POLITEKNIK DERGISI

JOURNAL of POLYTECHNIC

| Jourpal of PO%teChﬂiC
POLITEKNiIK
DERGISi

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

A CITATION
‘\@GAZ'U"'VERS'TES' URL: http://dergipark.org.tr/politeknik INDEX

'Npgye®

EfficientNet-based deep learn malware

classification: A dyna istribution
adaptation approach y
Kotid amacgli yazily iflandirmasi icin

efficientnet tabanl @i ogrenme: Dinamik
dagitim uyarlama simi

a
Yazar(lar) (Author(s)): Cer OZTEN', Adem TEKEREK?

ORCID': 0000-0002-6962-9
ORCID?: 0000-0002-

%

To cite to this article: Ozten C. U. ve Tekerek A., “EfficientNet-Based Deep Learning for Malware Classification: A
Dynamic Distribution Adaptation Approach”, Journal of Polytechnic, *(*): *, (*).

Bu makaleye su sekilde atifta bulunabilirsiniz: Ozten C. U. ve Tekerek A., “Kétii Amacli Yazilim Simflandirmast icin
EfficientNet Tabanli Derin Ogrenme: Dinamik Dagitim Uyarlama Yaklasimi”, Politeknik Dergisi, *(*): *, (*).

Erisim linki (To link to this article): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.1536669

http://dergipark.org.tr/politeknik
http://dergipark.org.tr/politeknik/archive

EfficientNet-Based Deep Learning for Malware Classification:
A Dynamic Distribution Adaptation Approach

Highlights

¢ Malware Classification using the EfficientNet and Dynamic Distribution Adaptation Network
approach

** Applying data preprocessing
+¢ Detailing the model training and validation processes
¢ Analyzing results with performance evaluation metrics

Ve
In this study, the EfficientNet deep learning model was used to classify malware images.
8 8 e o o o o O =
o o o) o a a 3
wn E un E 0n E wn E wn E un E 0 E (] O &
@ X I X 3 X 3 x /& x & x & x & x 3 :]
g 3 g g g 8 g e o ¢ o
3 é 8 €C—*>c—+¢c > Cc—>Cc > C—>C > C—
[© o o o o o o o o =
o L] - Q O Q (54 o O O (54 +
Q 2 : % wl =] =] o =] =] 2] [=2] =] &
E - € _x¢ 2 3 3 2 3 3 3 = £ x c
&= o © X W] © o
7] 2 © & 'C@© o €5
g E o5 E — e — 5%
» 5 53tEte : 55
a 9 gx o X P
w & 2886 - o s
€ o T8 g3 2 2 g 3 3 H] g 3 8 s
s 9 wEZFF] S S;m S S imIm e 3 o
£ £ £ 2 3 F X F X 2 X 2 9x ¢ x § x § xXx I x g
& 2 &5 w £ N T TR T T N < 1 B T B TS I =)
-9 3= c X oA g A o ~ ~ ~ O c -
o £ & © © © © © © © H -
Eﬁ S S > > > > > > > > > O — 1]
c c o — € R —ECE—EEE EEE " ECE—EEE— E) - N
S o (7] < o o o o o o o o 8 ‘@
3l | (5 o Q Q Q Q Q Q Q 9 2 o
S o @ @ @ @ @ a @ @ O = 5
a 3 3 2 = 3 2 = 3 a g
-— =3
o o
I
‘ Data preprocessing ‘ Basic EfficientNet Feature Extraction

Fully Connected Layer

Figure. Proposed Methodology
Aim
To investigate the effectiveness of EfficientNet deep learning model in detecting classifying malware images.
Design & Methodology

Steps included dataset analysis, data preprocessing, EfficientNet model and Dynamic Distribution Adaptation
Network approach and performance evaluation.

Originality

This study is one of the rare works successfully applying EfficientNet model to classify malware images.
Findings

EfficientNet models are applied succesfully to malware classification.

Conclusion

EfficientNet has proven the effectiveness of deep learning in security by classfiying malware.

Declaration of Ethical Standards

The authors of this article declare that the materials and methods used in this study do not require ethical
committee permission and/or legal-special permission.

EfficientNet-Based Deep Learning for Malware
Classification: A Dynamic Distribution Adaptation
Approach

Research Article

Ceren Umay OZTEN?, Adem TEKEREK?

! Graduate School of Natural and Applied Sciences, Gazi University, Ankara, Tiirkiye
2 Computer Engineering Deparment, Technology Faculty, Gazi University, Ankara, Tiirkiye
(Received: 21.07.2024 ; Accepted: 07.10.2024 ; Early View : 13.10.2024)

ABSTRACT
Malware is a general name given to all malicious software that threatens and prevents the use of infor
Computers, which have become mandatory in daily life, are constantly under the threat of malwa

classification of malware. In the study, a deep learning model based on the EfficientN

Distribution Adaptation Network approach were proposed and these proposed models

EfficientNet backbone-based Dynamic Distribution Adaptation Network agfgiey€d 9%
96% accuracy in the Dumpwarel0 dataset. As a result, the EfficientN® archigctur

learning in the classification of malware and cybersecurity.

of these images. The
in the MMCC dataset and
roved the effectiveness of deep

Keywords: EfficientNet architecture, malware classification, datg prepfgessingy compound scaling.
Kot Amacgh Yazile %‘Xndmnam i¢in

EfficientNet Taban
Dagitim

Malware, bilisim sistemlerini tehdf

1. INTRODUCTION

The transformation of the first historic ARPANet
network into today's virtual network of millions of
servers increases cyber threats. The first “bug”
definition of a computer virus has evolved into
specific cyber-attack software, and cyber-attack
software has become widespread, divided into
variable malware families. Malware families can
infiltrate information system infrastructures, mobile
electronic devices, digital blockchains and
government databases. This situation requires the

*Corresponding Author
e-mail : atekerek@gazi.edu.tr

o
mmini engelleyen tiim kot amagli yazilimlara verilen genel bir addir.
elen bilgisayarlar, insan hayatin1 kolaylastirmanin yani sira kotii amacgh

grenme: Dinamik

drfgma Yaklagimi

Z

eler: EfficientNet mimarisi, malware simflandirma, veri 6n isleme, mimari élgeklendirme.

correct classification of malware families. In this
context, incorrect malware classification can render
cyber security analysis dysfunctional. The goal of this
research is to utilize EfficientNet architecture to
distribute malware image transformations to the
correct malware family classes. In this research,
EfficientNet Inverted Residual (MBConv) layer
blocks are defined to MaxPooling experiments with
Transfer Learning. Malware dataset collection,
malware preprocessing, EfficientNet — model
development and experimental result analysis are

included in the method modeling of the research. In
the method modeling, malware datasets are collected,
malware samples belonging to the malware sets are
decomposed into tensor blocks in preprocessing, and
the tensor blocks are converted into three-channel
RGB and two-channel grayscale malware images.
The malware images are then trained on EfficientNet
architecture. In the Transfer Learning and
MaxPooling experiments, layer depth, input
resolution and layer width settings are studied and
MaxPooling final layer replacement is tested.

2. LITERATURE REVIEW

In the literature, malware preprocessing,
implementation of convolutional layer sequences,
CNN - BILSTM two-tier model, LSTM layer
integration with Convolution Dense layer, adaptation
of Autoencoder neural network to grayscale malware
images and random partitioning of malware dataset
are investigated.

Huaxin Deng, et al., used Markov transfer matrices in
malware data preprocessing. In Markov transfer
matrices, the team assigned the probabilities of
combinations of both consecutive letters or numbers
of machine codes, the first letter and the last two

letters of opcode fragments to three matrix imags

channels, and obtained three-channel malwese
images. And the malware images are entered into
fully-connected dense layered architecture wij

convolution layers. The Markov method
99.4% accuracy on the Microsoft Mal
dataset [1]. Mumtaz Ahmed, et al:
malware data into a two-chan
The team converted the
hexadecimal numbers,
hexadecimal numbers
max normalization o
trained the pixel i
with hidden |
achieved

ceptionV3 model
InceptionVV3 model
y on the Microsoft

horizontal space and filtered the redundant data from
the feature output. The filtered feature output was
passed to KNN, SVM, Random Forest, Multi-layer
Perceptron (MLP), Extra Tree and Gaussian Naive
Bayes classifiers. The Multi-layer Perceptron model
recorded 98.55% accuracy rate, 99% precision rate,
99% recall rate and 99% f1-score rate on the Mallmg
dataset [3]. Seok-Jun Bu and Sung-Bae Cho solved
the malware structure for classification in an
evolutionary ternary network and optimized the
mixed malware variation into groups of inter-
representation distances using a genetic algorithm. In
the genetic algorithm, the team entered the byte

malware image into the evolutionary triple network
and generated new weight-sharing convolutional
networks in the space of weight changes. The triple
triplet loss due to the genetic algorithm brought
similar malware samples closer together while
pushing different malware samples away [4]. In the
multi-view multidimensional ~ feature fusion
approach, Rajasekhar Chaganti, et al. combined
static, dynamic and image feature sets of malware. In
the multidimensional feature fusion learning of the
models, each feature set presents the discriminative
semantic characteristics of the malware. The team
fused PE Section and PE Import, dynamic PE API and
PE Image malware attribute files into
neural network. The connected convol

e static stage and

runnifig the decomposed benign file
kel Cuckoo Sandbox environment.

