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Abstract 

Surface inspection of Printed Circuit Boards (PCB) is one of the most crucial quality control processes due to potential serious costs 
of even small errors occurred during production. In this study, a YOLOv8 based system is developed for detection and classification 
of six common errors occurs on PCBs. In terms of accuracy, speed, and the ability to detect multiple defects simultaneously, proposed 
method is more suitable for use in production compared to other PCB defect detection methods. Proposed system also offers 
customizable defect selection for targeted inspection. Experimental results show an impressive mean average precision of 99.2%. 
Combination of high accuracy, fast processing speed, stability, and user-friendly interface makes it a promising candidate for 
industrial applications demonstrate the system's suitability for real-world PCB manufacturing environments. 
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Öz 

Baskı Devre Kartlarının yüzey muayenesi, üretim sırasında oluşabilecek küçük hataların bile ciddi maliyetlere yol açması nedeniyle 
en önemli kalite kontrol süreçlerinden biridir. Bu çalışmada baskı devrelerde (BD) sık karşılaşılan altı hatanın tespiti ve 
sınıflandırılması için YOLOv8 tabanlı bir sistem geliştirilmiştir. Doğruluk, hız ve aynı anda birden fazla hatayı tespit edebilme yeteneği 
nedeni ile önerilen yöntem, diğer BD hata tespit yöntemlerine kıyasla, üretim bantlarında kullanıma daha uygundur. Sistem aynı 
zamanda hedefe yönelik denetim için özelleştirilebilir hata seçim olanağı da sunmaktadır. Denemelerde %99,2'lik ortalama hassasiyet 
değerine ulaşılmıştır. Yüksek doğruluk, hızlı işlem yapısı, kararlılık ve kullanıcı dostu ara yüzün birleşimi, önerilen sistemin 
endüstriyel uygulamalar için umut verici bir aday olabileceğini ve sistemin gerçek dünyadaki BD üretim ortamlarında kullanıma 
uygunluğunu göstermektedir. 

Anahtar Kelimeler: PCB Hata Tespiti, YOLO, Sınıflandırma 

 

1. Introduction 

Maintaining rigorous quality standards remains a crucial 
objective for industries. As demand and customization increases, 
manufacturers face the challenge of balancing cost, production 
time, and quality. The technological innovations of Industry 4.0 
have paved the way for implementing precise quality prediction 
and detection frameworks in manufacturing lines [1].  

Printed Circuit Boards (PCBs) are indispensable components in 
modern electronic devices. As device miniaturization accelerates, 
PCB manufacturing becomes increasingly complex, making 
defect detection a critical yet difficult task. PCB defects can 
degrade performance, compromise product quality, and lead to 
severe consequences. PCB production starts from the design 
phase and continues with the physical creation of the printed 
circuit board. First, a circuit diagram is created using a design 
software. This design is then transferred to a copper-clad plate. 
With chemical treatments, the unwanted copper layer is 
removed, leaving only the necessary circuit paths. Finally, the 
soldering mask is applied and the components are assembled. All 
of these processes require high precision and attention. 

Inevitably, some surface errors, which are called PCB defects, 
occur during these processes. PCB defects can be any of the 
following six types: short circuits, open circuits, spurs, copper 
flaws, mouse bites, and missing holes.  

Traditional defect detection methods, such as manual inspection 
and performance testing, are inefficient and prone to errors. 
Manual inspection relies on human visual acuity, therefore might 
be prune to overlooking defects. Another way is performance 
testing which can damage PCBs and doesn't guarantee defect 
identification. Reference comparison is widely used in industry, 
employs template matching to detect deviations from the 
standard. However, accurate alignment is crucial, and 
misalignment can lead to false detections. Defect detection and 
classification are distinct challenges within the realm of 
computer vision. This field seeks to replicate or surpass human 
visual perception and decision-making through algorithmic 
means. The fundamental objective of mimicking human vision is 
to identify and categorize objects, tasks inherently intertwined in 
most visual recognition systems The increasing complexity and 
miniaturization of PCBs, coupled with the limitations of human 
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inspection, have driven the rapid adoption of automated defect 
detection systems to ensure product quality and efficiency.  

PCB defect detection has been a subject of extensive research, 
with a wide range of techniques proposed over the years [2]. 
Early approaches, such as image subtraction [3] and template 
matching [4], often faced limitations in handling diverse defect 
types and complex PCB patterns. Wavelet-based methods, while 
offering some advantages, also lacked generalization capabilities 
and struggled to accurately detect subtle defects [5]. 

Classical machine learning techniques, including support vector 
machines and morphological operations, were employed to 
classify defects based on extracted features [6,7]. However, these 
methods required significant feature engineering and were often 
limited to specific defect types. More recent approaches, such as 
the modified low-complexity scheme proposed by Annaby et al., 
attempted to address these limitations by transforming 2D 
images into 1D feature descriptions and incorporating spatial 
statistical metrics [8]. 

