yöntemler genellikle tek bir model kapsamında değerlendirilmiş olup, DR tespiti veya 

sınıflandırmasına odaklanmıştır. Bu çalışmada ise, farklı derin öğrenme mimarilerinin DR tespiti ve 
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sınıflandırma performansları karşılaştırmalı olarak incelenmiş; böylece modellerin etkinlikleri ve 

sınıflandırma doğrulukları akademik açıdan kapsamlı biçimde değerlendirilmiştir. 

 

2. Materyal ve Metot 

 

Bu bölümde çalışmada kullanılan veri seti, görüntü işleme adımları, veri artırma yöntemleri, 

kullanılan model mimarileri, eğitim stratejisi ve performans değerlendirme metrikleri anlatılmaktadır. 

 

2.1. Veri Seti 

 

Bu çalışmada DR’nin tespiti ve derecelendirilmesi için APTOS 2019 veri seti kullanılmaktadır. 

Bu veri setinin bir kısmı açık erişimli olarak yayınlanmıştır. Veri seti fundus görüntülerini 

içermektedir ve bu görüntüler hastaların retinasındaki damarlar, lezyonlar ve diğer hasarları tespit 

etmek için kullanılabilmektedir. APTOS 2019 veri setinde her bir görüntü için bir etiket bulunur ve 

bu etiket, retinopatinin çeşitli derecelerine işaret eder (0'dan 4'e kadar, 0: sağlıklı, 1: hafif, 2: orta, 3: 

ileri, 4: çok ileri). Bu etiketler modelin DR’yi farklı seviyelerde sınıflandırmasını sağlar. 

 

 

Şekil 1. Aptos-19 veri setinden örnek görüntüler. 

 

APTOS 2019 veri seti, 3662 fundus görüntüsü içerir ve bu görüntüler modelin eğitim ve test 

süreçlerinde kullanılmak üzere derin öğrenme modellerinin performansını değerlendirmeye olanak 

sağlar. Veri setinin etiketlenmiş yapısı DR’nin sınıflandırılması için derin öğrenme tabanlı modellerin 

geliştirilmesinde yaygın bir şekilde kullanılmaktadır (Kaggle, 2019). Şekil 1’de veri setindeki farklı 

derecelere ait görüntü örnekleri verilmiştir. 

         Şekil 2’de APTOS 2019 veri setindeki örneklerin dağılımı grafik ile gösterilmiştir. 
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Şekil 2. APTOS-2019 veri seti hastalık ciddiyet düzeylerinin dağılımı. 

 

2.2. Görüntü Ön İşleme ve Veri Artırma  

 

Bu çalışmada kullanılan fundus görüntüleri modele verilmeden önce bir dizi ön işleme ve veri 

artırma adımına tabi tutulmuştur. Bu adımlar, modelin hem görüntü kalitesinden bağımsız olarak 

tutarlı sonuçlar üretmesini sağlamakta hem de azınlık sınıflar üzerindeki başarımını artırmaktadır. 

Görüntü işleme süreci sırasıyla kırpma, kontrast sınırlamalı adaptif histogram eşitleme (CLAHE - 

Contrast Limited Adaptive Histogram Equalization) ve renk düzeltmesini veri artırma ise yansıtma, 

döndürme, RGB kaydırma parlaklık ayarlama ve Gamma düzeltmesi gibi işlemleri kapsamaktadır. 

Tüm bu adımlar Şekil 3’te çalışmada kullanılan veri setindeki örnek bir görüntü üzerinden 

gösterilmiştir.  

 

 

Şekil 3. Görüntü işleme adımları. 
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2.3. Retina Bölgesinin Otomatik Kırpılması 

 

Fundus görüntülerinde retina dışı bölgeler (siyah arka plan gibi) genellikle sınıflandırma için 

anlamlı bilgi taşımaz. Bu nedenle ilk adımda, görüntünün yalnızca retina bölgesini içerecek şekilde 

otomatik kırpılması sağlanmıştır. Görüntü gri seviyeye dönüştürülmüş ardından eşikleme yöntemiyle 

en büyük kontur belirlenmiş ve bu kontur çevresindeki dikdörtgen alan görüntüden çıkarılmıştır. 

Böylece modelin dikkatinin yalnızca anlamlı bilgi içeren bölgelere yönelmesi sağlanmıştır (Şekil 3, 

1-2). 