sional tensor structure was classified in the
entNet-b3 model. The EfficientNet-b3 model
achieved an accuracy rate of 94.98% [6]. Manish
Kumar integrated convolutional neural network CNN
with Bi-LSTM network for malware detection. With
dynamic malware API calls, process execution
signals are converted into process tree vectors. The
high-level vector output is decomposed in the
embedded layer and the low-level vector fragments
are passed through the CNNZ1-BiLSTM1-CNN2-
BiLSTM2-Dense-Softmax chaining layer pattern.
Convolution layers filtered the feature for the LSTM
layers, and the dual CNN and dual BiLSTM modeling
showed high success. The binary CNN-BIiLSTM
modeling recorded an accuracy rate of 0.99 [7]. In the
grayscale autoencoder approach, Xiaofei Xing, et al.
encoded the APK code of the malware and benign file
into decimal byte data and fixed it into a grayscale
two-dimensional matrix, and passed the grayscale
malware image data through AE-1 and AE-2
autoencoder structures. The AE-1 autoencoder
structured the feature extraction of the grayscale
image into the actual malware classification. The AE-
2 autoencoder handled the malware discrimination of
the classified benign file. The AE-1 autoencoder
architecture has convolution, filtering and
upsampling layers. The AE-2 autoencoder
architecture has a multi-layer perceptron network in
addition to the AE-1 architecture layers. The multi-
layer perceptron network achieved 96% accuracy [8].

In the LSTM-Dense method, Esraa Saleh Alomari et
al. presented malware detection based on feature
selection with deep learning and feature selection in
the correlation matrix by processing datasets.
Datasets of variable attribute selections were trained
in the LSTM model with dense dense layer. In the
training, 5 hidden layers in the Dense Dense Layer
model are defined for ReLU activation between the
input and output layers. The LSTM model replaced
the first Dense layer of the Dense dense layer model
with the ReL U activated LSTM layer. Narrowing the
datasets by feature selection met the performance of
almost the entire dataset [9]. R. Vinayakumar et al.
removed bias by applying different separations to the
datasets along the bias-deep learning line. Removing
bias from the datasets made the malware detection
model training independent. Light GBM 100-tree
modeling, convolutional 1D layers and LSTM hybrid
MalConv variants were investigated on the Ember
dataset. Flexible and real-time hybrid deep learning
models are used for malware preprocessing and
classification. Ember dataset was randomly split into
60% training and 40% test sets and introduced to the
models [10]. Handhika Yanuar Pratama and Jeckson
Sidabutar apply EfficientNet models - EfficientNet-
b0, EfficientNet-bl, EfficientNet-b2, EfficientNet-
b3, EfficientNet-b4, EfficientNet-b5, EfficientNet¢
and EfficientNet-b7 - to two-channel grayscale an
three-channel RGB malware images fro
Malware Classification Challenge (BI
dataset. EfficientNet models are able to
successful deep learning classificgtion
ImageNet dataset. In the stud
EfficientNet-b7 architecture appl

3 y rate,

Ensemble
attacks i
disti

learning ification methods includes dataset
generation, Xeature refinement, normalization and
classification stages. For the training and testing of
ensemble learning models, normal traffic and DDoS
attack data flow traffic are obtained from specific
experimental network topology simulation. Minimum
Redundancy Maximum Relevance (MrMR) method
is adopted for feature balance in the dataset. Feature
selection and hyperparameter tuning are used to
optimize decision tree ensemble models. The
experiments show that feature selection, different
combinations of decision tree ensemble models, and
hyperparameter tuning can lead to better detection
performance against DDoS attacks. The team's

Ensemble Boosted Trees method showed the highest
accuracy performance of 92.9% [12]. Polat et al.
proposed a multi-stage learning model for DDoS
attack detection in SDA-based SCADA systems by
combining 1-dimensional convolutional neural
network (1D-CNN) and decision tree based
classification. In the proposed model, the feature
extracted from the 1D-CNN convolutional neural
network model is input to the decision tree model.
While the 1D-CNN network model performs deeper
and more complex feature extraction, the decision
tree model defines the features into the decision
structure. A new dataset of specificgeexperimental
network topology based on varying a scenarios
is used to train and test the
model achieved an accuragy o
detection [13]. In additiam to’t
proposed model util
EfficientNet-b7 mod

D
w

malware images
and three-ch alware images were

generateb%

entNet-b5 model. For the Dumpwarel0 dataset,
ficientNet-b6 architecture is more successful. In
the model development, a deep learning model was
created by using convolutional bottleneck and
depthwise separable convolution in the inverse
residual block structure. The EfficientNet architecture
of the study effectively applies the layer structure that
reduces the gradient computation while approaching
full convolution to malware image datasets. The
combination of the Microsoft Malware Classification
Challenge (BIG 2015) dataset and the proprietary
Dumpwarel0 dataset offers different perspectives in
experimental testing. While the Microsoft Malware
Classification Challenge (BIG 2015) dataset serves as
a general benchmark, the Dumpwarel0 dataset
provides a different benchmark evaluation of the
working model.

3. MATERIAL and METHOD

3.1. Methods

For malware detection, a deep learning model is built
using convolutional bottleneck and depthwise
separable convolution in the inverse residual block
structure of the EfficientNet architecture.

3.1.1. Transfer learning

Transfer learning is the transfer of the activation
hardware of the deep neural network architecture,
previously subjected to the training cycle, to different
tasks. The final Dense layer of the deep neural
network architecture is changed according to the

classification distribution of the task. The deep neural
network layer architecture performs activation
learning by pre-training on a large benchmark dataset
such as ImageNet. The deep neural network layers
can transfer the activation learning experienced on the
ImageNet dataset to different classification tasks
belonging to different datasets. For example, the
weighted DenseNet121 neural network architecture,
pre-trained on the ImageNet dataset, can be adapted
to a dataset containing human facial expressions and
aiming to classify human emotions - happiness,
anger, sadness, neutral, surprise, fear, disgust. The
DenseNet121 neural network architecture applies the
edge, shape, color and associated texture pixel feature
information learned from ImageNet image data to
human emotion classification of facial expression
images. The last Dense layer of the DenseNet121
neural network architecture is replaced by a softmax
layer which is divided into 7 human emotion classes.
In the DenseNet121 architecture, the layers carrying
low-level feature information do not participate in
gradient generalization during training, but the last
Dense layers carrying high-level feature information
participate in gradient generalization. For successful
softmax classification, activation function,
optimization function, learning rate, momentum.
number of epochs and weight decay functig

hyperparameters are added to improve the gradie
generalization. As a result, the weights of th

The hyperparameters drive
generalization of the deep neural
loop. Optimization functions s

effect of optimization
gle. Dense layer swapping

AlexNet, EWficientNet-b0-b7 transform Dense layer
exchange and hyperparameter configuration in the
transfer learning extension. It performs different
training cycles according to the datasets. In this
context, the transfer learning method approximates
the neuron activations of pattern neural network
architectures to the gradient generalization of the

dataset and shows successful results in classification
tasks. In this method, the neural network layers fix the
gradient computation up to the Dense layer, or the
gradient computation of layer blocks that process
only low-level feature information.

Transfer learning domain connected with deep neural
networks through deeper layers of feature extraction
and neural network based adaptation of big volume of
prevalent knowledge domain to small volume of
intuitive knowledge domain. For example, a
researcher can use existent biological protein
structure information with artificial intelligence for
predicting protein structures. Informatign knowledge
transfer through deep neural netw has deep
transfer learning model-based variety
of frozen pre-trained Iay(g b
blocks and regulation of@ayér

gezing low-level CNN layers means that the low-
level convolution layers of the neural network model
are frozen and do not participate in the gradient
calculation of the training cycle. Only the
intermediate fully-connected layers participate in the
gradient generalization in the training cycle of the
target dataset. The low-level CNN layers undertake
the feature extraction of the dataset, while the
intermediate fully-connected layers undertake the
classification of the feature extraction. Progressive
learning uses part or all of the layers of a pre-trained
neural network model without entering the gradient
generalization of the training cycle. The new layer
configuration added to the neural network model is
trained on the target dataset. The triple layer block
autoencoder structure minimizes the mismatch
between training and test feature data by applying a
maximum mismatch term to the features of the
training and target data [14].
In figure 1 previously explained deep transfer
learning methods of finetuning, frozen CNN layers
and progressive learning are depicted.

Model

Apply finetuning for the target task to
the same model trained with a more
comprehensive dataset

Model

Finetuning

CNN Layer
CNN Layer
CNN Layer

;I_/

Keep frozen CNN layers

Frozen CNN Layers

Task 1 Task 2

3.1.2. EfficientN
The Efficient]egya
2 @. ion, layer width and layer

res. This architecture gives

the flexibility of

ed residual block structure follows a
layer path that shrinks at the beginning,
expands in the middle, and shrinks again at the end.
Initially it follows (1x1) convolution filtering,
followed by (3x3) depthwise convolution block
filtering. Then the (1x1) convolution filtering reduces
the number of parameters in the middle layer. The
MBConv block is an inverted residual block
modeling that includes an inverted layer
transformation with performance impact.

