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Abstract  Öz 

Proton exchange membrane fuel cells (PEMFCs) are used 

commercially in automobiles, buses, uninterruptible power 

supplies, and combined heat power systems, holding a 

significant place in the fuel cell market. Fuel cell 

performance is characterized by polarization curves in 

design and manufacturing processes. This study predicts a 

PEMFC’s polarization curves using comparative artificial 

intelligence (AI) models trained and tested under different 

operational conditions. The AI model inputs are cell 

temperature, humidity, anode-cathode flow, and membrane 

resistance. The outputs are cell voltage and current density. 

The model outputs are compared with experimental values 

for 50°C, 100% humidity using MATLAB software. The 

average Root Mean Square Error (RMSE) for the ANFIS 

prediction is 0.056112, while for the ANN prediction it is 

0.011919. These results indicate that the Artificial Neural 

Network (ANN) method outperforms the Adaptive Neuro 

Fuzzy Inference System (ANFIS) in predicting the 

behavior of the PEMFC’s Membrane Electrode Assembly 

(MEA). The models showed promising results with high 

accuracy. 

 Proton değişim membranlı yakıt hücreleri (PEMFC) 

otomobiller, otobüsler, kesintisiz güç kaynakları ve 

kombine ısı güç sistemlerinde ticari olarak kullanılmaktadır 

ve yakıt hücresi pazarında önemli bir yere sahiptir. Yakıt 

hücresi performansı, tasarım ve üretim süreçlerinde 

polarizasyon eğrileri ile karakterize edilir. Bu çalışma, 

farklı çalışma koşullarında eğitilip test edilen 

karşılaştırmalı yapay zeka (AI) modelleri kullanarak bir 

PEMFC'nin polarizasyon eğrilerini tahmin etmektedir. AI 

model girdileri hücre sıcaklığı, nem, anot-katot akışı ve 

membran direncidir. Çıktılar ise hücre voltajı ve akım 

yoğunluğudur. Model çıktıları, MATLAB yazılımı 

kullanılarak 50°C, %100 nem koşullarındaki deneysel 

değerlerle karşılaştırılmıştır. ANFIS tahmini için hataların 

ortalama karekökü (RMSE) 0.056112 iken, ANN tahmini 

için 0.011919'dur. Bu sonuçlar, Yapay Sinir Ağı (ANN) 

yönteminin, PEMFC'nin Membran Elektrot Yapısının 

(MEA) davranışını tahmin etmede Uyarlamalı Nöro 

Bulanık Çıkarım Sistemi (ANFIS) yönteminden daha iyi 

performans gösterdiğini göstermektedir. Modeller yüksek 

doğrulukla umut verici sonuçlar vermiştir. 

Keywords: Artificial intelligence, Electrochemical 

devices, Energy conversion, Fuel cells 

 Anahtar kelimeler: Yapay zeka, Elektrokimyasal cihazlar, 

Enerji Dönüşümü, Yakıt hücreleri 

1 Introduction 

PEMFCs, compared with other types of fuel cells, have 

the highest energy density and the fastest start-up time [1]. 

The PEMFC is electrochemically complex and has a 

nonlinear nature [2]. This complex structure complicates the 

commercialization of hydrogen fuel cells. According to the 

U.S. Department of Energy (DOE)’s report, market drivers 

for PEMFCs include the need for methods to reduce the time 

and costs of final fuel cell stack tests in manufacturing [3]. 

Current final testing processes take a long time due to 

expensive equipment, limited floor space, and gas 

preparation [4-5]. Fuel cell modeling can lead to 

improvements in fuel cell design, making them more cost-

effective and efficient. The model must be robust, accurate, 

and provide solutions for fuel cell issues. 

Comparative studies of ANN and ANFIS are used to 

address the nonlinear statistical and complex structures of 

PEMFCs [6-9]. Inputs for the PEMFC model include anode 

and cathode flow, cell resistance, temperature, and humidity, 

with the output being the polarization curve. Neuro-Adaptive 

and Neural-Network Learning systems have been studied 

extensively [6-9]. This paper is organized into the following 

sections: Section II explains PEMFC dynamics. Section III 

describes the experimental setup and polarization curves of 

the MEAs under different conditions. Section IV explains the 

ANFIS architecture and performance. Section V details the 

ANN architecture and presents both experimental and 

predicted polarization curves. The final section presents 

conclusions. 

