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Abstract: The efficient and sustainable operation of the agricultural sector has become increasingly important in light of the 

transformations brought about by the third and fourth industrial revolutions. Population growth, increasing food demand, rising input 

costs, and environmental pressures necessitate innovative approaches not only to ensure food security but also to mitigate the effects 

of climate change. The European Union (EU) emphasizes the role of digital technologies in supporting agricultural productivity and 

resilience by promoting a bio-based economy. Strategies such as Farm to Fork (F2F) initiative aim to reduce pesticide and nutrient 

inputs, thus preserving biodiversity and supporting ecosystem health. Artificial intelligence (AI) and predictive analytics, along with 

connected sensors, offer opportunities to optimize water and nutrient usage and increase crop yields. By utilizing AI, combining 

remote sensing technologies, and monitoring changes in land use, it is possible to reduce environmental risks associated with 

agricultural practices. Although there are challenges such as high investment costs and data control for the integration of digital 

technologies, ongoing research and development efforts promise to overcome these obstacles. In conclusion, the integration of digital 

technologies into agriculture presents unique opportunities to address urgent issues and achieve sustainability goals. This review 

discusses the applicability of fundamental technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), Precision 

Agriculture (PA), and Machine Learning (ML) in making agriculture more efficient and sustainable, by enabling the perception, 

monitoring, collection, analysis, and extraction of meaningful insights from agricultural data. 
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1. Introduction 
The efficient and sustainable operation of the agricultural 

sector, and thus ensuring food security, has become 

increasingly crucial following the third and fourth 

industrial revolution periods that agriculture has gone 

through. With population growth, demand for food, input 

costs, climate and environmental pressures are 

increasing, while water supply is decreasing, biological 

diversity is declining, nutrition and food security issues 

are emerging, and there is a need for the restoration of 

degraded arable land. Agriculture and food production 

require excessive water and the indiscriminate use of 

plant nutrients, pesticides, and similar inputs increases 

water pollution. The increase in nitrate, nitrogen, and 

phosphorus pollution in groundwater, as well as 

problems such as soil health and productivity 

degradation, make it imperative to use technologies that 

reduce input use (Çakmakçı, 2019). 

The European Union (EU) proposes a bio-based 

economy, emphasizing the importance of digital 

technologies for more efficient use of agricultural inputs 

and specific strategies such as the development of 

biological fertilizers, bioenergy, and biochemicals with 

the Farm to Fork (F2F) strategy to enhance the food 

system's resilience to climate change (EC, 2020).  

Adaptation to climate change in future agricultural 

strategies, increasing resource use efficiency with 

precision technologies, promoting digital technologies, 

widespread adoption of precision agriculture (PA), and 

the development/application of innovative technologies 

for soil management, fertilization, and plant protection 

are highlighted (MacPherson et al., 2022). The EU 

foresees reducing pesticide use by 50% by 2030 and 

reducing nutrient inputs from fertilizers by 20% through 

low-input and precision farming, aiming to preserve 

biodiversity and ecosystems (EC, 2020). 

In agriculture, artificial intelligence (AI) and predictive 

analytics provided by AI and connected sensors can 

increase the efficiency of water, plant nutrients, and 

other inputs along with crop yield. Developments in 

remote sensing technologies for data collection, analysis, 

storage, management, transmission, and sharing, as well 

as communication and processing technology areas, have 

increased the ability to transfer large amounts of data 

and automate analytic processes (Pivoto et al., 2018; Das 

et al., 2019; Boursianis et al., 2022; Javaid et al., 2022; 

MacPherson et al., 2022). Integration of remote sensing 

systems into agriculture has become indispensable for 
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highly efficient and sustainable agriculture, requiring 

advanced algorithms, sensors, AI, and big data (Martos et 

al., 2021). 

Today, various combinations of technologies such as 

remote sensing, the internet of things (IoT), unmanned 

aerial vehicles (UAVs), cloud computing, smart sensors, 

blockchain, robotics, decision support systems (DSS), 

wide-area networks (WANs), wireless sensor networks 

(WSNs), deep neural networks (DNNs), artificial 

intelligence, low-power wide-area networks (LPWANs), 

long-range wide-area networks (LoRaWANs), big data 

analytics, machine learning (ML), and deep learning (DL) 

algorithms are successfully applied in data collection, 

analysis, and evaluation, production optimization, trade, 

and smart agriculture applications (Dayıoğlu and Türker, 

2021). Technological innovations that reduce input costs 

and losses such as water and fertilizer, increase crop 

yield, quality, and resource use efficiency are predicted to 

solve many economic, social, and environmental 

problems. 

AI encompasses machine learning, a data analysis 

method, and deep learning, a subset of machine learning 

consisting of artificial neural networks that mimic human 

brain functions. AI is developing technology that works 

like the human brain, designing and implementing many 

functions from thinking and learning to problem-solving 

(Kodali and Sahu, 2016; Sukhadia et al., 2020).  Machine 

learning, one of the fundamental parts of AI, learns from 

past data to predict the future, while deep learning, 

through deep neural networks, learns from data via 

DNNs (Gu et al., 2018). Additionally, neural networks, an 

important component of AI, constitute the essence of DL 

algorithms (Patrício and Rieder, 2018; Kale and Patil, 

2019). AI, ML, computer vision, deep learning, image 

processing, and neural networks cover many areas; they 

help solve many agricultural problems such as soil 

health, crop yield, and herbicide resistance, and increase 

productivity (Ferreira et al., 2020). To achieve 

sustainability principles, remote sensing technologies 

combined with AI, monitoring land use changes with 

UAVs, and reducing toxicity and nutrient imbalances with 

variable-rate technologies are necessary (Lieder and 

Schröter-Schlaack, 2021). 