MBConv block
In figure 2 MBConv block structure and connections
are shown. MBConv has a convolutional block

eep transfer learning model-based methods

architecture. MBConv convolutional block structure
consists of depthwise separable convolutions,
BatchNormalization, Squeeze and Excitation module,
Projection phase, BatchNormalization, activation and
Skip connection internals layer components. The full
convolutional layer architecture is replaced by linear
bottlenecks. The full convolutional operator neural
network layer of the Depthwise separable
convolutions block architecture decomposes the
convolutional layer into two separate layers by
factorization. The first layer is the depthwise
convolution layer. This layer applies a lightweight
single convolutional filtering for each input channel.
The second decomposed layer is the (1x1) pointwise
convolution layer, which combines new feature
outputs from linear computational combinations of
input parameters. The standard convolution layer
takes the input hixwixdi and Li tensor structure and
processes K convolutional kernel filtering to produce
the output Lj tensor structure hixwixdj. The standard

convolution layer has a computational cost of
hi*wi*di*dj*k*k*k, while the depthwise separable
convolution layer has a lower computational cost in
the formal convolution functionality. Depthwise and
(1x1) pointwise convolution layers have lower
running cost compared to the standard convolution
layer. Depthwise separable convolution layer reduces
the running cost by a factor of k"2 compared to
traditional layers [15].

@

Conv 1x1

f

Squeeze
Excitation

f

Depthwise
Conv 3x3

Conv 1x1

]7

Figure 2. MBConv Block

Linear bottleneck block
In figure 3 linear bottl
convolutional layer

i9¥depicted as
(1x1), (3x3)
dimensions and
onnected to neural
ructures. The neural

network sor structures are di
dimeng#Ona onents with hixwi pixels and
gene ayer activations to the feature
fields networks, feature fields can be

transferred Mow-dimensional components. In the d-
channel pixels in the deep convolution layer, the
numerical values encoded in the connected pixels are
integrated into the feature fields. These fields can be
defined into low-dimensional parts. Deep convolution
reduces the spatial dimension of the feature space by
reducing the layer size. This approach balances
computational cost and accuracy. The layer width
multiplier parameter is linked to efficient model
design. This parameter reduces the activation space
dimension in the deep architecture layer until the
neuron completes the feature space. However, non-
linear point coordinate transformations such as ReLU

are independent. The ReLU layer transformation has
a non-zero unit S generated from the linear
transformation of the dimensional output into the
input space B, and the non-zero unit S has a linear
transformation. Deep neural networks are limited by
the power of the linear classifier, which focuses on
this unit of the feature space [15].

ReLU transformation produces an interpretable line
of knowledge path through neural network channel
activations. Irregular nature of a specific channel
parameter in the ReLU transformation line causes
loss of corresponding neural network channel

activation. Multiple channel parameters can solve
channel activation loss issue by aining the
activation information within_ othe affected

channels. When high featlge
reflected on lower featube

transformation of depthwise
tivation information from
adding complex nonlinear
the line of knowledge path.
he ReLU transformation retains the
space details in the low-dimensional
gtiofPspace. Linear bottleneck layer blocks in
have Depthwise (3x3) convolutions with ReLU
apgtormations are capable of capturing the relevant
low-dimensional feature blocks while preventing any
data loss from non-linear distributed projections.

Input

l

Conv 1x1
RelLU6

|

Depthwise
3x3 RelLUG6

l

Conv 1x1
Linear

Figure 3. Linear Bottleneck Block

Inverted residual block

In figure 4 inverted residual block has (1x1) Conv2d
and (3x3) Depthwise blocks applying inverted
residual block connecting bottleneck expansions.
Bottleneck blocks have usage for reducing parameter
density while maintaining sufficient portion of
model's feature extraction capability. Bottleneck
blocks closely resemble the structure of residual
block architectures. According to Sandler’s research
team a residual block has first widening then
narrowing and widening again layer pipeline and
begins with several bottleneck layers immediately
after the input layer, while inverted residual block has
first narrowing then widening and narrowing again
pipeline connecting (1x1) Conv2d - (3x3) Depthwise
block and (1x1) Conv structures. Bottleneck layers
are connected to following expansion layer. While
the bottleneck layers capture essential feature
information, the expansion layers are responsible for
reviving non-linear feature details without weighting.
In this setup, "shortcut” connections are established
between the bottleneck layers to ensure smooth
information flow.

+—— RelLUG6 1x1 Conv2d Block

+«— RelLU6 3x3 Depthwise Block
o
o

3x3

1x1

Figure 4. Inverted Residual BfQck

EfficientNet archi
EfficientNet scaling enhances model
Ily increasing the depth,
the neural network layers.
verned by the EfficientNet
cient, which adjusts these
Itaneously. At the same time, the
netWork structure is expanded to the

model series such as shallower

neural
EfficientNet
EfficientNet-b0 and more complicated EfficientNet-

b7. The convolutional design analyzes the
transformation of neural network layers through layer
width, channel count, input height and width
parameters in a flexible manner. The depth (d), width
(w), and resolution (r) scaling of the layers are
interconnected with distinctive parameters. For
instance, depth scaling is connected to layer number
of relevant depth, width scaling is connected to
neuron channel unit count and resolution scaling is
connected to input width and height parameters.

While EfficientNet-b0 has 224 resolution scaling and
depth scaling that has 237 number of layers,
EfficientNet-b7 has 600 resolution and depth scaling
that has 813 number of layers.

Depth (d)
Scaling the depth of neural networks is frequently
used in convolutional structures. With increasing
depth, convolutional structures (ConvNet) can
capture more complex and rich feature information. It
can generalize better to unexperienced tasks.
However, deep neural networks have a more difficult
training cycle due to the vanishing gradient problem.
Skip connections and batch normal{@ation add-on
dilute the gradient problem and redu training
accuracy of deep neural networ,

Width (w)
ral network is a
common technique, p smaller models.
Width scaling iggi
count across

improve

asing neuron channels
ion of model compatible with

effective at capturing detailed
and are easier to train. However,
width growth forces model complexity

Convolutional layers can extract richer feature details
through higher input resolution. Input resolution is
connected to width and height of input image. First
going through smaller (224x224) input resolution to
higher (300x300) input resolutions, convolutional
layers bind higher resolution image pixels to create
feature which has better classification accuracy.
Excessive input resolution causes poor accurracy
increasement over time.

Compound scaling

In figure 5 compound scaling is depicted as width
scaling, depth scaling and resolution scaling of
baseline layer dimension parameters. The scaling of
layer dimension parameters in a neural architecture is
interdependent. For higher input resolution,
increasing the network depth scaling enhances feature
gain of neuron channel units and related neuron
channel units capture similar feature patterns in
images with higher pixel densities. This situation
necessitates a joint approach to scaling, as scaling
only one dimension without scaling other layer
dimensions result in inadequate model performance.
Increasing the neuron channel unit count connected to
layer depth and input resolution increasement. For
instance, going through from EfficientNet-b0 to
EfficientNet-b7 architecture, layer depth and input

resolution is increased together with convolution
blocks of neuron channel units.

Balancing the layer depth, width and resolution
dimensions of the neural network structure is critical
for more effective accuracy performance. The
compound scaling method scales the layer depth,
width and resolution dimensions of the neural
network structure consistently with the help of the

compound coefficient. Neural network layer depth,
channels

demmen width scaling ------

«---- layer_i
resolution
T HxW I
(a) baseline (b) width scaling

Figure 5‘: D

3.1.3. Dynamic distribution adaptation netyor}

studies about transfer learning algori
adaptations. In this research
distribution adaptation netw

study, malware
domain and tatg gfds via temporal split.

pre samples from the years

long to specific earlier year band,
main contains malware samples
belong to year band. Transfer learning
algorithms were applied to the relevant source
domain and target domain. Especially CORAL
transfer learning algorithm approximates the feature
covariance of the source domain to the feature
covariance of the target domain. This is achieved by
whitening the source data (reducing the feature
correlation to 0) and activating the covariance of the
target domain. The original feature domain is not
changed. In the related research study, transfer
learning algorithms were presented to develop new
malware detections despite the insufficiency of
labeled malware samples [17]. CORAL loss defines

width and resolution dimension constants can be
determined by “grid search” research. The compound
coefficient is the dynamic value that controls the
resource distribution in the scaling of the neural
network structure. Depth, width and resolution
dimension constants are the values that determine
how the resource distribution will be transferred to the
network depth, width and resolution [16].