2 PEMFC dynamics 

Fuel cells are electrochemical devices that are 

environmentally friendly and have high energy density. 

Therefore, they are used as alternative power systems. Due 

to the complex and dynamic structures of fuel cells, 

https://orcid.org/0000-0002-4086-938X
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designing and developing them is a challenging process. 

Figure 1 illustrates the complexity of the PEMFC system. 

 

 

Figure 1. Working diagram of PEMFC system [10] 

 

The key component of a PEMFC is the membrane 

electrode assembly (MEA), which comprises a Nafion® 

membrane sandwiched between electrodes, gas diffusion 

layers, and catalyst layers. Electrodes are typically made of 

woven carbon paper or cloth. The PEMFC catalyst layer is 

in direct contact with both sides of the membrane and 

consists of Pt nanoparticles supported on micron-sized 

carbon particles. Each gas diffusion layer (GDL) surrounds 

the catalyst layers and is made of carbon fibers coated with 

Polytetrafluoroethylene (PTFE) to impart hydrophobic 

properties, thereby reducing the formation of water droplets 

that could hinder gas diffusion to the catalyst [11-15]. All the 

chemical reactions in the PEMFC occur within the MEA 

[16]. Figure 2 illustrates the MEA structure. 

 

 

Figure 2. Membrane electrode assembly (MEA) 

 

The complexity of the electrochemical reactions within 

the PEMFC's MEA contributes to the challenges of its 

commercialization and testing. While the single cell voltage 

is 1.229V, various performance losses, including activation, 

ohmic, and mass transport losses, lead to a decrease in 

overall cell voltage. 

The performance of PEMFCs can be assessed and 

characterized using polarization curves [17-20]. These 

curves are essential for understanding the efficiency and 

operational characteristics of Proton Exchange Membrane 

Fuel Cells (PEMFCs). A polarization curve plots the cell 

voltage against the current density, revealing the various 

types of losses or overpotentials encountered during 

operation (Figure 3). These losses include activation losses, 

ohmic losses, and concentration losses. Activation losses 

stem from the kinetics of electrochemical reactions, notably 

the sluggish oxygen reduction reaction at the cathode. Ohmic 

losses result from resistance to ion flow in the electrolyte and 

electron flow within the cell components. Concentration 

losses, or mass transport losses, occur when reactants are not 

supplied adequately to the reaction sites, leading to a voltage 

drop at higher current densities. Each type of loss dominates 

different regions of the polarization curve: activation losses 

prevail at low current densities, ohmic losses in the mid-

range, and concentration losses become significant at high 

current densities [21]. Analyzing these curves enables 

researchers to diagnose performance issues and refine design 

and material choices for PEMFCs, thereby improving their 

efficiency and operational longevity [22]. 

 

 

Figure 3. Polarization curve of the PEMFC 

3 Experimentation of PEMFC’s MEA 

PEMFC’s MEA is tested via Teledyne Medusa® Fuel 

Cell Testing System (Figure 4). PEMFC’s polarization 

curves represent the steady-state performance achieved after 

5 minutes of operation (Figure 5). Nafion® 212 is used as an 

electrolyte. 

 

 

Figure 4. The PEMFC’s MEA testing system 
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Figure 5. The polarization curves of PEMFC’s MEA at different conditions. (a) Cell voltage vs. current at 50 °C 

temperature and 100% humidity. (b) Power density vs. current at 50 °C temperature and 100% humidity. (c) Cell voltage 

vs. current at 50 °C temperature and 75% humidity. (d)  Power density vs. current at 50 °C temperature and 75% humidity. 

(e) Cell voltage vs. current at 80 °C temperature and 75% humidity. (f) Power density vs. current at 80 °C temperature and 

75% humidity. (g) Cell voltage vs. current at 80 °C temperature and 100% humidity. (h) Power density vs. current at 80 °C 

temperature and 100% humidity 

The reactions in a fuel cell occur at the anode and cathode 

catalyst plates on either side of the membrane. The overall 

reaction is similar to a combustion process, which is 

exothermic, releasing energy and water. This heat (enthalpy) 

generated from the reaction represents the difference in 

formation temperatures between the products and reactants. 