 

2.4. CLAHE ile Kontrast İyileştirme 

 

Kırpılmış görüntü, RGB renk uzayından LAB renk uzayına dönüştürülerek L (Lightness - 

Aydınlık) kanalı ayrıştırılmıştır. Ardından, sadece L kanalına Kontrast CLAHE yöntemi 

uygulanmıştır. CLAHE yöntemi, lokal histogram eşitlemesi prensibiyle çalışarak düşük kontrastlı 

bölgelerdeki ayrıntıların daha belirgin hale gelmesini sağlar ve medikal görüntüleme alanında 

etkinliği nedeniyle yaygın olarak kullanılmaktadır (Zuiderveld, 1994; Gonzalez & Woods, 2018). Bu 

işlem sonucunda retina görüntülerindeki damar yapıları, lezyonlar ve optik disk gibi klinik açıdan 

önemli yapılar daha görünür hale getirilmiştir (Şekil 3, 3). 

 

2.5. Renk Düzeltme 

 

CLAHE işleminin ardından elde edilen görüntüye (gamma) γ=1.2 parametresi kullanılarak renk 

düzeltmesi  uygulanmıştır. Renk düzeltmesinde gamma > 1 seçildiğinde görüntünün parlaklık 

seviyelerini doğrusal olmayan bir dönüşümle değiştirerek koyu alanlardaki detayların daha görünür 

olmasını sağlar. Böylelikle düşük ışıklı bölgelerdeki ayrıntıların (örneğin retina damarları, mikro 

anevrizmalar)  görünürlüğü artırılarak daha etkili görsel analiz ve tanı imkânı elde edilir. (Şekil 3, 4). 

 

2.6. Veri Artırma 

 

Modelin genelleme kabiliyetini artırmak, aşırı uyumu (overfitting) önlemek ve veri dengesizliği 

sorununu hafifletmek amacıyla eğitim aşamasında her bir görüntüye çeşitli veri artırma teknikleri 

uygulanmıştır. Bu dönüşümler aşağıda açıklanmıştır. 
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2.7. Yansıtma  

 

Görüntü yatay düzlemde ters çevrilerek modelin anatomik simetrilere duyarlılığı 

geliştirirmiştir. Kullanılan parametreler HorizontalFlip(p=0.5); düşey yansıma kullanılmadı 

(anatomik uyumsuzluk) (Şekil 3, 5). 

 

2.8. Rastgele Döndürme 

 

Görüntüler ±30 dereceye kadar rastgele döndürülerek farklı açılardan görüntülenen retina 

yapılarına karşı duyarlılığı artmıştır.  Kullanılan parametreler; 

Rotate(limit=30, p=0.5, border_mode=cv2.BORDER_REFLECT) (Şekil 3, 6). 

 

2.9. RGB Renk Kaydırma 

 

Her bir renk kanalına (R, G, B) ayrı ayrı küçük değerler eklenerek renk varyasyonları 

oluşturulmuştur. Bu, farklı kameralar ve ışık kaynakları nedeniyle oluşabilecek renk değişimlerine 

karşı modelin dayanıklılığını artırmaktadır. Kullanılan parametreler; RGBShift(r_shift=±20, 

g_shift=±20, b_shift=±20, p=0.5) (Şekil 3, 8). 

 

2.10. Parlaklık ve Kontrast Ayarlama 

 

Görüntülerin parlaklık ve kontrast seviyeleri rasgele değiştirilerek farklı aydınlatma 

koşullarının simülasyonu sağlanmıştır. Kullanılan parametreler; 

RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.5) (Şekil 3, 7). 

Görüntü işleme adımları, Python programlama dili kullanılarak gerçekleştirilmiştir. Bu süreçte 

özellikle OpenCV, Albumentations ve NumPy gibi yaygın olarak kullanılan açık kaynak 

kütüphanelerden yararlanılmıştır. Tüm görüntüler öncelikle 224×224 piksel boyutuna yeniden 

ölçeklendirilmiş, ardından normalize edilerek ön işleme aşamasından geçirilmiştir. Normalizasyon 

sonrası, veri artırma sürecinde, her bir görüntüye uygulanabilecek çeşitli dönüşümler (yansıtma, 

döndürme, RGB kanal kaydırması, parlaklık-kontrast ayarlamaları vb.) için belirlenen olasılıklar 

(örneğin p=0.5) dahilinde, Bernoulli dağılımına dayalı rastgele bir seçim mekanizması işletilmiştir. 

Böylece, her dönüşümün görüntüye uygulanıp uygulanmayacağı ayrı ayrı ve rastgele olarak 

belirlenmiştir. Bu yaklaşım sayesinde her epoch’ta aynı görüntü örneği modele farklı varyasyonları 

ile sunulmakta ve eğitim veri setine dinamik bir çeşitlilik kazandırılmaktadır. Elde edilen bu çeşitlilik, 
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modelin aşırı öğrenmeden kaçınmasına ve farklı oryantasyon, renk varyasyonu ve aydınlatma 

koşullarında daha genel bir performans sergilemesine olanak tanımaktadır. 