AI enables computers to interact, reason, and learn to 

perform tasks that require human-like intelligence such 

as visual perception, speech recognition, and decision 

making. While DL has made significant advancements in 

various computer vision problems such as object 

detection, motion tracking, action recognition, pose 

estimation, and semantic segmentation, IoT devices and 

sensors enable data collection and exchange, generating 

big data for AI to make inferences (Voulodimos et al., 

2018). Smart systems utilize a combination of cloud 

computing, machine-to-machine communication, big data 

analytics, and IoT. Despite lagging behind other 

industries and low levels of digitalization, AI research in 

agriculture, plant and soil monitoring systems, computer 

vision algorithms, autonomous robots, and intelligent 

decision support systems are gaining increasing 

importance and momentum. 

The efficient and sustainable functioning of the 

agricultural sector, and consequently ensuring food 

security, has become increasingly crucial following the 

agricultural transitions of the third and fourth industrial 

revolutions. With population growth, demands for food, 

input costs, climate and environmental pressures are 

increasing, while water supply is decreasing, biological 

diversity is diminishing, and issues of nutrition, food 

security, and the need for restoration of degraded arable 

lands are emerging. Agriculture and food production 

require substantial water, and the indiscriminate use of 

plant nutrients, pesticides, and similar inputs 

exacerbates water pollution. The rise in nitrate, nitrogen, 

and phosphorus pollution in groundwater, leading to soil 

health and fertility degradation, necessitates the 

obligatory implementation of technologies that reduce 

input usage. 

The European Union (EU) proposes a bio-based 

economy, emphasizing the importance of digital 

technologies for more efficient agricultural input use and 

specific strategies such as the Farm to Fork (F2F) 

strategy to enhance the food system's resilience to 

climate change, and the development of biological 

fertilizers, bioenergy, and biochemicals. Future 

agricultural strategies emphasize adaptation to climate 

change, increasing resource use efficiency with precision 

technologies, promoting digital technologies, expanding 

precision agriculture (PA), widespread adoption of 

artificial intelligence (AI) applications, and 

developing/applying innovative technologies for soil 

tillage, fertilization, and plant protection. Recognizing 

that biodiversity and ecosystems are adversely affected 

by pesticide use and excessive nutrient accumulation 

from fertilizers, the EU anticipates reducing pesticide use 

by 50% by 2030 and reducing low-input farming and 

precision farming by 20% under the EU Nitrate Directive 

to conserve them. 

In agriculture, artificial intelligence (AI) and AI-enabled 

predictive analytics and connected sensors can increase 

the efficiency of water, plant nutrients, and other inputs 

along with crop yields. Advances in remote sensing 

technologies, data collection, analysis, storage, 

management, transmission, sharing, communication, and 

processing technology areas have increased the ability to 

automate the transfer of large amounts of data and 

analytic processes. Integrating remote sensing systems 

into agriculture has become indispensable for highly 

productive and sustainable farming, requiring advanced 

algorithms, sensors, AI, and big data usage. 

Today, data collection, analysis, and evaluation, 

production optimization, trade, and smart agriculture 

applications successfully employ various combinations of 

technologies such as remote sensing, the Internet of 

Things (IoT), unmanned aerial vehicles (UAVs), cloud 

computing, smart sensors, blockchain, robotics, decision 

support systems (DSS), wide-area networks (WANs), 
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wireless sensor networks (WSNs), deep neural networks 

(DNNs), artificial intelligence (AI), low-power wide-area 

networks (LPWANs), long-range wide-area networks 

(LoRaWANs), big data analytics (BDA), machine learning 

(ML), and deep learning (DL) algorithms. Technological 

innovations that reduce input costs and losses such as 

water and fertilizer, increase crop yield, quality, and 

resource efficiency are predicted to solve many 

economic, social, and environmental problems. 

AI encompasses machine learning, a data analysis 

method, and deep learning, a subset of machine learning 

comprising artificial neural networks that mimic human 

brain functions. AI develops technology that functions 

like the human brain, designing and implementing many 

functions from thinking and learning to problem-solving. 

Machine learning, one of the basic components of AI, 

learns from past data to predict the future, and the other 

is deep learning, which learns data through deep neural 

networks. Additionally, neural networks, an important 

part of AI, constitute the basis of DL algorithms. AI covers 

many fields such as soil health, crop yield, and herbicide 

resistance, helping solve many agricultural problems and 

increase productivity to achieve sustainability principles. 

To achieve sustainability goals, remote sensing 

technologies such as satellite imagery integrated with AI, 

UAVs, monitoring land-use changes, and reducing toxicity 

from fertilizer-derived nitrous oxide, pesticide residues, 

and nutrient imbalances with variable-rate technologies 

are necessary. 

AI enables interaction, reasoning, and learning for 

computers to perform tasks that require intelligence 

similar to humans, assisting in execution and learning 

with cloud computing, machine-to-machine 

communication, big data analytics, and IoT combinations. 

Despite lagging behind other industries in digitalization, 

research on AI in agriculture, plant and soil monitoring 

systems, computer vision algorithms, autonomous 

robots, and smart decision support systems are 

increasingly gaining importance and momentum. The 

introduction should briefly place the study in a broad 

context and highlight why it is important. It should define 

the purpose of the work and its significance. The current 

state of the research field should be carefully reviewed 

and key publications cited. Please highlight controversial 

and diverging hypotheses when necessary. Finally, 

briefly mention the main aim of the work and highlight 

the principal conclusions. As far as possible, please keep 

the introduction comprehensible to scientists outside 

your particular field of research. 

 

2. Materials and Methods 
2.1. Study Area and Data Collection 

This study was conducted to evaluate the efficiency and 

sustainability of various digital technologies in the 

agricultural sector. Data were collected from a range of 

primary and secondary sources, including recent 

literature, field surveys, and expert interviews. The 

primary focus was on technologies such as Artificial 

Intelligence (AI), machine learning (ML), deep learning 

(DL), remote sensing (RS), and precision agriculture 

(PA). These technologies were assessed for their impact 

on resource use efficiency, crop yield, and environmental 

sustainability. 

2.2. Technological Integration and Analysis 

Remote sensing data were gathered using satellites, 

unmanned aerial vehicles (UAVs), and ground-based 

sensors to monitor soil moisture, nutrient levels, plant 

health, and crop growth stages. The data were processed 

using advanced algorithms, including ML and DL models, 

to predict crop yields, detect diseases, and optimize 

irrigation schedules. 