The advent Deep Neural Networks (DNNs) offer superior 
performance and detection rates compared to traditional 
methods. Researchers have addressed challenges like 
imbalanced class distribution and defect costs through advanced 
feature preprocessing and network architectures [9]. 

YOLO (You Only Look Once) series, renowned for their efficiency 
in industrial applications, have emerged as leading candidates for 
PCB defect detection problems [10,11]. Studies have 
demonstrated their effectiveness in accurately identifying 
defects of various shapes and sizes occuring on different 
locations of PCB surfaces. YOLO-based models provide superior 
performances in single-stage detection, combining speed, 
precision, and being suitable for use in to real-world settings. 

Researchers have leveraged the YOLO series to address the 
complexities of PCB defect detection, incorporating improved 
backbones and spatial pyramid pooling structures to handle 
irregularly shaped and randomly located defects. These 
enhancements have significantly improved the accuracy and 
robustness of YOLO-based models for PCB inspection. 

In addition to the YOLO series, other deep learning architectures 
have been explored for PCB defect detection. For example, Hu and 
Wang proposed a deep learning network using Faster R-CNN 
with ResNet50 and a Feature Pyramid Network, which 
demonstrated excellent performance in detecting minor defects 
[13]. Kim et al. [14] introduced a advanced PCB inspection 
method using “skip-connected convolutional auto encoders”, and 
Bhattacharya and Cloutier proposed a complete framework 
combining transformers, fusion of multilevel feature, data 
augmentation, and object detection [15]. By using fewer number 
of parameters in the model, I-Chun et al. reduced the detection 
execution speed [16]. 

All of these studies show that deep learning algorithms has 
potential for solving the problems associated with PCB defect 
detection. Using different and advanced architectures, 
researchers have made significant improvements are achieved in 
terms of accuracy, efficiency, and robustness of PCB defect 
detection systems [17-23].In this study, we introduce a novel deep 

learning framework for precise PCB defect detection and 

classification. Our approach surpasses existing learning-based 

methods in accuracy, enabling the identification and categorization of 

errors that occur during or after the PCB manufacturing process. Our 

user-friendly GUI and customizable error detection options further 

enhance the practical applicability of our method. Following sections 

give the details of the proposed system, experimental results, 

evaluation of the performance of the system and discussion on the 

results. 

2. Materials and Methods 

This research focuses on meticulously analyzing PCB defect 
characteristics to develop a novel defect detection network. We 
will delve into the network's architecture, emphasizing the role 
of residual units and multi-scale regional proposal mechanisms 
in enhancing defect detection accuracy. The paper concludes with 
a discussion on the network's practical implementation and its 
potential to address real-world PCB manufacturing challenges. 

2.1. PCB Defects 

This study focuses on detecting and classifying six prevalent PCB 
defects: open circuits, short circuits, mouse bites, spurs, pinholes, 
and excess copper (Figure 1a, b). These defects originate from 
distinct manufacturing processes, resulting in varying visual 
characteristics such as color, shape, and location. For instance, 
short circuits reduce image regions compared to normal PCBs, 
while open circuits exhibit increased regions. Mouse bites 
resemble irregular edge notches, and pinholes appear as small, 
bright, circular defects with upward tails. Solder balls bridge wire 
distances. To accurately detect and classify these diverse defects, 
a specialized network architecture is required. 

 

Figure 1a. PCB Defects-1 

 

 

Figure 1b. PCB Defects-2. 

2.2 System Architecture 

YOLOv8, a state-of-the-art CNN architecture, was selected for this 
study due to its exceptional accuracy, compact size, and 
accessibility. Renowned for its performance, the YOLO series has 
garnered significant attention in the computer vision community 
since its inception in 2015 [21]. Developed by Ultralytics, YOLOv8 
builds upon the success of its predecessor, YOLOv5, 
incorporating architectural refinements and enhanced developer 
experience. This versatile model excels in classification, object 
detection, and segmentation tasks, making it an ideal choice for 
this research [22-23]. 

The proposed YOLOv8-based model takes advantages of the 
architecture to capture complex PCB defect features, aiming for 
high speed and accuracy. By combining YOLOv8's detection 
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capabilities with a focus on detailed feature extraction, the model 
offers adaptability across various PCB defect scenarios. The core 
components of the algorithm—Backbone, Neck, Head, and 
Conv—are illustrated in Figure 2. Figure 3 provides a detailed 
flowchart of the process. 

 

Figure 2. Schematic illustration of the YOLOv8 system 
architecture [22]. 

 

Figure 3. Flowchart of the algorithm. 