)+ f

—_ — — —

prable measure of target domain and source
gapaéin in dynamic distribution adaptation network.
In transfer learning with dynamic distribution
adaptation research study, Dynamic Distribution
Adaptation (DDA) method is presented. Dynamic
Distribution Adaptation method evaluates the
quantitative weight of each feature distribution of
data domains. Dynamic Distribution Adaptation can
participate in the structural risk minimization of
feature transitions in solution of transfer learning
problems. The research study proposed Manifold
Dynamic Distribution Adaptation (MDDA) for
traditional transfer learning and Dynamic
Distribution Adaptation Network (DDAN) learning
algorithms for deep transfer learning on the basis of
Dynamic Distribution Adaptation. Especially in deep
transfer learning, the Dynamic Distribution
Adaptation Network (DDAN) performs end-to-end
learning of the feature g(.) learning function and the
classification function f. DDAN learns feature
representations with the end-to-end training cycle of
deep neural networks. Backbone network applies
domain adaptation with DDA method while learning
useful feature representations [18].

In the Dynamic Distribution Adaptation Network
(DDAN) architecture, data samples from source
domain and target domain are input to deep neural
networks. CNN networks such as AlexNet and
ResNet extract high-level features from the data
samples. The high-level features pass through the

fully-connected layer and are assigned to the softmax
classification. The unique architectural part is the
convergence of the feature distributions of the source
domain and the target domain using the dynamic
distribution alignment. The DDAN architecture
incorporates the mini-batch Stochastic Gradient
Descent (SGD) algorithm into the deep neural
network training cycle. Dynamic distribution
adaptation is computed over batch parts of the domain
[18].

Deep and adversarial transfer learning

Deep transfer learning has improved with more
enhanced feature extraction capability of deep neural
networks and parametric functions such as loss
functions or optimization functions. Especially loss
functions have become evaluation model for
transfering source domain knowledge to feature
separation of target domain. In addition, adaptation of
source domain and target domain has realized through
loss function. For instance, the Deep Domain
Confusion (DDC) method introduced MMD loss into
deep networks, facilitating adaptation between
domains. Similarly, Deep Adaptation Networks
(DAN) integrated a multi-kernel MMD framework
based on first-order formulation while the Deep
CORAL network included CORAL loss based oa
second-order formulation. CORAL loss has usageg
Dynamic Distribution Adaptation Network an
measures adaptation of source domain and

functions such as CORAL, MMD,
learning approach promotes th earning
representative feature characteriggi

distribution forgaulati

learn more g @ ve fe
domains

3.2.

3.2.1L axe?0 dataset

The Du 0 dataset produced by Hacettepe
University wWas created for the detection of malware

with an image-based approach. It was combined with
image descriptors such as GIST and Histogram of
Gradients (HOG). Four different resolutions ranging
from 224 to 4096 pixels were used in the creation of
malware images belonging to the DumpwarelO
dataset. GIST and HOG image descriptors were
evaluated both separately and together within the
scope of information fusion. UMAP, a dimensional
reduction and multi-faceted learning technique, was
used within the scope of malware image
transformation problems. This dataset has a total of
11 classes, including 10 malware families and one

benign software. The Dumpware10 dataset has a total
of 4294 data samples, 3433 training and 861
validation samples. The dataset contains files
belonging to 10 different malware families, including

Adposhel, Allaple.A, Amonetize, AutoRun-PU,
BrowseFox, Dinwod, InstallCore.C, MultiPlug,
VBA, and Vilsel.

3.2.2. Microsoft malware classification challenge
dataset

Microsoft Malware Classification Challenge is a
dataset for malware classification. The dataset
provides 10868 malware byte files as training data.
Each byte file contains raw byje sequences
representing a specific type of malwa his dataset
helps researchers develop
algorithms. The data is.p
research aimed at malwear
static file features.

4. PROPOSED MOD
4.1. Data Pre i

dure 6 parsing of .bytes files, calculation of (a,b)
array size, converting sized data arrays to 8-bit
2D format and saving 8-bit 2D formats as (256x256)
sized .jpg files phases of two-channel grayscale
malware image conversion are depicted. During two-
channel grayscale malware image conversion, byte
files are assigned to 8-bit two-channel grayscale
format by converting to (a,b) matrix modeling over a
16-column array data and saved in fixed-size image
files with .jpg or .png extensions [19]. Data arrays are
sized to 256x256 for fixed-size grayscale malware
image generation.

(T s-bi
ey (T 8t
(T s-bit

.-

Malware BIG 2015
dataset

(a,b) size is calculated for
data arrays of .bytes files

l
— e

(a,b) sized data arrays are
converted to 8-bit 2D format

.bytes files of the
dataset are parsed

8-bit 2D formats are saved as
256x256 sized .JPG files

Figure 6. Two-channel
conversion

Grayscale malware image

In figure 7 parsing of .bytes files, dividing bytes data
into RGB channels, combining RGB channels into
meaningful RGB data and saving RGB data as .png
files phases of three-channel RGB image conversion
are depicted. During three-channel RGB malware
image conversion, the binary data processed from the
byte files are divided into triple RGB channel blocks.
Then, RGB channel blocks are combined to create
new RGB data and the RGB data are saved in .png
image files [19].

|, -

Malware BIG 2015
dataset

CT 8- bit
—) C_l‘ 8 - bit
" 8- bit

Bytes data are divided
into RGB channels

l
BENE — [

RGB data are created by
combining RGB channels

.bytes files of the
dataset are parsed

RGB data are saved as .PNG files

Figure 7. Three-channel RGB malware image conversion

In figure 8 modelling of EfficientNet neural networl®
implementation is partitioned into data processi
and EfficientNet feature extraction phases. An
connected phases are detailed consecutive it
steps and model architecture structures such @s lay
and functions.

In data preprocessing, the malware
into byte files and converted to 8-bit

transferred to EfficientNet
to feature extraction.

softmax function as re extractions to the

malware farg# oun . EfficientNet feature
extraction ssification characteristics
of mal im

5. EXPERIMENTAL RESULTS

10868 malware byte files of the Microsoft Malware
Classification Challenge (BIG 2015) dataset are
introduced to EfficientNet-b3 and EfficientNet-b4
neural network architectures. Stochastic Gradient
Descent (SGD) and Adam optimizations with 0.01
learning rate are used in EfficientNet model trainings.
Pre-trained ImageNet-1K dataset weights are used in
EfficientNet transfer learning and during experiments
Pre-trained ImageNet-1K dataset weights were
specifically trained for EfficientNet architectures and
pre-trained ImageNet-1K dataset weights knowledge
is transferred into EfficientNet malware classification

~——

_

o
§ Parsing .bytes files
g Dividing .bytes files into .bytes parts
g Converting .bytes parts to 8-bit matrix data
% Saving .bytes n?atrix data to malware
a images
224x224x3 1
Conv 3x3 MBConv6 5x5
l 112x112x32 l 14x14x112
MBConv1 3x3 MBConv6 5x5
c l 112x112x16 l 14x14x112
2 MBConv6 3x3 MBConv6 5x5
§ l 56x56x24 l 14x14x112
X MBConvé 3x3 MBConv6 5x5
E l 56x56x24 l Tx7x192
‘3 MBConv6 5x5 MBConv6 5x5
g l 28x28x40 l Tx7x192
2 MBConv6 5x5 MBConv6 5x5
E l 28x28x40 l Tx7x192
;.‘:f MBConv6 3x3 MBConv6 5x5
m l 28x28x80 l Tx7x192
3 MBConv6 3x3 MBConv6 3x3
o l 28x28x80
MBConv6 3x3
| 28x28x80 7x7x320

Fully Connected Layer

|
O O O Convix1 + Iooling +FC O O O

Softmax

function O

Classification

Output size (1)

,%l\
QQQQQQ{%QQ

L > RS ~
S XL PP C
N c,/z & C,\@ '\@L o ¥ P
SN e S
N} Q‘}%\ @
@ E s\\}(’
o

Figure 8. EfficientNet neural network implementation with
data preprocessing

by finetuning. Malware train data are converted to
two-channel grayscale malware images and three-
channel RGB malware images and included in the
EfficientNet model training cycle. Three-channel
RGB malware images and two-channel grayscale
malware images are separated into 80% train set and
20% test set. Train set of malware images are trained
with 20% validation separation. Grayscale malware
images are 256x256 in size. RGB malware images are
assigned to 32, 64, 128, 256, 384, 512, 768, 1024 and
224 sizes according to variable file sizes.