AI-driven predictive analytics were employed to analyze 

the large datasets collected. This involved the use of big 

data analytics tools to assess patterns and trends in 

agricultural productivity and resource usage. Machine 

learning models, particularly deep neural networks 

(DNNs), were trained on historical data to predict future 

agricultural outcomes, such as yield projections and pest 

infestations. 

2.3. Precision Agriculture Applications 

Precision agriculture technologies, including Variable 

Rate Technologies (VRT) and Decision Support Systems 

(DSS), were implemented to evaluate their effectiveness 

in reducing input costs, such as water and fertilizers, 

while maintaining or improving crop yield. These 

systems were integrated with IoT devices and wireless 

sensor networks (WSNs) to collect real-time data on field 

conditions, which were then used to inform decision-

making processes. 

2.4. Data Analysis and Interpretation 

The collected data were analyzed using statistical and 

computational methods to evaluate the impact of digital 

technologies on agricultural sustainability. Statistical 

analyses were performed to compare the performance of 

different technologies in terms of yield, resource 

efficiency, and environmental impact. The results were 

interpreted in the context of current agricultural 

challenges, such as climate change adaptation, food 

security, and the need for sustainable resource 

management. 

2.5. Validation and Verification 

The models and technologies were validated using field 

data and expert evaluations. The accuracy of AI models in 

predicting agricultural outcomes was assessed through 

cross-validation techniques, and their predictions were 

compared against actual field results. The effectiveness of 

precision agriculture tools was verified by measuring 

their impact on resource usage and crop productivity 

over multiple growing seasons. 

 

3. Results 
3.1. Agricultural Remote Sensing  

Remote sensing (RS) enables the monitoring of plants on 

a large scale without physically disturbing them. RS 

involves sensors mounted on unmanned ground vehicles, 

satellites, or field robots capable of generating and 
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processing information from the electromagnetic 

radiation reflected by plants. The foundation of RS, one of 

the most important technologies in modern agriculture, 

consists of ground-based, space-based, and aerial sensors 

that provide comprehensive information about the 

environment and the plants. The system aims to generate 

data and solutions from biochemical, morphological, 

phenological, and physiological functional characteristics 

(Weiss et al., 2020), which determine the performance 

and suitability of the plants. Information such as plant 

density, leaf area, leaf content and functions, vegetation 

cover, soil temperature, and moisture processed by RS 

are used in assessing plant health, nutrient deficiencies, 

irrigation timing and amount, and yield prediction (Weiss 

et al., 2020; Martos et al., 2021). Agricultural RS 

applications offer advantages such as high-throughput 

(HT), identification of good varieties, optimization of 

crop management, agricultural phenology, biodiversity 

screening, production forecasting, soil and water 

resource services, and plant and land monitoring 

(Sishodia et al., 2020; Weiss et al., 2020; Zheng et al., 

2021). Stress detection is one of the significant areas of 

agricultural RS. 

In agriculture, near-infrared, synthetic aperture radar, 

fluorescence spectroscopy, and imaging, light detection, 

multispectral, hyperspectral, and visible red, green, and 

blue (RGB) vegetation indices sensors are widely used 

for purposes such as plant classification, growth 

monitoring, soil moisture, estimation of geometric 

properties, determination of physiological and 

biochemical properties, chlorophyll and nitrogen content, 

leaf area, plant health, water and plant counting, and 

erosion analysis (Mishra et al., 2017; Steele-Dunne et al., 

2017; Ahmad et al., 2021; Martos et al., 2021; Zheng et al., 

2021; Javiaid et al., 2022). Ground-based sensors have 

been used for a long time, while wireless sensors, 

machine learning algorithms (MLAs), and small sensing 

devices have recently started to emerge. Wireless sensor 

technologies and MLAs are particularly used in livestock 

farming, greenhouses, and measurement of parameters 

such as soil moisture, temperature, and conductivity 

(Martos et al., 2021). Although there are increasing 

concerns about data security and safety, agriculture 

seems to be entering the era of drones' internet. 

Research based on artificial intelligence (AI), MLAs, and 

control automation is increasingly being utilized in yield, 

disease, and automation areas. Moreover, agricultural 

applications such as plant growth and monitoring, 

disease diagnosis, soil and land analysis, irrigation and 

fertilization, crop harvesting, weed management, 

mechanical pollination, livestock farming, and crop 

insurance can utilize remotely operated aircraft (Natu 

and Kulkarni, 2016; Rani et al., 2019; Devi et al., 2020; 

Ren et al., 2020; Song et al., 2020; Sun et al., 2020; Ahmad 

et al., 2021; Saranya et al., 2023). 

In conclusion, agricultural remote sensing is a powerful 

tool for enhancing efficiency in farm management and 

agricultural production processes. It enables precise 

irrigation and fertilization in agricultural fields, 

optimizing the use of water and fertilizers, and reducing 

environmental impacts. Additionally, RS is useful for 

monitoring and controlling agricultural pests, diseases, 

and weeds, allowing for early detection and intervention. 

However, successful implementation of agricultural RS 

requires not only data collection, processing, and analysis 

capabilities but also access to and training on these 

technologies for farmers and agricultural experts. This 

way, the full potential of RS in the agriculture industry 

can be realized, and more sustainable and efficient 

agricultural practices can be developed. 

3.2. Artificial Intelligence (AI) and the Internet of 

Things (IoT) in Sustainable Agriculture 

YZ, a system that reaches a certain level of intelligence 

through automated behavior and computational 

programming, producing rational outputs, and has 

significant potential in various agricultural fields. 

