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Abstract 

Stroke is a serious medical condition that causes the death of brain cells due to insufficient blood flow due to blockage or 

rupture in the blood vessels leading to the brain. Stroke is the most common cause of death and disability in adults after 

heart attack and cancer, causing individuals to not only die but also live with permanent disabilities. In this study, 12 

features and 7 different machine learning methods belonging to 5100 individuals in an open-source dataset were used to 

predict stroke risk. Hyperparameter optimization was applied to increase the performance of machine learning methods 

and the best parameters were selected. When the results were examined, the random forest algorithm was able to detect 

the risk of stroke with an accuracy of 96.98%, which is higher than other studies in literature. This study discusses the 

effective use of machine learning algorithms to predict stroke risk and efforts to improve model performance. The results 

obtained may help in more accurate determination of stroke risk and taking preventive measures. 

Keywords: Classification, Hyperparameter optimization, Stroke, Machine learning. 

 

 

 

Makine Öğrenimi ve Hiperparametre Optimizasyonuyla İnme Riskinin Tahmin 

Edilmesi 

 

Öz 

İnme, beyne giden damarlarda meydana gelen tıkanma veya yırtılma sonucu yetersiz kan akışıyla beyin hücrelerinin 

ölümüne neden olan ciddi bir tıbbi durumdur. İnme, bireylerin hayatını kaybetmesinin yanı sıra kalıcı sakatlıklarla 

yaşamlarını sürdürmelerine de yol açabilen erişkinlerde kalp krizi ve kanserden sonra en yaygın ölüm ve sakatlık 

sebebidir. Bu çalışma kapsamında, inme riskini tahmin etmek için açık kaynak bir veri setindeki 5100 bireye ait 12 

öznitelik ve 7 farklı makine öğrenmesi yöntemi kullanılmıştır. Makine öğrenmesi yöntemlerinin performansını arttırmak 

için hiperparametre optimizasyonu uygulanmış ve en iyi parametreler seçilmiştir. Sonuçlar incelendiğinde Rastgele 

orman algoritması ile literatürdeki diğer çalışmalara göre daha yüksek olan %96,98 oranında bir doğruluk ile inme riski 

tespiti yapılabilmiştir. Bu çalışmada, inme riskini tahmin etmek için makine öğrenimi algoritmalarının etkin kullanımı ve 

model performansını iyileştirmeye yönelik çabalar tartışılmaktadır. Elde edilen sonuçlar inme riskinin daha doğru 

belirlenmesine ve önleyici tedbirlerin alınmasına yardımcı olabilir. 

Anahtar Kelimeler: Sınıflandırma, Hiperparametre optimizasyonu, İnme, Makine öğrenimi.  
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1. Introduction 

 

Stroke is a life-threatening condition that can cause loss or deterioration of brain functions as a 

result of sudden interruption of blood circulation to the brain or leakage of blood to an area of the 

brain (Katan & Luft, 2018). Stroke risk factors include hypertension, high cholesterol, diabetes, 

obesity, smoking, sedentary lifestyle and family history of stroke (Xia et al., 2019). Stroke remains 

one of the leading causes of death and disability worldwide, and the risk of stroke is predicted to 

continue to increase over the next decade and beyond. Approximately 17 million people in the world 

and 140 thousand people in our country have a stroke every year. According to the current Turkish 

Statistical Institute (TUIK) report, 33.4% of the 565,594 people who died in 2021 died due to 

circulatory system diseases, and 18.9% of this rate consisted of deaths due to cerebrovascular diseases 

(TUİK, 2021). The report published by the European Stroke Organization (ESO) and the European 

Stroke Alliance for Europe (SAFE) draws attention to the 780 thousand new stroke cases in Europe 

annually. This number is expected to be around 4 million 630 thousand in 2035 (SAFE, 2019). The 

rate of recovery and permanent damage after a stroke may vary depending on factors such as the 

individual's stroke type, severity, effectiveness of early interventions and suitability of the 

rehabilitation program. After a stroke, some patients may experience permanent disorders such as 

speech disorders, swallowing disorders, memory and cognitive activity disorders, depression, 

anxiety, paralysis or movement disorders (Delpont et al., 2018). In order to minimize post-stroke 

damage, it is necessary to pay attention to factors such as healthy nutrition, keeping diabetes and 

cholesterol under control, managing stress, keeping blood pressure under control, and not smoking 

and drinking alcohol (Marsh & Keyrouz, 2010; Pandian et al., 2018). 