Table 1 results show that EfficientNet-b4 architecture | malwar
trained with grayscale malware images achieves 0.90 |e
accuracy in SGD optimization. EfficientNet-b3 | rgb EfficientN
architecture trained with RGB malware images malwar 0.01 SGD 0.88
achieves 0.91 accuracy in SGD optimization. Adam |e et-b3

optimization shows lower accuracy compared to SGD | rgh .

optimization. Deepening EfficientNet-b3 architecture | malwar | ETICENMN | 01 SGD 0.86

to EfficientNet-b4 architecture increases the accuracy | e et-b4

rate in Adam optimization while decreasing it in SGD rgb .

optimization for training RGB malware images. malwar 'iﬁt;g'e”tN 001 | Adam | 0.80
e -

e
Table 1. EfficientNet-b3 and EfficientNet-b4 models rgb .
Microsoft Malware Classification Challenge validation | majwar EfficientN 0.01

accuracies e et-b4
Malware Model Lienarn Optimiz | Accur
image g ation acy We use Microsoft Malware C
rate (MMCC) grayscale m {
grayscale Efficient 0.01 SGD 0.897 Malware Classificatio
malware Net-b3 642 -
— EfficientNet and B2 research study.
grayscalema [Efficient 0.907 .
0.01 SGD Related grayscale ma are assigned to
Ilware Net-b4 418 . .
ravscalema | Efficient 0.753 equal width an es of 32, 64, 128, 256,
gray 0.01 | Adam |, 384, 512.% ccording to their file sizes [11].
lware Net-b3 306 . S
ravscalema | Efficient 0.840 In this regearch esearch study’s grayscale
gray 0.01 | Adam ' malwaré iMgges hay already passed through B2IMG
Ilware Net-b4 713 . .
Efficient 0017 pre algorithm -paralel to our data
rghb malware Net-b3 0.01 SGD ' gssing- just without (256x256) size fixation
— to 80% train set and 20% test set. Then
Efficient - .
rghb malware Net-ba 0.01 SGD ale malware images are inputted to
Efficient entNet-b0...b7 architectures. The train set and
rgb malware Net-b3 0.01 | Adam et are distributed into Gatak, Kelihos_verl,
— Kelihos_ver3, Lollipop, Obfuscator. ACY, Ramnit,
Efficient . - .
rghb malware Net-ba 0.01 Simda, Tracur, Vundo 9 malware families. Train set

of grayscale malware images was trained in 120
epochs with a 20% validation separation. This train
cycle has SGD optimization with a 0.01 learning rate.
The highest train accuracy was obtained in the
EfficientNet-b7 architecture.

In this study during going though EfficientNet pre-
transformed Microsoft Malware Classification
ssification Challenge Challenge (MMCC) RGB malware images are sized

Table 2 results show that
EfficientNet-b4 architectu
optimization on grayscal Iwag i

with SGD
type have

EfficientNet- i b4 test accuracies to (224x224) random resized crops. Random parts of
Malwa i | Optimizati | Accura | malware image are cropped and resized to (224x224).
irfn ng rate |on cy By these random resized crops EfficientNet model

: can interpret better characteristic textural analysis of

graysc . malware image. RGB malware images are inputted to
le ientN | 101 | sep 089 | EfficientNet-b0, EfficientNet-bl, EfficientNet-b2,
malwar EfficientNet-b3, EfficientNet-b4, EfficientNet-b5,
€ EfficientNet-b6, EfficientNet-b7 architectures. RGB
graysca . malware images are separated into 80% train set and
Inialwar eEttgzlentN 0.01 SGD 0.89 20% test _set. In Fhis r_esear_ch, the train set of RQB
o malware images is trained in 120 epoch cycles with
20% validation separation. This training cycle has
?;aysca EfficientN SGD optimization with a learning rate of 0.01.
malwar | et-b3 0.01 Adam 0.70 Table 3 shows Microsoft Malware Classification
e Challenge grayscale malware images achieve tlrw]e
— most successful validation accuracy in the
?;aysca eEt]igZ'entN 0.01 Adam 0.80 EfficientNet-b7 architecture.

Table 3. Validation accuracy of grayscale two-channel
malware images in the EfficientNet-b7 architecture

Malwa] —
re Model Learni | Optimizati | Accura
i ng rate | on oy
image
graysca
le EfficientN 0.9527
malwar | et-b7 0.01 SGD o
e

Table 4 shows Microsoft Malware Classification
Challenge RGB malware images achieve the most
successful validation accuracy in the EfficientNet-b5
architecture.

Grayscale malware are less noisy than RGB data and
focuses on the textural patterns of malware data. In
this case, deeper EfficientNet-b7 can capture finer
malware image details without complexity. RGB
malware has three color channels and is more
complex than grayscale malware. In this case, the
simpler EfficientNet-b5 can resolve the added
channel complexity into meaningful malware image
details and realize successful performance metrics.

Table 4. Validation accuracy of three-channel RGB
malware images in EfficientNet-b5 architecture

Table 5 shows Dumpwarel0 RGB malware images
achieve the most successful validation accuracy in the
EfficientNet-b6 architecture.
images are focused on the simpler EfficientNet

architecture than

the

Dumpwarel0 RGB

Microsoft

Malware

Classification Challenge (MMCC) RGB malware

images.

Table 5. Validation accuracy of Dumpwarel0 RGB
malware images on EfficientNet-b6 architecture

Malware Learnin | Optimizat | Accur
. Model -
image g rate ion acy
RGB | Efficien 0.9344
malware | tNet-b6 0.01 SGD 98

9 train

lware

search study, the
reaches the highest

iCientNet-b7 SGD optimization of
Classification

Challenge

loss of Microsoft Malware

dification Challenge (Grayscale) EfficientNet-b7
gefn figure 10 train accuracy of Microsoft Malware

Classification Challenge (Grayscale) EfficientNet-b7
is depicted. In figure 11 validation accuracy and in

Malwa Learni | Optimizati Accu®
re Model
. ng rate on
image
RGB -
malwa | EMCENtN |61 | s6p
et-b5
re
For Dumpwarel0 malware im

resolution and (300x300) image si
Dumpwarel0 malware ima

EfficientNet-b6,

research, Dum

est set were distributed to
Amonetize,

figure 12 validation loss of Microsoft Malware
Classification Challenge (Grayscale) EfficientNet-b7
is depicted. The validation loss and accuracies are
more zigzag shaped. In this case, train data
approaches a more consistent curve by being
memorized in the model while validation data is more
inconsistent as a result of overfitting. The model
training has difficulty generalizing to unpredictable
validation data. The overfitting status of the train data
is reflected in the validation data.

AutoRun,

Table 6. Microsoft Malware Classification Challenge and Dumpware10 test accuracy, F1-score, recall and precision results

Model Malware Learning Optimization | Accuracy Fl Recall | Precision
image Rate Score
EfficientNet- | Gray -1 oy SGD 093 |0.8963 |0.9163|0.8815
b7 Scale
MS EfficientNet-
o5 RGB 0.01 SGD 0.91 0.8646 |0.87770.8550
Dumpware10 E;f'c'e””\'“' RGB 0.01 SGD 0.91 0.8786 | 0.8843|0.8811

Training Loss

0.35
03
0.25
0.2
20 40 60 80 100 119 X
Step

Figure 9. Microsoft Malware Classification Challenge
(Grayscale) EfficientNet-b7 train loss

Training Accuracy

0.92

09

Validation Accuracy

0.95
0.94 |
0.93
092 |
0 20 40 60 80 100 119 %
Step
119

Figure 11. Microsoft Malware Classification Challenge
(Grayscale) EfficientNet-b7 validation accuracy

Validation Loss

0.24

0.22

0.2

0.18

0 20 40 60 80 100

i ghallenge

119 %

In figure 13 confusi

Classification C e) EfficientNet-b7

is depictedg Malware Classification
Challend® (G EfficientNet-b7 confusion
matrix is€aminedythe ¥owest accuracy is seen in the
Simda clasShile the highest accuracy is seen in the

. In particular, the fact that the
1 as a lower accuracy is due to
fTiQiency of data for the Simda class.

Gattak 00049 o

Kelihos_ver1 0 0.025 0 0 o o o

Kalihos_ver3 o 0 0 0 0022 o
Lollipop 0.032 0 0.0081 0 0016 0.004 06

Oblfuscator ACY 0016 [0 0 0012 002

Trua labals

0.0065

Ramnit 0026 00065 0 00033

Simda 0 0 0 0 on

Tracur o o 0 00066 00066 00066
Vunda 0 0 0 0.021 o011 0 0
=00
« - ® s > = s 5 g
g 5 5 -4 Q £ B g E
8 o o 3 3 3 [£ =
g g -
£ £ g
2 2 2
8

Predicted labels

Figure 13. Microsoft Malware Classification Challenge
(Grayscale) EfficientNet-b7 confusion matrix

In figure 14 train loss of Microsoft Malware
Classification Challenge (RGB) EfficientNet-b5 and
in figure 15 train accuracy of Microsoft Malware
Classification Challenge (RGB) EfficientNet-b5 is
depicted. In figure 16 validation loss and in figure 17
validation accuracy of Microsoft Malware
Classification Challenge (RGB) EfficientNet-b5 is
depicted. When the figures are examined, it is seen
that the validation loss and accuracies are more
inconsistent than the train loss and accuracies. This

situation transforms the overfitting problem of the
train data into a zigzag curve in the validation data.
RGB malware images are more consistent compared
to grayscale malware images.