Although still new and developing, it is understood that 

YZ technologies have significant potential in many areas 

of agriculture such as productivity, product monitoring, 

irrigation, soil content detection, product sorting, and 

product generation (Shaikh et al., 2022). According to the 

European Commission, it has been reported that the 

period of Industry 5.0 has started, and today's agriculture 

is based on remote sensing, artificial intelligence, and 

cloud computing as the fifth revolution (Martos et al., 

2021). The most important contributions of YZ to the 

agricultural sector are recognition and perception of 

images, maximizing output, enhancing skills, and labor 

(Subeesh and Mehta, 2021). YZ, as a form of intelligence 

that can perform tasks similar to humans such as seeing, 

learning, understanding, planning, acting, and 

communicating, serves predictive analytics categories 

that can be used in disease, soil management, pest and 

weed management, plant management, water use 

management, nutrient deficiency determination, product 

analysis, and tracking and predicting environmental 

impacts, thus serving sustainable production (Ryan et al., 

2023). In agriculture, IoT and YZ are capable of utilizing 

sensor data better, improving product quality and 

quantity, better managing internal processes, increasing 

work efficiency, and reducing waste and costs (Alreshidi, 

2019), smart farming is a technology based on the use of 

YZ and IoT (Shaikh et al., 2022). 

IoT is a system that can transfer data over the network 

for the task it will perform without requiring machine-to-

machine and human-to-machine interaction. IoT devices 

have unique identities and capabilities to remotely sense, 

monitor, and temporarily store data blocks (Ray, 2018). 

Due to the features such as scope, efficiency, cost, 

durability, memory, portability, power efficiency, 

reliability, ease of use, productivity, monitoring, resource 

optimization, smart irrigation, product and pest 

monitoring, control, harvest, and product quality 

protection, IoT applications are increasingly being used 

in smart agriculture (Qureshi et al., 2022). The 

technology of IoT sensor components is used to collect 
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and measure environmental factors and variables 

(Gómez et al., 2017). Since most IoT applications are 

based on wireless data transmission, the role of cloud 

computing in IoT technology is significant. Agricultural 

processes are increasingly connected to data obtained 

from IoT devices. In IoT applications, geospatial and 

temporal mapping and sampling, water stress 

assessments, pest and weed management, vegetation 

indices, yield assessment, and precision fertilization 

stand out. Additionally, IoT technologies can be 

successfully used in weather-adjusted smart irrigation 

systems based on plant and soil stress levels (Keswani et 

al., 2019), disease and pest control with image processing 

and early diagnosis (Dhanaraju et al., 2022), harvest 

planning (Goedde et al., 2020), and predicting optimum 

nutrient requirements (Suganya et al., 2019). It has been 

stated that IoT applications generally increase 

agricultural resource efficiency (Abioye et al., 2020; Tao 

et al., 2021; Pincheira et al., 2021), reduce diseases and 

pests. However, the primary goal of implementing IoT 

technology is to contribute to the transformation of 

agriculture into a sustainable production system (Wolfert 

and Isakhanyan, 2022). 

Research has shown that Digital Agriculture (DA) 

principles have been used to classify biotic and abiotic 

stresses in various crops such as apple, wheat, corn, rice, 

strawberries, tomatoes, peppers, grapes, and coffee 

(DeChant et al., 2017; Fuentes et al., 2017; Liu et al., 

2018; An et al., 2019; Cruz et al., 2019; Liang et al., 2019; 

Nie et al., 2019; Esgario et al., 2020; Lin et al., 2020), 

plant phenotyping (Jung et al., 2021), yield prediction (Fu 

et al., 2020), fruit and weed detection (Huang et al., 2018; 

Apolo-Apolo et al., 2020). DA and YZ have been used to 

prevent excessive chemical use that leads to soil 

degradation (Elahi et al., 2019). Machines that learn how 

to perform tasks requiring intelligence through YZ and 

DA can help farmers achieve high outputs with low 

inputs, control weeds without using pesticides, and 

reduce waste and spoilage by accurately predicting yield 

and demand (Bu and Wang, 2019; Sparrow et al., 2021). 

With advancements in Nİ and sensor technology, when 

DA technology is integrated, it can assist in various 

agricultural processes such as plant phenology, soil and 

vegetation mapping, weather and yield prediction, 

canopy and height measurement, fertilizer effects, water 

stress, groundwater, and drought detection, weed, pest, 

and disease detection and management, greenhouse 

monitoring and management (Kamilaris and Prenafeta-

Boldú, 2018; Quazi et al., 2022). YZ, along with remote 

sensing tools, can also be used for monitoring climate 

data and plant quality (Manogaran and Lopez, 2018), 

automatic climate-controlled greenhouses (Hemming et 

al., 2019), prediction-based analysis, digital plant health 

diagnosis applications, farm management (Chen et al., 

2022), and livestock management (Bhagat et al., 2022). 

Improvement in irrigation, nutrition, and product quality 

management, as well as enhancements in greenhouse 

needs such as temperature, soil moisture, water flow, 

CO2, and light radiation control, can be achieved using 

remote sensing-supported control systems, DA, and Nİ 

technologies (Zhou et al., 2022). 

Artificial Intelligence (AI) and the Internet of Things 

(IoT) are becoming increasingly important in modern 

agricultural practices, offering various advantages to 

farmers and agriculture industry professionals. For 

example, artificial intelligence can provide valuable 

insights to farmers by analyzing agricultural data, 

identifying diseases and pests, optimizing water usage, 

and increasing crop productivity. The Internet of Things, 

on the other hand, can enhance efficiency by connecting 

agricultural equipment and sensors, providing farmers 

with real-time monitoring and control capabilities. 

The use of these technologies not only improves 

efficiency but also contributes to more effective 

utilization of natural resources and environmental 

sustainability. Moreover, artificial intelligence and the 

Internet of Things accelerate digital transformation in the 

agricultural industry, paving the way for a smarter and 

more efficient future of farming. 

To fully realize the potential of these technologies, it is 

important to provide farmers and agricultural experts 

with access to and education on these new technologies, 

enabling them to use them effectively. 