At room temperature (25°C), the reaction that produces 

liquid water releases an energy of ΔH = -286 kJ.mol⁻¹, 

known as the Higher Heating Value (HHV). However, not 

all of this enthalpy energy is converted into electrical energy; 

some is lost due to various factors. The portion of energy that 

is converted into electrical energy is represented by Gibbs 

free energy (∆G) (Table 1). 

 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 (1) 

 

where H is enthalpy, T is absolute temperature, and S is 

entropy. 

 

Table 1. Enthalpies, entropies and Gibbs free energy of 

H2/O2 fuel cell reaction in (kJ/mol.K) and the resulting 

theoretical cell potential at 25°C([23]) 

 
∆H 
(kJ/mol) 

∆G 
(kJ/mol) 

∆S 
(kJ/mol.K) 

E 
(Volt) 

H2 + 1/2O2 → 

H2O (liquid) 
−285.8 −237.1 −0.163 1.23 

H2 + 1/2O2 → 
H2O (gas) 

−241.8 −228.6 −0.045 1.18 

4 Architecture of proposed ANFIS model 

ANFIS is formed by integrating adaptive neural networks 

and fuzzy logic rules, providing an effective model for 

nonlinear system modeling. The fuzzification layer matches 

the inputs according to fuzzy rules based on membership 

functions. Figure 6 shows the Fuzzy Inference System (FIS). 

All rules are evaluated on parallel surfaces in the fuzzy logic 

framework (fuzzification). The results of these rules are then 

combined and filtered (defuzzification). Adaptive networks 

often use supervised learning algorithms during the learning 

stage. These networks have several adaptive nodes directly 

connected to each other [21-22]. 

 

DATA 

DECISION

DEFUZZIFICATIONFUZZIFICATION

RULE

KNOWLEDGE BASE

INPUTS OUTPUTS

 

Figure 6. Fuzzy inference system (FIS) 

 

The ANFIS consists of five layers: fuzzification, rule, 

normalization, defuzzification, and summation neuron layers 

[24]. ANFIS integrates fuzzy learning and artificial neural 

networks, employing different types of models. The two 

most commonly used types are Mamdani and Takagi-

Sugeno. The basic formulation for a two-input (x, y) and one-

output (f) model is as follows [24-26]. The structure of the 

Takagi-Sugeno-Kang ANFIS type is depicted in Figure 7. 

 

Rule: if x is A1 and y is B1, then 

 

𝑓_1 = 𝑝_1 𝑥 + 𝑞_1 𝑦 + 𝑟_1 (2) 

 

Rule: if x is A2 and y is B2, then 

 

𝑓_2 = 𝑝_2 𝑥 + 𝑞_2 𝑦 + 𝑟_2 (3) 
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Figure 7. Structure of Takagi Sugeno-Kang ANFIS type 

 

The Takagi Sugeno-Kang ANFIS type consisting inputs 

x and y, two rules and one output. Every node i in the layer 1 

is a square node with a node function. 

 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥) (4) 

 

where x is the input to node i, and Ai is the linguistic label. 

Oi
1 is the membership function of Ai. 

 

𝜇𝐴𝑖(𝑥) =
1

1 + [(
𝑥 − 𝑐𝑖

𝑎𝑖
)

2

] 𝑏𝑖

 
(5) 

 

ai,bi,ci are the parameter set [27-28]. 

In ANFIS, the Gaussian membership function was used 

for the input variables. There are 243 rules in the system. The 

learning rate used during the training process of the model is 

0.05. The number of epochs is 50, and the error tolerance is 

10-5. The model has 5 layers. 

Input Layer (Layer 1): This is the layer where the input 

variables (anode flow, cathode flow, resistance of the cell, 

cell temperature, humidity) are placed. 

Membership Function Layer (Layer 2): This is the layer 

where the input variables are fuzzified and their membership 

degrees are calculated. 

Rule Layer (Layer 3): This is the layer where the firing 

strengths of the rules are calculated based on the membership 

degrees. 

Normalization Layer (Layer 4): This is the layer where 

the values from the rule layer are normalized and combined. 

 

 

Figure 8. The ANFIS model structure 

 

Output Layer (Layer 5): This is the layer where the 

outputs of the rules are calculated and the final outputs of the 

system (cell voltage and current density) are 

produced.(Figure 8). The use of two sigmoid functions in 

output layer yielded the best results and was implemented in 

this study. 