Training Loss
0.4
035
03

0.25

Figure 14. Microsoft Malware Classification Challenge
(RGB) EfficientNet-b5 train loss

Training Accuracy

0.92

0.9

0.88

N & 4

0 20 40 60 80 100 119 x
Step
119
7
Figure 15. Microso Iware ication Challenge
(RGB) EfficientNet
QA
Validation Loss
0.35
0.3
0.25
0 20 40 60 80 100 119 X
Step

Figure 16. Microsoft Malware Classification Challenge
(RGB) EfficientNet-b5 validation loss

Validation Accuracy

0.92

0.9

0 20 40

60 80

100 119 x

'\gllenge

crosoft Malware
fficientNet-b5 is

Step
119

Figure 17. Microsoft Malvggre,

his is due to the imbalance in the

0.0049

002 o

Kelihos_vert 0013 ©

Kalihos_ver3 00017 00017

Lallipop 0028 0006

Obluscator ACY 0.024 o

True labels

Ramnit 0026 0.0065

Simda 1] o1

0013

0033

0

Tracur

Vundo] 0.053

Gatak
Ramnit
Simda
Tracur
Vundo

dbfuscator ACY

Predicled labels

Figure 18. Microsoft Malware Classification Challenge
(RGB) EfficientNet-b5 confusion matrix

In figure 19 validation loss of Dumpwarel0
EfficientNet-b6 and in figure 20 validation accuracy
of Dumpwarel0 EfficientNet-b6 is depicted. In figure
21 train loss and in figure 22 train accuracy of
DumpwarelQ EfficientNet-b6 is depicted. When
Dumpwarel0 EfficientNet-b6 validation accuracies
and losses and train accuracies and losses are
examined, it is shown that the train data has reached
overfitting and the validation data has difficulty in
generalization. In the model training, the batch parts
can not learn the malware image characteristics in the

gradient loop. This creates inconsistent curves in the
validation data.

Validation Loss
0.45
0.4

035

03

0 20 40 60 80 100 119 x

Figure 19. Dumpwarel0 EfficientNet-b6 validation loss
Validation Accuracy

0.92
0.9
0.88

0.86

0 20 40 60

Step
119

Figure 20. Dumpwarel0 icientN®g:b6 validation
accuracy 4)

Training Loss

0.45
0.4
035
03

0.25

0 20 40 60 80 100 119 x

Step
119

Figure 21. Dumpwarel0 EfficientNet-b6 train loss

Training Accuracy

0.92

0.9

0.88

0.86

0.84

0 20 40 60 80 100 119 %

a&acy

of YPumpwarel0
Dumpwarel0
iIX, the lowest
class while the highest
ass. Imbalance of data
es causes this issue.

Step
119

Figure 22. Dumpwarel0 Effg:ie

In figure 23 confusi
EfficientNet-b6 s
EfficientNet-b6 con
accuracy belon i
accuracy,

distributk&be

Adposhel

10

Allaple

Amonetize

AutoRun

BrowseFox

Dinwod

True labels

InstaliCore

MultiPlug] 002 o001 001

Other 0.066 0 0 0033

VBA 0 L]

e

0

Vilsel 0013 0 0 0
=00
T 2] g x o o o 5 -
NEEEEEEEERE
§ T p 118§ 8
£ 8 : =
:

redicted label:

w

Figure 23. Dumpwarel0 EfficientNet-b6 confusion matrix

In transfer learning approach for malware
classification research study, a convolutional transfer
learning application (TL-CNN) was utilized for
Android malware image classification. The transfer
learning convolutional neural network architecture
separated benign images and malicious malware
images. In the transfer learning model of the research
work, the pre-trained ResNet-50 classifier component
was replaced with the original classification
component. The classification component removed
the ImageNet 1000 image classes and integrated the
fully-connected layer contains 25 malware classes. In
the transfer learning ResNet-50 model, the
MaxPooling layer with padding, (2x2) kernel filter
size and 2 stride is introduced before the fully-
connected layer of the classification component. The

fully-connected layer and the Softmax function
performed the final malware classification [20].

In this research, based on the transfer learning
approach for malware images classification, the last
Global Average Pooling layer of the feature
extraction block of the EfficientNet architecture is
replaced with the MaxPooling layer and connected to
the classifier. EfficientNet architecture can be
adapted to the MaxPooling layer with (7x7) kernel
size and 1 step. The classifier classifier of the
EfficientNet architecture requires (1x1) plane-sized
input and the EfficientNet architecture does not meet
the Max Pooling setting with (2x2) kernel filter size
and 2 steps.

MaxPooling EfficientNet-b7 (Microsoft Malware
Classification Challenge - grayscale malware image)
and EfficientNet-b5 (Microsoft Malware
Classification Challenge - RGB malware image)
EfficientNet-b6 (DumpwarelO dataset) models were
trained with 120 epoch cycles in SGD optimization
with 0.01 learning rate.

Table 7 shows EfficientNet-b5 (RGB) has the highest
evaluation accuracy among MaxPooling EfficientNet

Table 8. MaxPooling EfficientNet model experiment testiccur C

model trainings. When the MaxPooling change
occurred, RGB malware images produced higher
validation accuracy than grayscale malware images.

Table 7. MaxPooling EfficientNet model validation
accuracies
Malwar Learni | Optimizat | Accura
. Model .

e image ng rate ion cy
Graysc
ale EfficientN 0.9182
malwar | et-b7 0.01 SGD 50
e
RGB .

EfficientN 0.9263
(renalwar et-b5 0.01 SG 94
RGB ..

EfficientN 9039
malwar O%l‘
e et-b6 \ 30
Table 8 shows Efficientet- rayscale) has the

ct that the EfficientNet-
higher than the recall value
ss matching is high in the

highest teséac
b7 precigion

Model Malware Image | Learning rate | curacy | F1-score [Recall | Precision
EfficientNet-b7 Grayscale 0.01 0% 0.8529]0.84340.8893
EfficientNet-b5 RGB 0.01 89% 0.8288 |0.8407 | 0.8207
EfficientNet-b6 RGB 0.0} 88% 0.8299 |0.8275(0.8469

In figure 24 confusion ma

distributions. In
Microsoft Malwar

confusion matrix, racy belongs to the

Kelihos_ver3 he lowest accuracy
belongs to . This is due to the data
imbala asses. Simda class has
insuffgien f data sample

011 00049 00048 0 0025 00049
0013 0 0 0 0025 0
00034 00034 00017 O 0 00017 0
Lolipop 0038 0.004

0 0052 0002 06

0016 0.0041 0 0024 00081

True labels
g
=
5]
B

Ramnit 0.049 002 00098 0036 0013 04

’ n ° ’

-02
[] DECEN 00066
’ -

-00

= s = e

Tracur 0053 0026 0 0079 0026 002

Vunda 0 0 0032 0011 0053 0

g
=

Gatak

E £
3 @]

Lollipop
uscator ACY

b

Predicled labels

Figure 24. MaxPooling EfficientNet-b5 Microsoft
Malware Classification Challenge (RGB) confusion matrix

In figure 25 MaxPooling EfficientNet-b7 Microsoft
Malware Classification Challenge (Grayscale)
confusion matrix shows that the accuracy of the
Simda class is the lowest, while the accuracy of the
Kelihos_ver3 class is the highest. Negative matching

shifts are observed in the Simda class, and this breaks
the accuracy.

00049 0
0 0013 0 0 0

00068 00068

Lollipop 0.022 0004 0002 0 0018 0004 06

ObfuscatorACY 002 0.0041 0 1} 0024 00081

True labels

0 00065 D016

Vundo 0.021 0 0011 0021 001 0032 0 012

i
Simda
Trac

Gatak

Kelihos_ver1
Kelihos_ve
Wiuscator AGY

Figure 25. MaxPooling EfficientNet-b7 Microsoft
Malware Classification Challenge (Grayscale) confusion
matrix

In figure 26 MaxPooling EfficientNet-b6
Dumpwarel0 (RGB) confusion matrix shows that the
highest accuracy belongs to the VBA class, while the
lowest accuracy belongs to the AutoRun class. The
unbalanced distribution of Dumpwarel0 malwg@
images among the classes affects accuracy.

Adposhel a] 0 0 0 a a a0t o 0

Allaple 0011 0 0034 016 [1] [} 0 0.011 4]]
08

Amonetize 0011 0.023 g] 0 0.023 0 0.034 o] 0

042 013 0026 013 0026 0026

y

AutoRun a 018 0

0o 021 o0 uo?a o 1}

inwod 0069 0 0069 4] 0 072 [} 0034 01 4]]

0 0 0 OU‘HU.UH 001] 0 04
002 0 0031 O nm] 0 [\

0 0025] 0041 [} o

0026 0 0 0 08

installCore 0 0.011

MuliPlug 0.01 0041

Other 0058 0.0083
-0z

VBA

o

0 0] 0 o o 0

a

o

Vilsel 0 0] a a

o0

Alaple

[
E

°
Adposhel
@

Amanetize
MultiPlug
Oth

pBrowseFox
D

Predicted labels

Figure 26.\WaxPg@ling EfficientNet-b6 Dumpwarel0 (RGB)
confusion m

MaxPooling experiment results shows that
EfficientNet-b7 (Grayscale) extension of the Transfer
Learning experiment has the highest success
performance. The MaxPooling experiment did not
provide a noticeable improvement in test accuracies
and the GlobalAveragePooling layer of the
EfficientNet architecture produced more successful
results than the MaxPooling layer.