 

2.11. Kullanılan Modeller 

 

Bu bölümde çalışmada kullanılan modeller hakkında bilgi verilmektedir. Çalışmada 4 ESA 

(ResNet18, EfficentNetB4, DenseNet121, VGG16) ve 1 Transformer (Swin) tabanlı olmak üzere 5 

model kullanılmıştır. 

 

2.12. ResNet18 

 

ResNet (Residual Network), 2015 yılında He ve arkadaşları tarafından geliştirilmiş olup derin 

sinir ağlarının eğitiminde karşılaşılan gradyan kaybolması (vanishing gradient) problemini çözmek 

amacıyla önerilmiştir (He vd., 2016). ResNet mimarisi artıklı bağlantılar (residual connections) 

kullanarak daha derin modellerin eğitilmesini mümkün kılmıştır. ResNet mimarisi farklı derinliklerde 

varyantlara sahiptir. ResNet18 bu mimarinin en hafif ve hesaplama açısından en verimli 

versiyonlarından biridir. ResNet18 modeli toplamda 18 katman içermektedir. Bu katmanlar arasında 

17 adet evrişimli katman ve 1 adet tam bağlantılı (fully connected) katman bulunmaktadır. Model, 

girişte 3×224×224 boyutunda RGB bir görüntü kabul eder. İlk katmanda 7×7 boyutunda ve 64 filtreli 

bir evrişim işlemi uygulanır, ardından toplu normalizasyon (batch normalization-BN), ReLU 

aktivasyonu ve maksimum havuzlama (max pooling) işlemleri gerçekleştirilir. Bu aşamadan sonra 

model dört adet artıklı blok (residual block) içerir. Her artık blok, sırasıyla iki adet 3×3 evrişim, toplu 

normalizasyon ve ReLU aktivasyon fonksiyonundan oluşur. Giriş ile çıkış boyutları eşleştiğinde giriş 

doğrudan çıkışa eklenerek artık bağlantı yapılır. Bu yapı sayesinde model derinleştikçe öğrenme 

kapasitesini kaybetmez ve gradyan geçişi bozulmadan ilerler. Bu mekanizma ağın daha iyi 

genelleştirmesini ve daha hızlı eğitilmesini sağlar (He vd., 2016). Modelin sonunda bir global 

ortalama havuzlama katmanı uygulanır. Elde edilen 512 boyutlu vektör tam bağlantılı katmana 

iletilerek son sınıflandırma yapılır. Genellikle bu katman sınıf sayısına (örneğin ImageNet’te 1000, 

tez çalışmasında derecelendirme için 5 ve tespit için 2) göre çıktılar üretir. 

 

2.13. VGG16 

 

VGG16, 13 evrişim katmanı ve 3 tam bağlantılı katman olmak üzere toplam 16 öğrenilebilir 

katmandan oluşan derin bir evrişimsel sinir ağıdır. Bu mimari, Oxford Üniversitesi’ne bağlı Visual 

Geometry Group tarafından geliştirilmiştir. Model giriş olarak 224×224 piksel boyutlarında üç kanallı 
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RGB görüntü alır. Evrişim katmanları boyunca 3×3 boyutlu küçük filtreler kullanılması mimarinin 

temel yeniliklerinden biridir. Bu filtreler çekirdek boyutunu büyütmeden derinliği artırmakta ve daha 

karmaşık özelliklerin öğrenilmesini sağlamaktadır (Simonyan ve Zisserman, 2014). Model beş adet 

evrişimsel blok yapısında düzenlenmiştir. Her blokta 2 veya 3 adet ardışık 3×3 evrişim katmanı ve 

bunu takip eden maksimum havuzlama katmanı yer alır. Bu yapı sayesinde ağ derinleştikçe hem 

uzamsal çözünürlük düşürülmekte hem de özellik soyutlama düzeyi artmaktadır. Evrişim bloklarının 

ardından iki adet 4096 nöronlu tam bağlantılı gizli katman ve bir adet 1000 sınıflı çıkış katmanı 

(genellikle ImageNet veri kümesi için) bulunur. 

 

2.14. DenseNet121 

 

DenseNet121, toplamda 121 katmandan oluşan ve yoğun bağlantı (dense connectivity) ilkesi 

üzerine inşa edilmiş derin evrişimsel sinir ağı mimarisidir. Modelin temel yapı taşları, ardışık şekilde 

organize edilmiş dört adet dense blok yapısıdır. Bu bloklardaki katman sayıları sırasıyla 6, 12, 24 ve 

16’dır. Her bir dense blok içerisinde yer alan katmanlar birbirine tam bağlantılıdır yani her katman, 

kendisinden önceki tüm katmanların çıktısını doğrudan girdi olarak alır ve kendi çıktısını da sonraki 

tüm katmanlara iletir. Bu yapı hem özellik tekrar kullanımını artırmakta hem de gradyan akışını 

kolaylaştırarak derin ağların daha stabil ve verimli eğitilmesini sağlamaktadır (Huang vd., 2017). 