3.3. The Increasing Use of Remote Sensing, Drones, 

and UAVs (Unmanned Aerial Vehicles) 

Worldwide primarily aims at plant and weed detection, 

plant monitoring, mapping, biomass assessment, and 

yield prediction. For remote sensing-based yield 

estimation, Machine Learning (ML) methods are also 

being developed. Remote-controlled UAVs or drones can 

utilize computer vision for spraying, seeding, precision 

farming, monitoring temporal changes, identifying 

abnormalities and potential issues, analyzing, and 

transmitting real-time data to other equipment and 

facilities. By monitoring the biological, chemical, and 

physical properties of the soil with different monitoring 

systems, measures can be taken to improve soil quality. 

Drones are used for monitoring product quality, 

irrigation equipment, fertilizer application, weed 

identification, herd and wildlife monitoring, and disaster 

management (Veroustraete, 2015; Natu and Kulkarni, 

2016; Ahirwar et al., 2019). UAV technologies play a 

significant role in sustainable agriculture, addressing 

many complex issues, from determining the number of 

flowers, the amount of nectar, and habitat potential for 

bees to preventing agricultural input waste and 

preventing bird damage or bird deterrents using 

predator sounds (Qureshi et al., 2022). UAV technology, a 

combination of robotics, computing, AI, IoT, and 

information and communication technologies, can 

practically eliminate limitations of satellite-based sensing 

and imaging due to airspace, clouds, terrain, and 

obstacles (Nevavuori et al., 2019). Indeed, Convolutional 

Neural Networks (CNNs) Saranya et al., 2023), have been 

successful in barley and wheat yield prediction (Hassan 

vd., 2019) using KYM (Kilo, Yield, Meter) data from UAVs 
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(Vanegas et al., 2018), with the ESA (European Space 

Agency) model outperforming vegetation index values in 

predicting yields (Huang et al., 2018). 

It has been reported that UAVs and IoT are the most 

important technologies for transforming traditional 

agriculture into precision or smart farming, and that 

smart sensors can be integrated with UAVs in precision 

agriculture and that UAV technology will continue to 

expand in sustainable precision agriculture applications. 

UAVs can be used for soil and plant sampling and 

mapping (Saranya et al., 2023), monitoring plant growth 

parameters (Chang et al., 2017), yield prediction, pest 

and disease (Park et al., 2017; Ivushkin et al., 2019) 

detection, weed detection, soil and plant stress 

interpretation, and leaf area index detection in 

monitoring stages, as well as in planting, herbicide, 

pesticide, and fertilizer application stages (Roth et al., 

2018). Rice grain yield prediction has been made using 

plant cover indices (Diwate et al., 2018), based on 

spectral and digital images provided by UAVs, and the 

development stages of winter wheat have been 

monitored. In precision viticulture (Castaldi et al., 2017, 

high-resolution data collected by integrating UAVs and 

remote sensing for real-time measurements have 

optimized vine production (Faiçal et al., 2017), yield, 

quality, and (Muhammad et al., 2019) profitability 

parameters that affect grapevine production with 

appropriate input costs. Nitrogen fertilization and yield 

prediction have been made in barley using a deep 

convolutional neural network based on UAVs and images. 

UAV-based UA (Unmanned Aerial) usage in precision 

(Zhou et al., 2017) agriculture is advancing rapidly 

(Escalante et al., 2019). 

In addition to the aforementioned applications, UAVs and 

drones play a crucial role in various other aspects of 

agriculture). They enable soil and crop monitoring, 

including tracking parameters such as soil moisture, 

temperature, and pH levels, as well as monitoring crop 

health and growth stages. By providing detailed aerial 

imagery and data, UAVs assist farmers in making 

informed decisions regarding irrigation scheduling, 

nutrient management, and crop protection strategies 

(Zhang et al., 2019). Furthermore, UAVs have proven to 

be valuable tools in precision agriculture by facilitating 

site-specific management practices. They allow farmers 

to target specific areas within their fields for 

interventions such as variable rate application of 

fertilizers, pesticides, and herbicides. This targeted 

approach not only optimizes resource (Spachos and 

Gregori, 2019) use but also minimizes environmental 

impact by reducing chemical runoff and leaching 

(Escalante et al., 2019).Moreover, UAVs and drones 

contribute to the sustainability of agriculture by 

promoting conservation practices and environmental 

stewardship. They aid in the identification and 

monitoring of conservation areas, wetlands, and wildlife 

habitats within agricultural landscapes. This information 

helps farmers and land managers implement measures to 

preserve biodiversity, protect natural resources, and 

enhance ecosystem services. 

In summary, UAVs and drones are powerful tools that are 

revolutionizing modern agriculture. Their versatility, 

accessibility, and ability to collect high-resolution data 

enable farmers to optimize production practices, 

improve crop yields, and mitigate environmental risks, 

ultimately contributing to a more sustainable and 

resilient food system. 

3.4. Precision Agriculture (PA) and Agriculture 4.0 

and 5.0. 

To describe smart agricultural production systems 

utilizing the latest technologies, interchangeable 

concepts such as "precision agriculture," "precision 

approach," "smart agriculture," "remote sensing," "digital 

farming," "information-intensive agriculture," "variable 

rate farming," "site-specific crop management," 

"agriculture 4.0 and 5.0," and "digital agriculture or 

farming" have emerged (Martos et al., 2021). The concept 

of "agriculture 5.0," which has emerged in recent years, 

emphasizes the inclusion of AI and robotics within the 

scope of data-driven sustainable agriculture (Saiz-Rubio 

and Rovira-Más, 2020). Smart agriculture or agriculture 

4.0 encompasses many current technologies based on the 

integration of environmental sensors and predictive 

technologies, aiming to achieve higher productivity with 

less natural resource utilization (Shaikh et al., 2022). 