Nowadays, artificial intelligence techniques have begun to be used in addition to traditional 

methods in detecting strokes and monitoring the parameters that cause strokes. These methods can 

help predict the risk of stroke more effectively and enable preventive measures to be taken. Because 

machine learning algorithms are effective at analyzing large data sets, they can help determine 

individuals' risk of stroke by combining specific risk factors and clinical data to predict stroke risk, 

such as hypertension, high cholesterol, diabetes, and personal health data. 

In this article, various machine learning algorithms used to predict stroke risk, as well as 

hyperparameter optimization and studies to improve model performance, are also discussed. These 

studies may allow a more precise determination of stroke risk and early preventive measures. In the 

remainder of the study, studies in literature on this subject have been examined, and in the next 

section, dataset, signal preprocessing, data balancing, data division, classification algorithms, and 

evaluation metrics are given under the title of material method. The results of the classification 
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algorithms are shown in the results section. The results were evaluated and discussed in the 

conclusion and evaluation section. 

 

2. Related Works 

 

In recent years, machine learning (ML) methods have been widely used in disease prediction. 

To date, various algorithms including Random Forest (RF), Support Vector Machine (SVM), Logistic 

Regression (LR), Decision Tree (DT), K-Nearest Neighbors (KNN), Naive Bayes (NB) and Artificial 

Neural Networks (ANN) have been applied to publicly available stroke datasets for early diagnosis 

in stroke prediction. 

For example, Tazin et al. (Tazin et al., 2021) used RF, DT, Voting Classifier (VC), and LR on 

a dataset of 5,110 individuals, reporting the highest accuracy of 96% with RF. Sailasya & Kumari 

(Sailasya & Kumari, 2021) tested six different algorithms (LR, DT, RF, KNN, SVM, NB) on the 

same dataset and achieved 82% accuracy with NB. Similarly, Imran et al. (Imran et al., 2022) 

employed DT, RF, and AdaBoost and reached 95% accuracy with both DT and RF 

Emon et al. (Emon et al., 2020) implemented models like SGD, GBC, XGB, and Weighted 

Voting (WV), achieving 97% accuracy with the WV method. Singh et al. (Singh et al., 2022) also 

reported 95% accuracy using XGB. Additionally, Kansadub et al. (Kansadub et al., 2015) applied 

DT, NB, and ANN to over 68,000 records, obtaining 75% with DT and 74% with ANN. In their work 

on predicting modified Rankin Scale (mRS) scores, Monteiro et al. (Monteiro et al., 2018) compared 

LR, DT, SVM, RF, and XGB algorithms, reporting 93% accuracy with RF. Likewise, Nwosu et al. 

(Nwosu et al., 2019) evaluated DT, RF, and ANN on a large dataset of 29,072 individuals, reporting 

74–75% accuracy with RF and ANN. 

In addition to traditional models, some researchers have explored more advanced techniques 

such as Penalized Logistic Regression, Stochastic Gradient Boosting (SGB), and Decentralized SGD 

(DSGD), reaching accuracies up to 97%  (Arslan et al., 2016; Penafiel et al., 2020). These studies 

demonstrate that both traditional and ensemble-based models can be effective in stroke classification 

when properly tuned and trained on representative data. 

Building upon the findings of previous studies, this research not only evaluates seven 

commonly used ML algorithms LR, KNN, NB, SVM, DT, RF and ANN on the same open-source 

dataset, but also integrates advanced techniques such as hyperparameter optimization and class 

balancing. Unlike many earlier works that applied default model settings, this study employs 

GridSearchCV and Keras-Tuner to fine-tune parameters and utilizes SMOTE to mitigate class 

imbalance. As a result, the RF model achieves 96.98% accuracy, surpassing or matching the highest 

performance reported in related studies. 
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These findings reinforce the importance of data preparation and model tuning and demonstrate 

that even commonly used algorithms can outperform more complex approaches when properly 

optimized. 

 

3. Materials and Methods 

 

In this section, the study's basic building blocks and methodological approaches are discussed. 

The general scheme of the study is given in Figure 1. Under this section, details of the data set used 

are given first. The data preprocessing section explains the processes carried out to prepare the data 

for analysis, cleaning, standardization and attribute processes. The methods used to eliminate class 

imbalances in balancing the data are mentioned. In the classification algorithms section, algorithms 

used for stroke prediction and their features are discussed. The data evaluation section explains cross-

validation, hyperparameter optimization, evaluation metrics and steps for comparing algorithms. 

 

 

Figure 1. Overview of the stroke prediction workflow using machine learning algorithms. 