 

2.15. EfficientNetB4 

 

EfficientNet mimari ailesi, Tan ve Le (2019) tarafından geliştirilen ve görüntü sınıflandırma 

görevlerinde hem yüksek doğruluk hem de hesaplama verimliliği sunan evrişimli sinir ağı 

mimarileridir. Bu mimarinin temel yeniliği, genişlik (width), derinlik (depth) ve çözünürlük 

(resolution) ölçeklendirmesinin dengeli bir şekilde yapılmasını sağlayan bileşik ölçeklendirme 

(compound scaling) yöntemidir. Bu sayede model hem parametre sayısını verimli kullanmakta hem 

de performansını artırmaktadır.EfficientNetB4, EfficientNet ailesinin orta büyüklükteki 

modellerinden biridir ve ImageNet veri seti üzerinde yapılan deneylerde yüksek doğruluk oranları 

elde etmiştir. EfficientNetB4, EfficientNetB0 modelinin ölçeklendirilmiş hali olarak giriş görüntüsü 

çözünürlüğünü 380×380 piksele çıkarır ve ağın derinliği ile genişliğini artırarak performansını 

yükseltir.Literatürde EfficientNetB4 hem genel görüntü sınıflandırma hem de medikal görüntü 

analizinde yaygın şekilde kullanılmakta olup, düşük hesaplama maliyetiyle yüksek başarı sağlaması 

nedeniyle tercih edilmektedir (Tan ve Le, 2019; Yang ve ark., 2021). Özellikle medikal görüntü 

görevlerinde EfficientNet-B4, dengeli ölçeklendirmesi sayesinde etkili sonuçlar vermektedir (Yang 

ve ark., 2021). 
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2.16. Swin Transformer 

 

Görsel tabanlı görevlerde derin öğrenme modellerinin başarısı büyük ölçüde modelin hem yerel 

hem de küresel bağlamdan anlamlı özellikler çıkarabilme yetisine bağlıdır. Özellikle ViT mimarileri 

görüntüyü sabit boyutlu yama dizilerine ayırarak dizisel bilgi işleme (sequential processing) 

yöntemini görsel alana uyarlamıştır (Dosovitskiy vd., 2021). Ancak ViT’in doğrudan uyguladığı 

küresel çok başlı dikkat mekanizması yüksek çözünürlüklü görüntülerde ciddi hesaplama 

maliyetlerine neden olmaktadır. Bu sorunu çözmek amacıyla (Liu ve ark., 2021), Swin Transformer 

adlı mimariyi önermiştir. Swin Transformer, dikkat işlemlerini sabit boyutlu yerel pencereler (ör. 

7×7) içinde gerçekleştiren pencere tabanlı dikkat (Window-based Multi-head Self-Attention- W-

MSA) mekanizmasıyla çalışır. Ayrıca katmanlar arasında pencere kaydırma (Shifted Window-based 

Multi-head Self-Attention - SW-MSA) stratejisi kullanılarak pencereler arası bilgi akışı sağlanır. 

Böylece hem yerel hem de daha geniş bağlamlar işlenebilirken hesaplama verimliliği de korunmuş 

olur. Swin Transformer mimarisi, her bir Swin bloğunda sırasıyla çok başlı dikkat mekanizma, artık 

bağlantı, katman normu ve çok katmanlı algılayıcı bileşenlerini içerir. Bu yapı Transformer 

mimarisinin genel yapısına benzemekle birlikte dikkat mekanizması klasik küresel öz dikkat yerine 

yerel pencerelerle sınırlanmıştır. Swin Transformer ’da ardışık iki blok çift olarak tasarlanmıştır. 

Bunlardan ilki W-MSA ve ikincisi SW-MSA  mekanizmalarını uygular. Bu yapı sayesinde model 

hem yerel ilişkileri hem de pencere kaydırarak daha geniş bağlamları öğrenebilir. 

 

2.17. Eğitim Stratejisi 

 

Model eğitim süreçleri her bir mimari için aynı hiper parametre ayarlarıyla gerçekleştirilmiştir. 

Bu yöntem farklı modellerin adil bir şekilde kıyaslanabilmesi açısından önemlidir. Modelin başarıyla 

eğitilebilmesi için kullanılan optimizasyon algoritması, öğrenme oranı planlayıcısı, kayıp fonksiyonu, 

eğitim süresi ve batch boyutu gibi hiper parametrelerin dikkatle belirlenmesi gerekmektedir. Bu 

bölümde, çalışmada kullanılan eğitim stratejisi detaylı olarak açıklanmakta ve her bir kararın 

literatürdeki karşılığı belirtilmektedir. 