PA is a strategy that collects, processes, and analyzes 

temporal, spatial, and individual data to improve 

resource efficiency, productivity, quality, profitability, 

and sustainability. It employs information technologies 

for data collection, processing, analysis, and application, 

benefiting from the integration of digital technologies in 

agricultural food systems transformation, ultimately 

contributing to the efficient use of resources, 

productivity, profitability, quality, and reducing the 

environmental impacts of agricultural production 

(Çakmakçı et al., 2023). The use of digital data in 

agriculture has been shown to increase productivity. PA 

utilizes satellite technologies to create future sustainable 

and efficient food systems, considering the real needs of 

plants, effective resource management, reducing 

environmental impacts, and enhancing productivity 

efficiency. Its technologies can be summarized in four 

stages: guidance, information management, application, 

and data analysis. Guidance technologies encompass all 

types of automatic guidance based on hardware and 

software, while application technologies include 

variable-rate applications such as fertilization, irrigation, 

seed planting, and plant protection products developed 

based on software (Dayıoğlu and Türker, 2021). Smart 

agriculture, by integrating the latest technologies such as 

IoT, AI, remote sensing, and cloud computing, aims to 

enable the automatic monitoring, intelligent control, and 

decision-making of the agricultural sector with the help 

of knowledge and accumulation (Saranya et al., 2023). 

Smart agriculture aims to optimize inputs such as 

environmental conditions, growth status, soil condition, 
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irrigation water, fertilizers, weed management, and 

greenhouse production, as well as reducing costs and 

increasing agricultural productivity. 

Agriculture 4.0 technologies encompass monitoring, 

control, prediction, and logistic applications. Within the 

scope of agriculture 4.0, there are applications for 

monitoring air and greenhouses, plants, soil, water, and 

animal monitoring, as well as smart greenhouses, 

fertilization systems, irrigation systems, weed, pest, and 

disease control, harvest, and similar control applications 

(Araújo et al., 2021). Monitoring facilitates rapid and 

accurate decision-making, timely intervention, and 

savings in time and costs. One of the main aspects of 

agriculture 4.0 is the recognition of diseases through 

monitoring and data collection using mobile devices such 

as smartphones and cameras in the field (Megeto et al., 

2020). 

Research shows that digital technologies such as IoT and 

AI are key technologies for improving sustainable 

agriculture (Jung et al., 2021; Wolfert and Isakhanyan, 

2022). IoT technologies provide data storage, data 

management, and analytics, allowing filtering, utilization, 

and widespread application in smart agriculture. 

Precision agriculture and smart farming technologies 

based on variable-rate applications not only reduce input 

costs but also increase production efficiency and quality 

(Wolfert et al., 2017; Boursianis et al., 2022). Using Nİ in 

precision agriculture aims to measure and interpret 

changes in soil and plants for efficient use of natural 

resources and environmental preservation, managing 

variability spatially and temporally, and monitoring the 

outcomes (Mahmood et al., 2013). PA, IoT, sensor, 

information, and communication technologies ensure 

profitability and sustainability through real-time data 

while enabling timely actions and cultivation with 

minimal human intervention, using smart systems to 

monitor climate and growth conditions in smart 

greenhouses (Öztürk et al., 2021). Although similar to 

precision agriculture, greenhouse farming is conducted 

in a closed and isolated environment and controlled by 

smart systems. With Nİ and smart systems, greenhouse 

farming applications provide more production than 

traditional methods, and it has been emphasized that 

even desert areas can be used for sustainable farming 

with greenhouse farming applications (Qureshi et al., 

2022). 

Unmanned Aerial Vehicle (UAV) systems that provide 

monitoring and decision support through sensing and 

communication are considered groundbreaking 

technologies in agriculture (Zhang and Kovacs, 2012), 

and as UAV technologies advance, remote sensing, which 

is one of the important technologies used in smart 

agriculture, is predicted to become more widespread 

(Maes and Steppe, 2019). In precision agriculture, one of 

the most beneficial areas of UAV technology usage is 

weed detection and management. With UAV and DÖ 

techniques, plants and weeds have been distinguished 

separately (Barrero et al., 2018; Sa et al., 2018), and an 

approach for weed detection has been developed using 

high-resolution KYM images obtained by UAV systems 

(Mateen and Qingsheng, 2019). In precision agriculture, 

UAVs are used for plant modeling, yield management, 

ultimate yield prediction, spectral imaging, and 

integration of smart sensors, phenotyping, and 

vegetation index preparation (Boursianis et al., 2022). 

While AI makes precision agriculture more accessible 

and applicable, it transforms traditional farming into 

precision/smart farming using digital and computer-

assisted farming technologies. 

Agriculture 5.0 is a concept that has emerged as a result 

of these technological advancements and digital 

transformations. Agriculture 5.0 not only encompasses 

data-driven sustainable agriculture but also aims to 

completely transform agricultural production processes 

and management. This concept envisions full harmony 

and collaboration between humans, technology, and 

nature in the future of agriculture. Agriculture 5.0 

involves the integration of advanced technologies such as 

digitization, automation, and the use of artificial 

intelligence (AI) in farming practices. It aims to make 

agriculture more efficient, environmentally friendly, and 

sustainable. Additionally, it brings together various 

technologies to make farming more effective and 

intelligent. 

In this context, technologies such as the Internet of 

Things (IoT), big data analytics, artificial intelligence (AI), 

robotics, and blockchain are utilized. These technologies 

are integrated to increase agricultural productivity, 

ensure more efficient use of natural resources, and 

automate agricultural processes. For example, IoT 

sensors can continuously monitor and analyze data 

collected in agricultural fields. These data can track 

various factors such as soil moisture levels, weather 

conditions, plant growth data, and other important 

parameters. This information enables farmers to better 

understand the needs of their crops and adjust 

agricultural practices accordingly. Artificial intelligence 

and machine learning algorithms can analyze agricultural 

data to increase efficiency and detect diseases or pests 

early on. This provides farmers with the ability to make 

faster and more accurate decisions. Agriculture 5.0 also 

utilizes blockchain technology to enhance traceability of 

agricultural products and strengthen the supply chain to 

ensure food safety. This provides consumers with greater 

transparency about the origin and history of products.In 

conclusion, Agriculture 5.0 represents a significant step 

towards digitizing and modernizing the agriculture 

sector. This approach has the potential to make 

agriculture more sustainable, efficient, and secure, 

thereby creating a better farming system for future 

generations. 