 

3.1. Dataset 

 

The dataset used in the study is an open-source stroke dataset obtained from Kaggle (Federico 

Soriano Palacios, n.d.). There are 12 features of 5100 people in the data set. ID, age, hypertension, 

heart disease, and stroke status are expressed as integers among these attributes. The other five 

features, gender, marriage status, type of work, housing type and smoking status, are categorical 

variables. Finally, the average glucose level and body mass index are decimal numbers. 
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3.2. Data Preprocessing 

 

The data was subjected to some processes in the signal preprocessing step to make it suitable 

for machine learning algorithms. Five of the ten attributes in the data set (age, hypertension status, 

heart disease status, average glucose level and body mass index) contain numerical values. The other 

five features (gender, marriage status, type of work, housing type and smoking status) consist of 

categorical variables. For machine learning algorithms to process, categorical variables were 

converted to numerical values by label encoding. The missing data of 201 people in the body mass 

index attribute in the data set was filled with the median value. Additionally, one person whose gender 

was unclear was removed from the dataset. 

 

3.3. Addressing Class Imbalance with SMOTE 

 

The data used in machine learning algorithms training creates the problem of overfitting when 

the data of one class is more than the other classes when teaching two or multiple classes. In other 

words, while the model learns the data of one class very well, it ignores the other class or classes. 

This situation is also present in our data set. In our data set, the number of patients who had a stroke 

is 249, while the number of individuals who did not have a stroke is 4860. In order to prevent 

overfitting, synthetic data was generated using the SMOTE method (Chawla et al., 2002). The data 

of people who had a stroke were synthetically generated to create additional samples, and the dataset 

was balanced. The original version of the data is shown in Figure 2 a) and the version after the 

SMOTE process is shown in Figure 2 b). 

 

 

Figure 2. a) Original Data Set b) SMOTE applied dataset. 
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3.4. Data Splitting 

 

Once you have completed data preprocessing and balanced the unbalanced dataset using 

oversampling, the next step is to build the model. The data was split into two sets for training the 

model: 67% for training data and 33% for test data. After the split, various classification algorithms 

were applied to train the model. The classification algorithms used for this purpose include LR, KNN, 

SVM, NB, DT, RF, and ANN. 

 

3.5. Classification Algorithms 

 

Within the scope of the study, the stroke dataset was evaluated using seven different machine 

learning methods, including LR, KNN, SVM, NB, DT, ANN and RF. The working logic of these 

algorithms is given below, one by one. 

 

Logistic Regression: A statistical model is used to classify two-class (binary) data. It is an 

algorithm that gives the results as probabilities and classifies them according to a specific threshold 

value (Hosmer Jr et al., 2013).  

K-Nearest Neighbour : Determines the class of an example based on the classes of its k closest 

neighbours. It selects the most common class of the k nearest neighbours based on the distance 

criterion (usually Euclidean distance) (Zhang & Zhou, 2007).  

Support Vector Machine: Separates classes from each other by creating a hyperplane in the 

feature space. It aims to provide the best separation by maximizing the margin (distance) between 

two classes (Joachims, 1998).  

Naïve Bayes: It is a probabilistic classification algorithm that assumes that each feature is 

independent of each other when calculating class probabilities (Rish, 2001).  

Decision Tree: A decision tree is a model that is classified by a series of decision rules. It 

reaches the result by dividing the data set into branches according to certain features' values. It is an 

algorithm that resembles human thought and decision-making (Quinlan, 1987).  

Artificial Neural Network: It contains many processing units (neurons) arranged in layers 

inspired by the functionality of neurons in the human brain. Can model complex patterns and data 

relationships (Agatonovic-Kustrin & Beresford, 2000).  

Random Forest: It is an ensemble learning model with many decision trees. Each tree is trained 

with its own samples, feature subsets, and votes for classification (Pal, 2005).  
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3.6. Hyperparameter Optimization 

 

Hyperparameter optimization is the selection of the best parameters that will increase 

performance in machine learning models. There are different hyperparameter optimization methods. 

In this study, the GridSearchCV method (Shamrat et al., 2020) in the Scikit-learn library was applied 

to machine learning methods. Using this method, all possible hyperparameter combinations were 

investigated and the parameters that provided the best model performance were determined. For the 

artificial neural network, optimum hyperparameters were determined using Keras-tuner (O’Malley et 

al., 2019). This process helped us fine-tune the model and achieve the best possible performance by 

adjusting hyperparameters such as the number of layers, neurons, and learning rate. 

 

3.7. Classification Metrics 

 

Within the scope of the study, the data were trained with 6 different machine learning 

algorithms and artificial neural networks and these trained models were compared using seven 

accuracy metrics. These metrics are: confusion matrix, accuracy, precision, recall, F1 score, ROC 

curve and Area Under the Curve (AUC) value. The equations for accuracy, precision, recall and F1 

score metrics are given in Equation 1, Equation 2, Equations 3 and 4, respectively. The TP expression 

given in the equations represents true positive data, TN expression represents true negative data, FP 

expression represents false positive data and FN expression represents false negative data. 