Tüm modeller AdamW optimizasyon algoritması ile eğitilmiştir. Öğrenme oranı lr = 1e-4 ile 

başlatılmış ve WarmRestarts öğrenme oranı planlayıcısı (scheduler) kullanılarak azaltılmış ardından 

dönemsel olarak sıfırlanmıştır. Eğitim süreci boyunca maksimum 20 epoch (dönem) belirlenmiş 

ancak doğrulama kaybı belirli bir sürede iyileşmediğinde erken durdurma stratejisi uygulanmıştır. 

Erken durdurma için sabır (patience) değeri = 5 olarak belirlenmiştir. Her bir eğitim adımında işlenen 

örnek sayısı batch size = 8 olarak belirlenmiş ve bu değer GPU belleği sınırları ile model stabilitesi 

gözetilerek seçilmiştir (Masters ve Luschi, 2018). 
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Veri setindeki belirgin sınıf dengesizliği nedeniyle kayıp fonksiyonu olarak Focal Loss tercih 

edilmiştir. Focal Loss için odaklanma parametresi γ=2.0 olarak belirlenmiş ve her sınıfa özgü 

ağırlıklar [1.0, 2.0, 1.0, 4.5, 5.0] şeklinde uygulanmıştır. Bu sayede özellikle düşük frekanslı sınıflar 

(sınıf 3 ve 4) üzerinde hata payı artırılarak modelin söz konusu sınıflara daha fazla dikkat etmesi 

amaçlanmıştır (Lin vd., 2017). 

Model değerlendirmelerinde sınıf dengesini korumak amacıyla K-katlı çapraz doğrulama 

(Stratified K-Fold Cross Validation) yöntemi kullanılmıştır .Bu sayede her katmanda sınıf dağılımı 

korunarak adil bir değerlendirme sağlanmıştır. Her alt küme (fold) için model sıfırdan eğitilmiş ve en 

iyi doğrulama kaybına ulaşıldığında model ağırlıkları kayıt altına alınmıştır. K-Katlı çapraz 

doğrulama yapısı Şekil 4’te k=5 için gösterilmiştir. 

Şekil 4. 5-Katlı çapraz doğrulama yapısı. 

 

2.18. Performans Değerlendirme Metrikleri 

 

Model performansı doğruluk, F1-Skor ve  Kappa gibi farklı metriklerle değerlendirilmiştir. 

Özellikle sınıflar arası dengesiz veri dağılımı nedeniyle bu çalışmada Kappa ve F-1 skor, doğruluk 

metriğinden daha anlamlı metrikler olarak değerlendirilmiştir. 

 

2.19. Doğruluk 

 

Doğruluk, Denklem (1)’de görüldüğü gibi sınıflandırma modelinin toplam örnekler içerisindeki 

doğru tahmin oranını ifade eder. En temel ve yaygın olarak kullanılan değerlendirme metriklerinden 

biridir. 

 

                     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 =
𝐷𝑜ğ𝑟𝑢 𝑇𝑎ℎ𝑚𝑖𝑛 𝑆𝑎𝑦𝚤𝑠𝚤

𝑇𝑜𝑝𝑙𝑎𝑚 Ö𝑟𝑛𝑒𝑘 𝑆𝑎𝑦𝚤𝑠𝚤
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                             (1) 
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Doğruluk metriği modelin genel başarımını özetleyen temel bir ölçüt olsa da özellikle sınıf 

dağılımının dengesiz olduğu durumlarda yanıltıcı sonuçlar verebilir. Çünkü model çoğunluk sınıfına 

aşırı odaklanarak yüksek doğruluk elde edebilirken azınlık sınıflarda ciddi hata yapabilir. Bu durum 

modelin genel başarı düzeyini olduğundan yüksek gösterir (Saito ve Rehmsmeier, 2015). Bu nedenle 

bu çalışmada doğruluk metriği tek başına kullanılmamış bunun yerine sınıf dengesizliğine daha 

duyarlı metrikler olan F1-skor ve QWK gibi alternatif ölçütlerle birlikte değerlendirme yapılmıştır. 

 

2.20. F-1 Skor 

 

F1-Skoru, Denklem (2)’de görüldüğü gibi bir sınıflandırma modelinin kesinlik ve duyarlılık 

değerlerinin harmonik ortalamasıdır. Bu metrik, özellikle sınıf dağılımının dengesiz olduğu veri 

kümelerinde modelin yalnızca baskın sınıfları değil, azınlık sınıfları da ne ölçüde doğru tahmin 

edebildiğini göstermek açısından tercih edilir (Saito ve Rehmsmeier, 2015). 