Back propagation learning and least mean square 

estimation are utilized in the ANFIS model to determine the 

parameters, with the procedure iterated for optimization. The 

data set obtained at 100% humidity and 80 ºC is used to 

predict the voltage of PEMFC’s MEA (Figure 9). 

Experimental data for PEMFC’s MEA at 75% humidity and 

50 ºC serves as the ANFIS training data set (Figure 10). An 

average root mean square error (RMSE) of 0.056112 is 

achieved by the 40th epoch. 

 

 

Figure 9. The cell voltage curve depends on anode-

cathode flow 

 

 

Figure 10. The power density curve of depends on anode-

cathode flow 

5 Architecture of proposed ANN model 

ANN is a model that mimics the layered and parallel 

structure of the brain, which is composed of nerve cells. Like 

the brain, ANN can generate new information through 

learning. The ANN model is a powerful and reliable tool for 

modeling nonlinear systems. It consists of three primary 

network types: single-layer feedforward networks, multi-

layer perceptron (MLP) feedforward networks, and recurrent 

networks [29]. The ANN structure used in this study includes 

5 inputs, 20 hidden neurons, and 2 outputs Dataset split into 

75% training, 15% validation, and 15% test. The Sigmoid 

activation function was used in the hidden layers and the 

output layer. The Learning Rate was set to 0.0005, Batch 

Size to 64, and the number of Epochs to 50. The number of 

epochs is determined based on the complexity of the model, 

the size of the dataset, and the learning speed of the model. 

The ANN network is depicted in Figure 11. 
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Figure 11. The multi-layer ANN network with l layers of 

units 

 

The functioning of an ANN involves several key steps: 

forward propagation, loss calculation, backpropagation, and 

iterative training. Initially, input data is fed into the input 

layer, where each neuron's output is computed as a weighted 

sum of its inputs and then passed through an activation 

function. This process continues through each layer until the 

data reaches the output layer, producing the final prediction. 

The network then compares this prediction to the actual 

target values using a loss function, which quantifies the error. 

During backpropagation, the network adjusts the weights of 

the connections between neurons by computing the gradient 

of the loss function with respect to each weight and updating 

the weights to minimize the error. This iterative process, 

carried out over multiple training epochs, gradually reduces 

the error, enhancing the network's ability to learn underlying 

patterns in the data [30]. 

 

 

Figure 12. ANN Regression analysis 

 

In this study, the relationship between ANN training, 

validation and test data and output values was examined by 

regression analysis. The perfect fit for regression plots 

should fall along a 45-degree line. In this study, the 

regression analysis showed is remarkable results for all data 

sets. R-value for each case is 0.9999 (Figure 12). 

 

 

Figure 13. Error histogram for ANN model 

 

The obtained error histogram validates the performance 

of the ANN network. The blue bars represent the training 

data set, the green bars represent the validation data set, and 

the red bars represent the testing data set. Most errors fall 

between -0.00513 and 0.006303 in the error histogram 

(Figure 13). 

6 Conclusions 

By using AI techniques such as ANFIS and ANN, the 

cost and time involved in the design of PEMFCs can be 

reduced. Unlike physical models, fuel-cell performance 

curves are generated with fewer variables. This study 

proposes ANFIS and ANN models for predicting the 

polarization curve of PEMFC’s MEA. The prediction 

performance of the ANFIS and ANN models is evaluated 

using RMSE. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑎𝑖 − 𝑝𝑖)2

𝑛

𝑖−1
 (6) 

 

ai, actual values 

pi, predicted values 

The average RMSE for the ANFIS prediction is 0.056112 

and the ANN prediction is 0.011919. 

 

 

Figure 14. ANN prediction vs. experimental results 

 

In Figure 14 and Figure 15, the red dots represent the 

predicted values, while the blue dots represent the 

experimental values. 
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Figure 15. ANFIS prediction vs. experimental results 

 

The existing literature frequently highlights the 

advantages of ANFIS in environments where interpretability 

and the ability to manage non-linear and uncertain data are 

crucial. ANFIS's integration of fuzzy logic with neural 

networks enables it to effectively capture complex 

relationships within data, providing a level of transparency 

through interpretable fuzzy rules. However, despite these 

strengths, this study demonstrates that ANN, which is 

relatively simpler to implement and scale, can yield more 

effective results in predicting complex systems like fuel cell 

polarization curves. 
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