3.5. Applications of Precision Agriculture 

Technologies 

In precision agriculture (PA), the primary application 

areas of smart technologies include pest management, 

weed control, crop monitoring, storage management, 
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plant disease management, weather forecasting and 

monitoring, irrigation management, yield prediction, soil 

composition and management, and agricultural 

machinery management. Managing the agricultural 

production supply chain, measuring soil variables, 

improving agricultural production and management, 

reducing resource usage, monitoring water consumption, 

improving agricultural operations, identifying 

agricultural risks and hazards, and optimizing decisions 

are significant application areas of agricultural 

technologies. 

  Plant Monitoring In modern agriculture, the use of 

optical, mechanical, electrochemical, airflow, and 

position sensors is becoming increasingly common. 

Image recognition is one of the most critical areas. 

Sensors can provide images for farmers to make timely 

and informed decisions for disease and pest 

management, allowing for early warnings. Smart 

monitoring enables optimization of harvesting, 

monitoring plant quality characteristics, and increasing 

income opportunities (Goedde et al., 2020). In recent 

years, innovations that increase the capacity to collect, 

process, and analyze agricultural data have included 

digitization, which converts data and processes into 

readable formats, and veritization, which generates data 

that can be monitored, analyzed, and optimized based on 

real-time monitoring and prediction. Current digital 

technologies focus on creating, using, combining, 

managing, analyzing, and sharing agricultural and other 

data in digital formats to improve the sustainability and 

productivity of agricultural and food systems, reduce 

costs, and increase speed. 

To meet food and raw material demand and increase 

efficiency sustainably, optimizing plant management 

from planting to product distribution is essential. Hence, 

automatic monitoring systems are an important step 

towards the smart digital farming concept, enabling 

farmers to make rapid and accurate decisions and 

implementations at the right time. In precision and 

digital agriculture, real-time monitoring and 

measurement of soil parameters such as temperature, 

humidity, conductivity, pH, and nutrient content, as well 

as air and greenhouse gas monitoring, plant monitoring, 

soil monitoring, water quality, and irrigation parameters, 

are important for sustainable agricultural management. 

Nİ sensors combined with YZ and KDS for real-time 

measurement of these parameters can make agriculture 

more efficient and sustainable. 

Drone technologies enable monitoring of plant growth 

parameters and can be used in agricultural operations 

such as irrigation and fertilization. YZ has increased crop 

production and improved monitoring, harvesting, 

processing, and marketing. It has been noted that remote 

sensing and monitoring technologies can assess water 

quality, produce soil maps, and monitor biological 

diversity. YZ tools such as machine learning, DSA, and 

artificial neural networks have been used for yield 

prediction in wheat, sorghum, soybean, rice, tomato, 

pepper, apricot, and apple. Computer technologies have 

been used for predicting the degree of climate factors and 

estimating yield potential in walnuts and for early yield 

prediction using fruit qualities in apples. Drone data have 

been used to develop deep ESA capable of predicting 

plant yield. Advances in drones reduce the cost of 

monitoring plant growth in precision agriculture and 

enable the identification of low-yielding and diseased 

areas, while remote sensing and monitoring technologies 

enhance the effectiveness of high-resolution mapping, 

wildlife counts, and biological diversity monitoring. In 

agriculture, MÖ is used in areas such as machine vision, 

yield prediction, pest and disease detection, monitoring 

stress factors, navigation, and optimization. Advanced YZ 

technologies can increase efficiency, shorten labor time, 

improve food product tracking and testing, enhance 

product development, conduct market analysis, and 

improve tracking of all stages of the product. Yield 

mapping and monitoring, frost damage formation and 

analysis, evaluation of rotations, yield calculation, and 

calibration are performed using advanced sensors and 

imaging applications. Animal Monitoring In large-scale 

livestock management, the use of environmental sensors 

and body sensors for temperature, pulse, and location 

monitoring can prevent diseases and outbreaks, detect 

hazards, and improve animal living conditions by 

adjusting air and heating (Goedde et al., 2020). Individual 

animal analyses such as estrus and mating behaviors in 

cattle (Tsai and Huang, 2014), detection of sick broilers 

(Zhuang et al., 2018), have been carried out using MÖ 

algorithms. Monitoring systems aimed at collecting and 

analyzing data in precision livestock farming provide 

farmers with insights into temperature, behavior, health, 

and nutrition, enabling increased animal productivity, 

evaluation of animal activity, health issues, and welfare, 

and preservation of animal health. Smart technologies 

such as sensors, cameras, and computers that enable 

monitoring of animal welfare and early intervention in 

abnormal situations (Rose and Chilvers, 2018; Norton et 

al., 2019) are being developed to support farmers. 

Precision livestock technologies, designed to support 

farmers, can control both animal productivity and 

environmental impacts, as seen in health and welfare 

parameters (Berckmans, 2014). Additionally, MÖ and YZ 

can be used in dairy farm management, production 

forecasting, and livestock applications. Plant 

Phenotyping, Discovery, and Monitoring of Natural 

Resources YZ and MÖ applications, using spectroscopic 

data and satellite images, can analyze soil data, classify 

varieties, phenotype plants, map carbon fractions, predict 

carbon stocks, map climate-sensitive soils, model organic 

carbon fractions, and predict soil health indicators. With 

DSA and ESA models using image processing and MÖ 

algorithms, image-based plant phenotyping, image 

classification, regression, and object detection are 

effective. It can be said that ESA can be used to diagnose 

plant species, and deep ESA can determine seed and 

plant ingredients and contamination cases in the future. 
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The text provides a comprehensive overview of precision 

agriculture technologies and their applications, 

particularly focusing on plant and animal monitoring, as 

well as plant phenotyping and natural resource 

monitoring. It highlights the significance of smart 

technologies in optimizing agricultural practices, 

enhancing productivity, and ensuring sustainability. 