CORAL transfer learning algorithm uses the source
domain and target domain distinctions of the dataset
under domain adaptation. Dumpwarel0, Microsoft

Malware Classification Challenge RGB and
Microsoft Malware Classification Challenge
grayscale datasets are divided into source domain
with 60% and target domain with 40%. Then the
source domain and target domains are divided into
“test domain” and “validation domain” with a rate of
20%. The source domain, target domain and
validation domain of the datasets participate in the
training of the Dynamic Distribution Adaptation
Network with CORAL loss in domain partition logic
of CORAL transfer learning algorithm.

The backbone deep neural network (ResNet) in the
Dynamic Distribution Adaptation Network extension
is replaced by the EfficientNet arch

ientNel-b6. The training

cycle of EfficientNe has SGD

optimizati$1
learning gate:

ic Distribution Adaptation
architecture, improving

ahsfer loss and classification loss to total loss. In
e Pynamic Distribution Adaptation training cycle,
the source domain and target domain get closer to
each other and the transfer loss decreases.
Table 9 shows that Microsoft Malware Classification
Challenge grayscale EfficientNet-b6 backbone model
has the highest validation accuracy rate.

Table 9. Dynamic distribution adaptation network with
CORAL loss experiment validation accuracies

Malware Malware | Backbone | Accurac
dataset image model y

Microsoft | Grayscal | EfficientNe [0.9706

Malware e t-b6

Classificatio

n Challenge

Microsoft RGB EfficientNe | 0.9442

Malware t-b5

Classificatio

n Challenge

Dumpwarel RGB EfficientNe | 0.9663
0 t-b6

Table 10 shows that the most successful results in test
domain accuracy, precision, recall and F1-score
metrics belong to Dumpware10 RGB EfficientNet-b6
model.

Table 10. Dynamic distribution adaptation network with CORAL loss experiment test tesults

Malware
image

Malware dataset

Backbone
model

F1-
score

Accuracy | Precision | Recall

Microsoft Malware Grayscale
Classification Challenge b6
dataset

EfficientNet-

0.95854 | 0.9009 0.8554 | 0.8647

Microsoft Malware RGB
Classification Challenge b5
dataset

EfficientNet-

0.95257 | 0.9484 0.8478 | 0.8596

Dumpwarel0 RGB

b6

EfficientNet-

0.96064 | 0.9460 0.9886 | 0.9491

In figure 27 validation accuracy of DDAN with
CORAL loss experiment Microsoft Malware
Classification Challenge Grayscale EfficientNet-b6 is
depicted and in figure 28 DDAN with CORAL loss
experiment Microsoft Malware Classification
Challenge (Grayscale) EfficientNet-b6 classification
loss is depicted. Figure 29 and figure 30
consecutively show transfer loss and total loss o
DDAN with CORAL loss experiment Microsd&
Malware Classification Challenge (Grayscal

EfficientNet-b6. When connected figures 4 arl

examined, we see that the validation accuragy’Ti
contains less zigzag changes. This

demonstrates consistency of training. Also t

accuracy rate. Therefore
influenced by sudden drog

acc

Step
61

Figure 27. DDAN with CORAL loss experiment Microsoft
Malware Classification Challenge (Grayscale)
EfficientNet-b6 validation accuracy

RN

cls_loss

0.6
0.5
0.4

03

Step
61

Figure 28. DDAN with CORAL loss experiment Microsoft

Malware Classification Challenge (Grayscale)
EfficientNet-b6 classification loss
transfer_loss
A
5e-5
0 M
10 20 30 40 50 61l x

Step
61

Figure 29. DDAN with CORAL loss experiment Microsoft
Malware Classification Challenge (Grayscale)
EfficientNet-b6 transfer loss

total_loss

0.6

0.5

0.4

03

10 20 30 40 50 61 X

Step

61
Figure 30. DDAN with CORAL loss experiment Microsoft
Malware Classification Challenge (Grayscale)
EfficientNet-b6 total loss

In figure 31 validation accuracy of DDAN with
CORAL loss experiment Microsoft Malware
Classification Challenge (RGB) EfficientNet-b5 is
depicted and in figure 32 DDAN with CORAL loss
experiment Microsoft Malware Classification
Challenge (RGB) EfficientNet-b5 classification loss
is depicted. Figure 33 and figure 34 consecutively
show transfer loss and total loss of DDAN wit
CORAL loss experiment Microsoft Malwags
Classification Challenge (RGB) EfficientNet-b
When connected figures are examined, we seg, th
fluctiations in validation accuracy figure is le
the previous experiments’ figures. Also
that there is a abrupt drop in validation
which shows a model

0.8

0.6

0.4

0.2

0 10 20 30 40 50 €63 X

Step

63
Figure 31. DDAN with CORAL loss experiment Microsoft
Malware Classification Challenge (RGB) EfficientNet-b5
validation accuracy

cls_loss

0 10 20 30 40 50 €63 %

Step
63
Figure 32. DDAN with CORAL losg experi Nircrosoft

Malware Classification Chaaen icigMNet-b5
classification loss o
transfer_loss
.0
8e-5

6e-5

0 10 20 30 40 50 €63 X

Step
63

Figure 33. DDAN with CORAL loss experiment Microsoft
Malware Classification Challenge RGB EfficientNet-b5
transfer loss

total_loss

0 10 20 30 40 50 €63 %

Step
63

Figure 34. DDAN with CORAL loss experiment Microsoft
Malware Classification Challenge RGB EfficientNet-b5
total loss

In figure 35 validation accuracy of DDAN with
CORAL loss experiment Dumpwarel0 EfficientNet-
b6 is depicted and in figure 36 DDAN with CORAL

loss experiment Dumpwarel0 EfficientNet-b6 transfer_loss
classification loss is depicted. Figure 37 and figure 38

consecutively show transfer loss and total loss of ~ sl
DDAN with CORAL loss experiment Dumpware10 -
EfficientNet-b6. When connected figures are 2 -8

examined, we see that validation accuracy figure
graph has less fluctiations beside the previous
experiments’ figure graphs excluding DDAN with

CORAL loss experiment. However sudden accuracy o
drop did not happened in DDAN with CORAL loss)
experiment Dumpwarel0 EfficientNet-b6.)
0 10 20 30 40 50 60 65 X
acc Step
65
08 Figure 37. DDAN with CORAL Ic\\periment
Dumpwarel0 EfficientNet-b6 tram
0.9 total_loss
0.85
1
0.8
08
0.6
0 10 20 30 40 50 60 65 X
Step 0.4
65
.. 0 10 20 30 40 50 60 65 %
Figure 35. DDAN with CORAL loss experime Step
Dumpware10 EfficientNet-b6 validation accuracy _ -
2 igyfe 38. DDAN with CORAL loss experiment
cecloss ' Dumpware10 EfficientNet-b6 total loss
: In figure 39 DDAN with CORAL loss Microsoft
Malware Classification Challenge (Grayscale)
EfficientNet-b6 confusion matrix, we see that the
o highest accuracy is in Kelihos_ver3 and the lowest
accuracy is in Simda.
0.6
04 Gatak 0 o o 0.0099 0
0 10 20 30 40 50 60 65 X Kelihos_ver3 0) 0 00017 0

0.004 0014 0002 00061 0

00041 00082 0012 0012 0 00082 0012

o
o
True labels
g
g
>
3
2

Ramnit 0.0065 0 00033 00033 0 0.0098 0 04
Figure 36.” DDAN with CORAL loss experiment s o D . i .
Dumpware10 EfficientNet-b6 classification loss I,

Tracur 0.0067 0 0 0.02 0 002 o 0013

Wundo 0 0 oo 0.021 0011 0011 0 0.063

Lollipop

Kelihos_ver!
Obfuscator ACY
Ra

Predicted labels

Figure 39. DDAN with CORAL loss experiment Microsoft
Malware Classification Challenge (Grayscale)
EfficientNet-b6 confusion matrix

In figure 40 DDAN with CORAL loss Microsoft
Malware Classification Challenge (RGB)
EfficientNet-b5 confusion matrix, we see that
Kelihos_ver3 has the highest accuracy while Simda
has the lowest accuracy.

0016 0 0012 0

Y 0016 0 ooo41 0 0012 0018

Ramnit 00087 00087 00032 0 00085 O o4

Simda] 0 038 0 0 012 012 | 038 0

Tracur 0.027

Vundo 0021 0

Kalihos_ver
Kelih

Predicted labels

Figure 40. DDAN with CORAL loss experiment Microsoft
Malware Classification Challenge (RGB) EfficientNet-b5
confusion matrix

InstaliCore
WhltiPlug

Other

Amongtize

g 2
Predicled labels

Figure 41. DDAN wi
Dumpwarel0 Efficient

oy experiment

-b6 co iongMatrix

In figure 41 DDAN with CORAL loss experiment
Dumpwarel0 EfficientNet-b6 confusion matrix, we
see that Allaple, BrowserFox and VBA have the
highest accuracies while AutoRun has lowest
accuracy.