 

TP TN
Accuracy

TN TN FP FN

+
=

+ + +  

(1) 

 

Precision
TP

TP FP
=

+  

(2) 

 

Re
TP

call
TP FN

=
+  

(3) 

 

Precision+Recall
F1 Score=2×

Precision×Recall  
(4) 
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4. Findings and Discussion 

 

In this section, the performance of all machine learning models applied to the stroke dataset is 

evaluated based on multiple classification metrics, including accuracy, precision, recall, F1-score, 

and AUC. The analysis is supported with visual representations such as confusion matrices and ROC 

curves, followed by a comparative discussion of model results and their alignment with previous 

studies. Table 1 summarizes the performance metrics and optimal hyperparameters for each 

algorithm. As observed, the RF algorithm achieved the highest accuracy 96.98% and AUC 0.993, 

followed closely by KNN and DT. On the other hand, NB and LR showed relatively lower 

performance, particularly in accuracy and AUC, yet they remain valuable due to their simplicity and 

interpretability. These results form the basis for the detailed model-by-model analysis, confusion 

matrix interpretation, and ROC curve discussion presented in the subsequent sections. 

 

Table 1. Performance evaluation metrics of all algorithms. 

Algorithms Hyperparameter Accuracy Precision Recall 
F1-

Score 
AUC  

NB model: BernoulliNB 0.7828 0.7519 0.7985 0.7745 0.866 

LR C: 0.001, penalty: l2, solver: lbfgs 0.7946 0.7626 0.8120 0.7865 0.873 

ANN 

layers: [1024, 512, 1536], learning_rate: 

0.001, epochs: 10 0.9156 0.9234 0.9080 0.9156 0.976 

SVM C: 100, kernel: rbf 0.9299 0.9372 0.9227 0.9299 0.981 

DT 

criterion: gini, max_depth: None, 

min_samples_leaf: 2, min_samples_split: 5 0.9386 0.9416 0.9351 0.9383 0.951 

KNN metric: Manhattan, n_neighbors: 1 0.9430 0.9246 0.9590 0.9415 0.942 

RF 

criterion: gini, max_depth: None, 

min_samples_leaf: 1,  

min_samples_split: 2, n_estimators: 200 0.9698 0.9837 0.9835 0.9700 0.993 

 

The performance differences between models can be partially attributed to the hyperparameter 

optimization process applied using GridSearchCV and Keras-Tuner. For example, the Random Forest 

model achieved its best results with 200 estimators, ‘gini’ criterion, and default maximum depth, 

which allowed the model to grow deeper trees and capture complex patterns. Similarly, the ANN 

model performed well with a deep architecture consisting of three layers ([1024, 512, 1536] units) 

and a learning rate of 0.001, which balanced convergence speed and accuracy. On the other hand, 

SVM’s strong performance (AUC = 0.981) can be linked to its high ‘C’ value (100) and RBF kernel, 

which are known to enhance class separation in non-linear spaces. These results show that proper 

hyperparameter tuning significantly enhances model accuracy and generalization capability. 

When the training and test data of the study are evaluated and the confusion matrices given in 

Figure 3 are examined, it is possible to see that the matrices are listed from least successful to most 

successful. NB algorithm results in Figure 3 a) LR in Figure 3 b) SVM in Figure 3 c) DT in Figure 3 
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d) KNN in Figure 3 e) RF in Figure 3 f) Confusion matrices of the algorithms are given. These 

matrices clearly present the success level of each classification algorithm and show in detail the 

number of correct and incorrect classifications of each algorithm. Confusion matrices provide a 

valuable guide to understanding which classes algorithms predict better or worse. In this way, it can 

be understood which algorithm requires more improvement in which classes. 

 

 

Figure 3. Confusion matrices for each machine learning a) NB b) LR c) SVM d) DT e) KNN f) RF. 

 

The confusion matrix of the data evaluated in the artificial neural network algorithm is given in 

Figure 4. This matrix visualizes the classification performance of the ANN algorithm in detail. Each 

cell contains actual and predicted class labels, indicating the number of correct and incorrect 

algorithm classifications. 
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Figure 4. Confusion Matrix of ANN. 