 

                                                 𝐹 − 1 𝑆𝑘𝑜𝑟 = 2 𝑥 
𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘.𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘+𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡
                                            (2) 

 

Çok sınıflı sınıflandırma problemlerinde her sınıf için ayrı ayrı F1 skoru hesaplanabilir. Ancak 

sınıflar arasında belirgin örnek sayısı farkları bulunduğunda modelin azınlık sınıflardaki başarımını 

daha adil ölçmek için ağırlıklı ortalama (weighted-average) F1 skoru tercih edilir. Bu yöntem, 

Denklem (3)’te her sınıfın 𝐹1𝑖 değerini o sınıfa ait örnek sayısıyla 𝑛𝑖 ağırlıklandırarak genel F1 

skorunu hesaplar (Sokolova ve Lapalme, 2009): 

 

                                                       𝐹1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑
𝑛𝑖

𝑁

𝐶
𝑖=1 . 𝐹1𝑖                                                                    (3) 

 

Burada, 

C: Sınıf sayısı, 

𝑛𝑖: i. sınıfa ait örnek sayısı, 

N = ∑ 𝑛𝑖
𝐶
𝑖=1 : Toplam örnek sayısı, 

 𝐹1𝑖: i. sınıfa ait F1 skoru. 

Bu yaklaşım, her sınıfın katkısını örnek sayısına göre dengeleyerek çoğunluk ve azınlık 

sınıflara eşit önem atfeder ve dengesiz veri kümelerinde başarıyı daha gerçekçi yansıtır. 
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2.21. QWK 

 

Bu çalışmada sınıflandırma problemi sıralı (ordinal) sınıflar içerdiği için modelin performansı 

yalnızca doğru/yanlış tahmin sayısına değil, tahminin ne kadar uzak sınıflara yapıldığına da duyarlı 

bir metrik olan QWK ile değerlendirilmiştir. QWK, Cohen’in Kappa istatistiğinin bir genellemesi 

olup Denklem (4)’te her sınıf hatasına karelenmiş uzaklığa dayalı bir ceza uygular (Ben-David, 2008; 

Cohen, 1968). 

 

                                                                  𝐾 = 1 −
∑ 𝑊𝑖,𝑗𝑂𝑖,𝑗𝑖,𝑗

∑ 𝑊𝑖,𝑗𝐸𝑖,𝑗𝑖,𝑗
                                                           (4) 

 

𝑂𝑖,𝑗 ∶ Gözlenen frekans matrisi (gerçek sınıf i, tahmin edilen sınıf j) 

𝐸𝑖,𝑗 : Beklenen frekans (rastgele tahmin varsayımıyla) 

𝑊𝑖,𝑗 ∶ Ağırlık fonksiyonu Denklem (5)’te, sınıflar arası farkın karesine dayalıdır: 

 

                                                                    𝑊𝑖,𝑗 =  
(𝑖−𝑗)2

(𝐶−1)2                                                             (5) 

 

QWK değeri -1 ile 1 arasında değişir: 

K =1 : Mükemmel uyum 

K=0: Şansa bağlı tahmin 

K<0: Rastgeleden daha kötü performans 

Bu yaklaşım sayesinde örneğin gerçek sınıfı 4 olan bir sınıfın 3 olarak tahmin edilmesi, 0 olarak 

tahmin edilmesinden daha az cezalandırılır. Bu da sıralı etiketli görevlerde daha gerçekçi bir başarım 

ölçümü sağlar. 

 

3. Bulgular ve Tartışma 

 

Bu bölümde DR tespiti için farklı derin öğrenme modellerinin performansları, APTOS 2019 

veri seti üzerinde çoklu ve ikili sınıflandırma görevleri kapsamında değerlendirilmiştir. Deneyler, 

öncelikle herhangi bir görüntü işleme veya veri artırma uygulanmadan gerçekleştirilmiş, ardından bu 

tekniklerin eklenmesiyle model performanslarındaki değişim incelenmiştir. 

Tablo 2’de ön işleme ve veri artırma adımları olmadan modellerin çoklu sınıflandırma 

performansları sunulmaktadır. Bu sonuçlara göre, Swin Transformer modeli %83.67 doğruluk, 

%89.23 QWK ve %83.10 ağırlıklı F1 skoru ile diğer modellere göre üstün performans sergilemiştir. 
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EfficientNetB4 ve DenseNet121 modelleri de yüksek doğruluk ve QWK skorları ile Swin 

Transformer’ı takip etmiştir. 

 

Tablo 2. Modellerin ön işleme ve artırma adımları olmadan çoklu sınıflandırma performansları. 