In table 11 summarizes the highest performance
metrics for the Transfer Learning and MaxPooling
experiments conducted in the research. The
experiments were focused on malware classification
using different EfficientNet models (EfficientNet-b5,
b6, and b7) applied to both grayscale and RGB
malware images. The datasets used for evaluation
include the Microsoft Malware Classification
Challenge (MMCC) and Dumpwar The table
presents key performance metrics as test
accuracy, F1 Score, recall, a isi
validation accuracy. Bffici
achieved the highest validati

EfficientNat—b
performaeg

precision (94.60%) with a
y of 96.63%. MaxPooling

gved the test and validation accuracy metrics
@65 both RGB and grayscale images, particularly
excelling in handling the Dumpwarel10 dataset.

Table 11. Most succes §0f the Transfer Learning and MaxPooling experiments
Eé:?rffer Mo Malware image ACIS:;cy Sggre Recall | Precision \féfuafa{;n
ficientNet-b7 Grayscale 0.93 0.89630.9163| 0.8815 | 0.952792
) EfficientNet-b5 RGB 0.91 0.8646 |0.8777 | 0.8550 | 0.944796
Dumpwar EfficientNet-b6 RGB 0.91 0.8786|0.8843 | 0.8811 | 0.934498
MaxPooling
MS EfficientNet-b7 Grayscale 0.90 0.8529 (0.8434 | 0.8893 | 0.918250
EfficientNet-b5 RGB 0.89 0.8288]0.8407 | 0.8207 | 0.926394
Dumpwarel0 | EfficientNet-b6 RGB 0.88 0.8299]0.8275| 0.8469 | 0.903930
DDAN
MS EfficientNet-b5 RGB 0.95 0.8596 | 0.8478 | 0.9484 0.9442
EfficientNet-b6 | Grayscale 0.95 0.8647 | 0.8554 | 0.9009 0.9706
Dumpwarel0 | EfficientNet-b6 RGB 0.96 0.9491 | 0.9556 | 0.9460 0.9663

In Table 12 compares the results obtained from
various experiments, including Transfer Learning,
MaxPooling, and the Dynamic Distribution
Adaptation Network (DDAN), for malware
classification. EfficientNet-b7 (grayscale) achieved
the highest validation accuracy (95.27%) for the
Microsoft Malware Classification Challenge. The
RGB-based EfficientNet-b5 performed slightly lower
with a validation accuracy of 94.48%. MaxPooling
technique did not yield significantly better results

compared to Transfer Learning. For grayscale
images, EfficientNet-b7 scored 91.82% validation
accuracy, and for RGB images, EfficientNet-b5
achieved 92.63%. DDAN approach produced the
highest results across the board. EfficientNet-b6
(grayscale) reached a validation accuracy of 97.06%,
while for RGB images, EfficientNet-b5 and
EfficientNet-b6 achieved validation accuracies of
94.42% and 96.63%, respectively.

Table 12. Comparison of academic studies with DDAN experiment results

DDAN EfficientNet-b6 (Grayscale) accura@y rate

Studies Dataset Accuracy

[11] MMCC | 99.63% (train) 97% (validation) 95% (tes) \

[2] MMCC 99.06% (train) 97% (validation) 950

[1] MMCC 99.44% 97% (validation)

[4] MMCC 99.58% 97% (validationy (test)\
DDAN EfficientNet-b6 (RGB) accuray rate

[19] [Dumpware10 99.60% 96Wtest)

[21] | Dumpwarel0 97% 96%, (val tio\)\gg% (test)

6. CONCLUSIONS

In this study, a comprehensive research was

conducted on the classification and visualization’f’

malware using a model based on the Efficient
deep learning architecture. The model created wit
EfficientNet's inverse residual block confi

achieved high accuracy rates, especiallyfl i
classification of malware images.
conducted on the Microsoft Malwa

Challenge dataset,
accuracy were ob

EfficientNet's deep | Itecture showed high
performanc n studies on malware
images. e methods used in the
preprogéssing data” and image transformations
mad j tributions to the success of the
model. ced scaling of EfficientNet's layer
depth, widtipehd resolution dimensions increased the

accuracy of the model. This study reveals that deep
learning techniques can be used effectively in
malware detection in the field of cyber security. The
flexibility of the EfficientNet architecture and the use
of transfer learning techniques have increased the
accuracy and generalization ability of the model. In
future studies, the performance of the model can be
further improved with different datasets and more
complex malware detection methods. In conclusion,
this study shows that the EfficientNet architecture can
be successfully applied in the field of cybersecurity
and can provide solutions for malware detection.

NOF ETHICAL STANDARDS

is article declare that the materials
Sed in this study do not require ethical
permission and/or legal-special

AUTHORS’ CONTRIBUTIONS

Adem TEKEREK Wrote the manuscript and
performed the model experiments and experiments’
analysis,Data preprocessing process and guided
through study research background and model
experiments.

Ceren Umay OZTEN Wrote the manuscript and
performed the model experiments and experiments’
analysis,Data preprocessing process and guided
through study research background and model
experiments.

CONFLICT OF INTEREST

There is no conflict of interest in this study.

REFERENCES

[1] Deng H., Guo C., Shen G., Cui Y., and Ping Y.,
"MCTVD: A malware classification method based on
three-channel visualization and deep learning",
Computers & Security, 126, (2023).

[2] Ahmed M., Afreen N., Ahmed M., Sameer M. and
Ahamed J., "An inception V3 approach for malware
classification using machine learning and transfer
learning”, International Journal of Intelligent
Networks, 4: 11-18, (2023).

[3] Kumar S. and Panda K., "SDIF-CNN: Stacking deep
image features using fine-tuned convolution neural
network models for real-world malware detection and
classification”, Applied Soft Computing, 146,
(2023).

[4] Bu S.-J. and Cho S.-B., "Malware classification with
disentangled representation learning of evolutionary
triplet network", Neurocomputing, 552, (2023).

[5] Chaganti R., Ravi V. and Pham T. D., "A multi-view
feature fusion approach for effective malware
classification using Deep learning”, Journal of
Information Security and Applications, 72, (2023).

[6] Baek S., Jeon J., Jeong B. and Jeong Y.-S., "Two-
stage hybrid malware detection using Deep learning",
Human-centric Computing and Information
Sciences, 11, (2021).

[71 Kumar M., "Scalable Malware Detection System
Using Distributed Deep Learning", Cybernetics and
Systems, 54: 619-647, (2022).

[8] Xing X.,Jin X., Elahi H., Jiang H. and Wang G., "A
malware detection approach using autoencoder in
deep learning”, IEEE Access, 10: 25696-25706,
(2022).

[9] Alomari E. S., Nuiaa R. R., Alyasseri Z. A. A,
Mohammed H. J., Sani N. S., Esa M. I. and Musawi
B. A, "A. Malware detection using deep learning and

correlation-based feature selection”, Symmetry,
15:123, (2023).
[10] Vinayakumar R., Alazab M., Soman K. P,

Poornachandran P. and Venkatraman S., "Robust
intelligent malware detection using deep learning",
IEEE Access, 7: 46717-46738, (2019).

[11] Pratama H. Y. and Sidabutar J., "Malware
classification and visualization using EfficientNet
and B2IMG algorithm”, 2022 International
Conference on Advanced Computer Science
Information Systems (ICACSIS), Depok, Indonesi
75-80, (2022).

[12] Oyucu S., Polat O., Tiirkoglu M., Polat H.,
and Agdas M. T., "Ensemble Learning Fgmew:
for DDoS Detection in SDN-Based
Systems", Sensors, 24: 155, (2024).

[13] Polat O., Tiirkoglu M., Polat H.,

[14] Iman M., Arabnia H. R. and Rasheed K., "A review
of deep transfer learning and recent advancements",
Technologies, 11: 40, (2023).

[15] Sandler M., Howard A., Zhu M., Zhmoginov A., and
Chen L.-C., "Mobilenetv2: Inverted residuals and
linear bottlenecks", 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, Utah, 4510-4520, (2018).

[16] Tan M. and Le Q., "EfficientNet: Rethinking model
scaling for convolutional neural
networks", International Conference on Machine
Learning, Long Beach Convention Center,
California, 6105-6114, (2019).

[17] Escudero Garcia D., DeCastro-Garcia N. and Mufioz
Castafieda A. L., "An effectivenggs analysis of
transfer learning for the concept problem in

malware detection”, Expert with
Applications, 212, (2023).

[18] Wang J., Chen Y., Fefiy M{. ang M. and
Yang Q. "Trans dynamic
distribution adaptag sactions on

[19] Tekerek A. and Y
classificati
j twork”, Computers &
F¥U., Imam B. Y., Gital A. Y.,
M. and Abdulrahman M. L.,
ing approach for malware images
ipn on Android devices using deep
nal neural network", Procedia Computer
, 212: 429-440, (2022).
radviranata F. P. S. and Hadiprakoso R. B.,
Comparison of Transfer Learning Performance in
Image-Based Malware File Classification on the
Dumpwarel0 Dataset”, 2023 IEEE International
Conference on Cryptography, Informatics, and
Cybersecurity (ICoCICs), Bogor, Indonesia, 252-
257, (2023).