3. Results and Dicussion 

Experiments were conducted on a Windows 11 system equipped 
with an Intel i7-12700 CPU and an NVIDIA GeForce RTX 3090 
24GB GPU. The Python programming language, specifically 
Python 3.8, was used in conjunction with PyTorch 1.11 for model 
development and training. 

3.1. Data Collection and Annotation 

The dataset used in this study is the one prepared by github user 
named tangsanli5201 [24]. In dataset preparation part, manually 
created PCB errors were modeled as errors occurring on a real 
production line. There is a real error equivalent to the error found 
on each created PCB. We chose 1500 images from [24] with a 
resolution of 640x640, which includes multiple defects. 

To ensure balanced data distribution, we excluded images with 
ambiguous errors. This step helps mitigate their negative 
influence on the training process and ensures approximately 
equal representation of each error type in the dataset. To 
augment the dataset to 1700 images, we applied various data 
augmentation techniques: rotation (±15°), saturation (±25%), 
blur (2.5px), 90° rotation (clockwise-counterclockwise), and 
noise (5%). These transformations enhance the model's ability to 
generalize to real-world scenarios by exposing it to non-ideal 
image conditions. A total of 8853 defects were annotated using 
the LabelImage tool [25]. Each defect was assigned a ground truth 
bounding box and a corresponding class label. The tool generated 
TXT files containing bounding box coordinates and defect types 
for each image, serving as the ground truth labels for the 
detection model. Table 1 provides a detailed overview of the 
dataset used. 

Table 1. Number of defects in training-validation, and testing 
sets. 

 
 

3.2. Performance Evaluation Methods  

To evaluate the performance of the proposed system, mAP, recall, 
and precision indices are calculated [12].  

Recall (r): Recall measures the ability of the model detection for 
positives. TP and FN denote true positive and false negative, 
respectively. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (1) 

Precision (P): Precision measures the accuracy of the model 
prediction. TP, and FP, denote true positive and false positive, 
respectively  

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                          (2) 

Mean Average Precision (mPA): The Mean Average Precision 
stands as our primary metric for assessing the performance of the 
model. Serving as the key indicator in evaluating model 
performance, mAP is the mean of Average Precision (AP) values 
across C distinct defect categories. This metric provides a 
comprehensive measure of the accuracy in defect detection, 
offering a consolidated evaluation of the model's effectiveness 
across various defect classes. 

  𝑚𝐴𝑃 =  
∑ 𝐴𝑃𝑖

𝐶
𝑖=1

𝐶
                                                                  (3) 

IoU: IoU is a metric that measures the ratio of intersections and 
unions of two clusters. IoU is used to measure how similar the 

OPEN SHORT MOUSE BITE SPUR PIN HOLE COPPER

TRAIN-VAL 1149 924 1258 1047 927 927

TEST 553 393 490 398 394 393



DEU FMD 27(81) (2025) 343-348  

 346 

predicted bounding box is to the actual bounding box. It ranges 
from 0 to 1, where 0 means no intersection between the area(G) 
and the area(C), and 1 means they are identical. However, a 
common threshold used in practice is 0.5, meaning that a 
predicted box must have an IoU of at least 0.5 with a ground truth 
box to be considered a true positive detection.  In this study, the 
defect area detection acceptable threshold is chosen as 0.5. An 
Intersection over Union score > 0.5 is normally considered a 
“good” prediction.   

 𝐼𝑜𝑈 =  
𝑎𝑟𝑒𝑎(𝐶)∩ 𝑎𝑟𝑒𝑎(𝐺)

𝑎𝑟𝑒𝑎(𝐶)∪ 𝑎𝑟𝑒𝑎(𝐺)
                                                       (4) 

area(G): Ground Truth Boundary,  

area(C): Candidate Bound 

3.3. Experimental Results  

In this section, the evaluation of the results obtained after the 
model training process is presented to reflect the success level of 
the learning algorithm. The number of each defect type in the 
database are shown in Table 1. The images used are not selected 
from the training set, but from images reserved for the testing 
process. In other words, the trained model has not seen the 
images used at the testing stage before.  

Two examples of the testing process are shown below in Figures 
4 and 5. The images shown are images captured in real time. 
These real-time images were used to be able to evaluate the 
performance of the trained model in the field. 

Precision, Recall and mAP50 values obtained during the testing 
phase are presented in Table 3, which reflects the performance of 
the model for each type of error. Confusion matrix is also 
presented in Figure 6. The results demonstrate that the system 
achieves high performance levels for all error types. 

 
Figure 4. Real-Time Classification-Example1. 

Figure 5. Real-Time Classification-Example 2. 

 

Table 3 Test results for six types of defect detection. 

 

 

 

Figure 6. Confusion matrix. 