 

4. Discussion 
Among the driving factors requiring the digitization of 

the agricultural sector, both on-farm and off-farm, are 

improving agricultural productivity and sustainability, 

adapting to and mitigating the impacts of climate change, 

ensuring access to markets and good governance, value 

chain management, trade requirements, and consumer 

demand. It is noted that digital agriculture can provide 

improvements in sustainability in food systems; 

technologies such as Variable Rate Technologies (VRT), 

AI, cloud computing, yield mapping, digital soil mapping, 

sensors, and UAVs are suitable for achieving agricultural 

goals and various sustainability principles (MacPherson 

et al., 2022). Technologies like satellite imagery and IoT 

are essential for biomass production, preserving 

biodiversity, and mitigating climate change. 

Data collection technologies mounted on satellites, 

drones, and manned vehicles for monitoring and remote 

sensing systems in agriculture are increasingly prevalent. 

Digital sensing technologies such as water and air quality 

sensors, moisture content sensors, electrical conductivity 

sensors, weed detectors, temperature, wind speed, and 

pH measurement sensors, water flow sensors, on-site 

soil, plant, animal, biodiversity, pest, and invasive species 

monitors are becoming widespread in agriculture and 

food. Many AI technologies, especially in irrigation and 

water quality determination, are used. As a result of 

research, an automatic irrigation system that estimates 

water content optically from images of the plant root 

zone (Javaid et al., 2022) and a processor-operated, 

entirely unmanned controlled drip irrigation system 

have been developed (Kavianand et al., 2016). Using AI 

technologies, a recommendation system has been 

developed for monitoring, forecasting, and controlling 

diseases, pests, and weeds in wheat (Zhang et al., 2014). 

Digital agriculture utilizing data-based technologies is 

not only improving productivity, efficiency, and food 

security but is also essential for preserving biodiversity, 

soil, and human health. 

Among data analysis technologies, data cleaning and big 

data analysis algorithms, machine learning (ML), and 

predictive analytics, and data collection technologies like 

cloud storage, confidential computing, and virtual data 

centers are gaining importance. Data is used for creating 

information and recommendations in production 

processes and automating activities. Data management, 

transfer, and sharing technologies, machine-assisted 

digital communication, image-based control, trade, 

payment, service, and data visualization technologies will 

be beneficial for food and agriculture in the future. 

Innovations in agriculture are evolving through ICT-

enabled machines and systems' information acquisition, 

application, and intelligent behavior, defined as AI. Past 

experiences and data are extensively used in sustainable 

soil and agriculture management thanks to ML. Digital 

data and technologies in agriculture, from farm 

management to productivity and resource use, from low-

tech solutions to in-field sensors and AI, big data 

analytics, process automation, robotics, and AI, are used 

in various fields (OECD, 2022). In agriculture systems, AI-

based robotic applications such as seeding, spraying, 

mowing, harvesting, control, sorting, and packaging are 

used. However, the use of robotic technologies in 

agriculture is progressing slowly. The widespread use 

depends on increasing speed and accuracy. Despite many 

benefits, high investment costs (Rose and Chilvers, 2018) 

and inadequate training services (Paustian and 

Theuvsen, 2017) can be mentioned as obstacles to the 

widespread adoption of digital technologies. When the 

control of data that will be more critical in the future of 

agriculture passes into the hands of large agricultural 

companies, it is uncertain whether it will be used in 

accordance with sustainability principles. 

 

5. Conclusion 
In this review, it is clearly seen that AI technologies will 

be beneficial in areas such as land quality, weather 

conditions, extraction of agricultural data, projection and 

yield estimation, groundwater, crop cycle, weeds, 

diseases, and pests. New technologies can assist in 

providing optimal environmental conditions and early 

diagnosis of health issues in livestock systems. Despite all 

these positive developments, overcoming challenges 

such as data privacy, security vulnerability, 

monopolization, lack of historical mapping, slow data 

processing, cost of sensors, disconnect from the natural 

world, processing complexity, and education is crucial. 

Innovative technologies such as AI, IoT, Internet of 

Drones (IoD), UAVs, and Machine Learning can 

contribute to the spread and adoption of technologies 

that increase productivity, quality, and profitability. The 

future of agriculture must find and overcome challenges 

such as water scarcity, temperature changes, food 

scarcity, and waste at an affordable cost. This can only be 

achieved through the development of new technologies 

that focus on reducing pollution levels, increasing energy 

efficiency, managing risks appropriately, and preserving 

environmental, social, and economic sustainability. 

Agricultural technology should prioritize sustainability, 

reduce input requirements, facilitate applications, utilize 

agricultural biology to a high extent, and be respectful 

and trustworthy towards nature, humans, soil, 

environment, and water resources. It is believed that this 

review will be useful in addressing sustainability, 

traceability, productivity, quality, and many other aspects 

in agriculture. 

Furthermore, technologies such as animal monitoring 

and phenotyping enable improving animal health and 
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welfare, optimizing productivity, and minimizing 

environmental impacts. These technologies provide 

farmers with more information about the status of their 

animals, enabling early intervention and enhancing 

productivity. The future of precision agriculture will be 

shaped by advanced technologies such as increased 

automation, artificial intelligence, and big data analytics. 

The further integration of these technologies into 

agricultural production processes will enhance efficiency 

and sustainability, making the future of the agriculture 

sector brighter. Therefore, ongoing research and 

application efforts in precision agriculture technologies 

will continue to play a significant role in the agriculture 

sector.In addition to the advancements in animal 

monitoring and phenotyping, precision agriculture 

technologies also offer opportunities for optimizing crop 

management practices. These technologies enable 

farmers to monitor various aspects of crop growth, such 

as soil composition, water quality, and environmental 

conditions, in real-time. By leveraging data-driven 

insights and predictive analytics, farmers can make 

informed decisions regarding irrigation, fertilization, pest 

management, and harvesting, thereby maximizing crop 

yields while minimizing resource inputs and 

environmental impacts. Overall, precision agriculture 

technologies have the potential to revolutionize the way 

food is produced by improving efficiency, sustainability, 

and resilience in agricultural systems. 
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