Model Doğruluk (%) QWK  (%) Ağırlıklı F1 (%) 

ResNet18 

EfficientNetB4 

VGG16 

DenseNet121 

Swin Transformer 

80.21 

83.45 

82.01 

82.08 

83.67 

84.08 

87.65 

87.52 

86.92 

89.23 

79.30 

83.02 

81.27 

81.02 

83.10 

 

Ön işleme ve veri artırma teknikleri uygulandıktan sonra elde edilen sonuçlar Tablo 3’te 

verilmiştir. Tüm modellerde hem doğruluk hem de QWK ve F1 skorlarında belirgin iyileşmeler 

gözlenmiştir. Özellikle Swin Transformer modelinde doğruluk %85.00’e, QWK %91.37’ye 

yükselmiş ve ağırlıklı F1 skoru %83.35 olarak ölçülmüştür. Bu artışlar, kullanılan görüntü işleme ve 

veri artırma yöntemlerinin model performansına olumlu katkısını göstermektedir. 

 

Tablo 3. Modellerin ön işleme ve artırma adımları ile çoklu sınıflandırma performansları. 

Model Doğruluk (%) QWK  (%) Ağırlıklı F1 (%) 

ResNet18 

EfficientNetB4 

VGG16 

DenseNet121 

Swin Transformer 

81.65 

84.04 

83.42 

83.05 

85.00 

88.03 

90.21 

89.39 

89.13 

91.37 

81.50 

83.12 

82.23 

82.13 

83.35 

 

Tablo 4’te ise modellerin ikili sınıflandırma görevindeki performansları verilmiştir. Bu 

kategoride de veri artırma ve ön işleme sonrası sonuçlar daha yüksek başarı oranları ortaya 

koymaktadır. En yüksek doğruluk %98.41 ile VGG16 modelinde görülmüş, QWK skorlarında ise 

%96’nın üzerinde performans değerleri elde edilmiştir. Genel olarak tüm modeller ikili 

sınıflandırmada çoklu sınıflandırmaya kıyasla daha yüksek doğruluk ve QWK skorları göstermiştir. 

 

Tablo 4. Modellerin ikili sınıflandırma performansları. 

Model Doğruluk (%) Doğruluk (%) * QWK  (%) QWK  (%) * 

ResNet18 

EfficientNetB4 

VGG16 

DenseNet121 

Swin Transformer 

97.21 

98.04 

98.36 

97.95 

97.89 

97.62 

98.35 

98.41 

98.33 

98.33 

94.41 

96.42 

96.71 

95.89 

95.78 

95.24 

96.70 

96.82 

96.66 

96.66 
     Not: * Veri artırma ve ön işleme uygulandıktan sonra elde edilen sonuçları ifade etmektedir. 

 

Tablo 5’te APTOS 2019 veri seti kullanılarak yapılan farklı çalışmalarda kullanılan derin 

öğrenme modellerinin performans metriklerini karşılaştırmalı olarak gösterilmektedir. Majumder ve 
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Kehtarnavaz (2021) tarafından kullanılan SE-DenseNet201 modeli, %85 doğruluk ve %90 QWK 

skorları ile iyi bir temel performans sunmuştur. Bodapati ve arkadaşları (2021) Xception ve VGG16 

modellerinin hibrit kombinasyonunu kullanarak %82 doğruluk ve %79 QWK elde etmiş, ancak F1 

skoruna yer vermemiştir. Taufiqurrahman ve ark. (2021) ise MobileNetV2 ve SVM birleşimiyle %85 

doğruluk ve %92 QWK değerlerine ulaşarak yüksek sınıflandırma tutarlılığı göstermiştir. Boulobi ve 

arkadaşları (2023) Swin Transformer mimarisini kullanarak %89 doğruluk ve %83 F1 skoru ile güçlü 

sonuçlar elde etmiş, bu da Transformer tabanlı modellerin etkinliğini ortaya koymuştur. Minarno ve 

Bagaskara (2025) InceptionV3 modeli ile veri artırma tekniklerini birleştirerek %83 doğruluk ve %82 

F1 skoru seviyelerinde performans sağlamışlardır. 

 

Tablo 5. Benzer çalışmaların APTOS 2019 veri seti üzerindeki performansı  

Çalışma Model Doğruluk 

(%) 

QWK 

(%) 

F1 Skor 

(%) 

Majumder ve Kehtarnavaz (2021) SE-DenseNet201 85 90 72 

Bodapati ve ark. (2021) Xception  & VGG16 82 79 - 

Taufiqurrahman ve ark. (2021) MobileNetV2 + SVM 85 92 - 

Boulobi ve ark. (2023) Swin Transformer 89 - 83 

Minarno ve Bagaskara (2025) InceptionV3, Veri artırma 83 - 82 

Bu çalışma (2025) Swin Transformer 85 91 84 

    

Bu çalışmada ise Swin Transformer tabanlı model kullanılarak %85 doğruluk, yaklaşık %91.37 

QWK ve %84 F1 skoru elde edilmiştir. Özellikle QWK ve F1 skorlarındaki iyileşme, modelin farklı 

DR evrelerini dengeli ve doğru şekilde sınıflandırma kapasitesini yansıtmaktadır. Ayrıca, 

Transformer tabanlı modellerin medikal görüntü sınıflandırmasında artan popülaritesi ve etkinliği bu 

sonuçlarla desteklenmektedir. Çalışmanın performansının literatürdeki benzer modellerle 

karşılaştırıldığında rekabetçi olduğu ve özellikle sınıf uyumu açısından üstünlük sağladığı 

söylenebilir. 