The sensitivity analysis of the system is also conducted based on 
Precision Confidence and Recall Confidence Curves. Precision 
Confidence Curve graph is shown in Figure 7. It visually expresses 
the change in sensitivity within the confidence level. As the 
confidence interval of precision widens, the uncertainty of the 
model's classification decisions may increase. The value obtained 
here has a rate of 100% when examined for all classes. Recall 
Confidence Curve graph is shown in Figure 8. It shows the change 
in sensitivity within the confidence level. As the confidence 
interval of sensitivity widens, the likelihood that the model will 
miss true positives may increase. The value obtained here has a 
rate of 99% when examined for all classes. 

 

Figure 7. Precision-Confidence Curve. 

 

Figure 8. Recall-Confidence Curve. 

Precision Recall mAP50

All Classes 0.993 0.979 0.992

Open Circuit 0.989 0.985 0.988

Short Circuit 0.978 0.976 0.993

Mouse Bite 0.995 0.98 0.992

Pin Hole 0.999 0.97 0.994

Copper 0.998 0.986 0.991

Spur 1 0.975 0.995
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The next step is to compare the performance of our system with 
state-of-the-art defect detection algorithm proposed by [13] 
which provides better performance compared to FasterRCNN, 
RetinaNet [27], and YOLOv3 [28]. Table 4 lists a comparison of 
the method proposed by [13] with different backbones with our 
method for the six types of PCB defect detection problem in terms 
of two performance metrics, mAP and Runtime.  

Table 4. mAP and Runtime values of different models. 

 

Among the models mentioned, the mAP (average accuracy score) 
values of Original+ResNet50, and the results with the addition of  
backbones FPN, GARPN, and ShuffleNetV2 were given as 85.2, 
86.4, 91.2, and 94.2, respectively [13] . In particular, the high mAP 
of ShuffleNetV2 highlights the model's ability to achieve 
impressive accuracy combined with low computational 
cost.  After using ShuffleNetV2, the network’s detection efficiency 
was improved, which can meet the needs of real-time detection.  
These values show that traditional models perform well in the 
object detection task. However, based on the experimental 
results, our approach stands out as more accurate in the realm of 
detecting and classifying PCB defects. Using a YOLOv8-based 
model, the mAP value obtained is 99.2 showing that our system 
exhibits superior performance compared to other models and 
provides distinctive capabilities in the object detection task. It is 
also very suitable for the real-time applications with its 
significantly low runtime.  

In addition to accuracy superiority, there are other specific 
advantages of the proposed system: 

Enhanced Sensitivity to Small Errors: Our system excels in 
detecting even smaller errors compared to traditional deep 
learning methods, contributing to a higher level of precision in 
defect identification.  

Swift Error Detection without Classification: One notable feature 
of our approach is its ability to swiftly detect errors on the PCB 
without the need for immediate classification. This efficiency 
ensures a quicker response to potential issues in the production 
line. Compared to traditional classification models like Faster R-
CNN, which require additional classification steps after object 
detection, YOLOv8 offers a streamlined approach by directly 
detecting objects and their classes simultaneously, leading to 
faster error detection without sacrificing accuracy.  

Customizable Error Detection with Interface Design: In our 
system, users are offered the flexibility to optionally detect only 
the predetermined types of errors. This customization allows 
users to tailor the detection process to specific concerns or 
priorities. 

Utilization of Production Line Images: Another distinguishing 
aspect of our system is its capability to perform defect detection 
using images captured directly from the production line, 
eliminating the necessity for high-resolution images. This 
practical approach enhances real-world applicability and 
integration into existing manufacturing processes.  

Apparatus and Position-Free Detection and Classification: Our 
system enables the detection and classification of PCB defects 
through images alone, eliminating the need for specialized 
apparatus or precise positioning. This feature streamlines the 
implementation of defect detection in diverse manufacturing 
environments.  

We also concerned about the carbon footprint of our system. 
Experiments were conducted using Google Cloud Platform in 
region Asia-east1, which has a carbon efficiency of 0.56 
kgCO2kgeq/kWh. A cumulative of 12 hours of computation was 
performed on hard ware of type GTX 1080 Ti (TDP of 250 W). 
Total emissions are estimated to be 1.68 kgCO2eq of which 100 
percent were directly offset by the cloud provider. Estimations 
were conducted Machine Learning Impact calculator [26]. 

3. Conclusions 
Our proposed deep learning system offers a superior solution for 
PCB defect detection and classification. Based on the results, our 
YOLOv8-based model outperforms existing approaches, 
achieving an impressive mAP of 99.2%. Its combination of high 
accuracy, fast processing speed, stability, and user-friendly 
interface makes it a promising candidate for industrial 
applications. In conclusion, our machine learning method 
provides a comprehensive and efficient approach to enhancing 
PCB quality control. 
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