 

4. Sonuçlar ve Öneriler 

 

Bu çalışmada, DR tespiti amacıyla farklı derin öğrenme modelleri, APTOS 2019 veri seti 

üzerinde hem çoklu hem de ikili sınıflandırma görevleri kapsamında karşılaştırılmıştır. Elde edilen 

sonuçlar, özellikle Swin Transformer modelinin diğer modellerden daha yüksek doğruluk, QWK ve 

F1 skoru elde ettiğini göstermiştir. Ayrıca, görüntü işleme ve veri artırma tekniklerinin uygulanması 

model başarısını anlamlı ölçüde artırmıştır. 

İkili sınıflandırma görevinde yüksek performans değerleri, derin öğrenme tabanlı yaklaşımların 

klinik uygulamalarda hastalığın varlığının hızlı ve doğru tespiti için uygun olduğunu 

desteklemektedir. Çoklu sınıflandırmada ise sınıf dengesizliği ve benzerlik gibi zorluklar göz önünde 

bulundurularak gelecekte bu alanlarda iyileştirmeler yapılması gerekliliği ortaya çıkmaktadır. 
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Çalışmanın bulguları ışığında öneriler şunlardır: 

• Model Birleştirme ve Topluluk Yöntemleri: Bu çalışmada tekli modeller 

değerlendirilmiştir. Gelecekte en iyi performans gösteren modellerin bir topluluk (ensemble) 

oluşturacak şekilde birleştirilmesi düşünülebilir. Farklı mimarilerin hataları farklı olabileceğinden bir 

oylama veya ağırlıklı ortalama mekanizması ile birleştirme yapmak genel doğruluğu daha da 

artırabilir. Özellikle sağlık uygulamalarında kritik hataları en aza indirmek için ensemble modelleri 

faydalı olabilir. 

• Daha Geniş ve Çeşitli Veri Setleri: Modelin genellenebilirliğini artırmak için eğitim veri 

setinin genişletilmesi önemlidir. Mevcut APTOS 2019 veri setine ek olarak EyePACS gibi binlerce 

görüntü içeren açık veri setleri ile eğitimin tekrarlanması modelin farklı popülasyonlarda da başarılı 

olmasını sağlayacaktır. Gelecekte mümkün olan en geniş kapsamlı retina görüntü koleksiyonuyla 

model yeniden eğitilebilir. 

• Birleşik Modeller ve Çoklu Çıkış: DR tanısı koymanın yanı sıra belirli lezyon türlerinin 

tespiti de (mikro anevrizma sayısı, makula ödemi varlığı gibi) klinik açıdan önemlidir. Gelecekte çok-

görevli (multi-task) bir öğrenme yaklaşımıyla aynı modelin hem DR seviyesini sınıflandırması hem 

de varsa ilgili lezyonları tespit etmesi sağlanabilir. 

• Model Açıklanabilirliği: Model kararlarının görsel veya sayısal açıklamaları önem taşır. 

Gelecekte eğitimli modellere Grad-CAM gibi teknikler uygulanarak hangi bölgeleri önemsedikleri 

ortaya koyulabilir. Eğer model yanlış bir sınıflandırma yaptıysa Grad-CAM ısı haritaları hatanın 

nedenini anlamaya yardımcı olabilir (örneğin optik diski bir lezyon sanmak gibi). 

Sonuç olarak, derin öğrenme tabanlı DR sınıflandırma modelleri, erken teşhis ve tedavi sürecine 

katkı sağlayarak görme kayıplarının önlenmesinde önemli bir araç olarak kullanılabilir. 

 

Teşekkür 

 

Bu çalışma, Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (BAP) 

tarafından, FYL-2024-14050 numaralı proje kapsamında desteklenmiştir. 

 

Yazarların Katkısı 

 

Tüm yazarlar çalışmaya eşit katkıda bulunmuştur. 

 

Çıkar Çatışması Beyanı 

 

Yazarlar arasında herhangi bir çıkar çatışması bulunmamaktadır. 
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Araştırma ve Yayın Etiği Beyanı 

 

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur. 
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