 

These quantitative results are further supported by confusion matrices and ROC curves, which 

visually illustrate the classification capabilities of each model. The ROC curve showing the 

classification results is given in Figure 5. The RF algorithm has the highest accuracy and AUC values 

and stands out in classification performance. This can be achieved thanks to the RF algorithm's ability 

to capture complex structures and interactions in the data set. Precision and recall values are also 

quite high, indicating that the algorithm's ability to identify and predict the positive class accurately 

is strong. F1-Score is the harmonic mean of precision and recall values, and a high F1-Score indicates 

that the model has a balanced performance in both metrics. 

 

 

Figure 5. ROC curves of all machine learning algorithms used in the study. 
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When other algorithms are examined, it is seen that ANN and KNN algorithms exhibit high 

performance, especially the recall value of the KNN algorithm exhibits high performance. This shows 

that KNN effectively recognizes examples that need to be classified as positive without missing them. 

The decision tree and SVM algorithm also attract attention with its high AUC value and show that 

the classification ability of the model is strong. Although simpler algorithms such as NB and LR 

appear to perform relatively poorly in accuracy and other metrics, these methods can be advantageous 

in terms of speed and interpretability. 

To evaluate the effectiveness of the proposed study, its results were compared with those 

reported in the literature using similar or identical stroke datasets. Table 2 presents a summary of 

machine learning algorithms used in previous studies and their corresponding highest accuracy rates. 

These studies vary in terms of dataset composition and classification methods, including the Kaggle 

stroke dataset also used in this research. By analyzing Table 2, the relative success of different 

approaches can be observed, and it becomes evident that the proposed model outperforms others in 

terms of classification accuracy. 

 

Table 2. Comparison of stroke classification results. 

Reference Method Dataset Highest Accuracy (%) 

Sergio Penafiel et al., 

(Penafiel et al., 2020) 

DSGD, RF, 

MLP, 

SVM, K-NN, 

NB 

Original Dataset  

non-stroke: 22140, stroke: 5736 

DSGD:85, RF:84, 

MLP:82, SVM:82, K-

NN:79, NB:61 

Tahia Tazin et al., (Tazin 

et al., 2021) 

RF, DT, VC, 

LR 

Stroke Prediction Dataset 

(Kaggle)  

stroke: 249 non-stroke: 4861 

RF:96, DT:94, VC:91, 

LR:79 

Gangavarapu Sailasya et 

al., (Sailasya & Kumari, 

2021) 

LR, DT, RF,  

K-NN, SVM, 

NB 

Stroke Prediction Dataset 

(Kaggle)  

stroke: 249 non-stroke: 4861 

LR:78 DT:66, RF:73,  

K-NN:80, SVM:80, NB:82 

Bahtiar Imran et al., (Imran 

et al., 2022) 

DT, RF, 

AdaBoost 

Stroke Prediction Dataset 

(Kaggle)  

stroke: 249 non-stroke: 4861 

DT:95, RF: 95, AdaBoost: 

91.7 

Utkrisht Singh et al., 

(Singh et al., 2022) 

XGB, RF, 

SVM, 

AdaBoost, DT 

Stroke Prediction Dataset 

(Kaggle)  

stroke: 249 non-stroke: 4861 

XGB:95, RF:92, SVM:91, 

AdaBoost:89, DT:87 

Ting Zuo et al., (Zuo et al., 

2024) 
Dueling DQN 

Stroke screening data from a 

hospital in China 
Dueling DQN: 89 

Muhammad Raihan 

Firmansyah et al., 

(Firmansyah & Astuti, 

2024) 

KNN 
Stroke Prediction Dataset 

(Kaggle)  
KNN: 95 
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Alomoush et al., 

(Alomoush et al., 2024) 

Modified 

Mountain 

Gazelle 

Optimizer 

(mMGO) + 

kNN 

Stroke Prediction Dataset 

(Kaggle) 
mMGO + kNN : 95 

This study 

NB, LR, 

ANN, KNN, 

SVM, DT, RF 

Stroke Prediction Dataset 

(Kaggle)  

stroke: 249 non-stroke: 4861 

NB:78, LR:80, ANN:92, 

KNN:94, SVM:92, 

DT:93, RF:96.8 

 

As seen in Table 2, the RF model in this study achieved an accuracy of 96.98%, which surpasses 

the results of comparable studies such as Tazin et al. (2021), who reported 96%, and Singh et al. 

(2022), who achieved 95% with XGBoost. While the differences may appear small numerically, they 

are significant in medical classification tasks where even marginal improvements can enhance early 

detection and prevention. 

This performance improvement is largely related to the hyperparameter optimization strategies 

implemented in this study. In particular, using GridSearchCV for tree-based models and Keras-Tuner 

for ANN enabled more effective learning by adapting the models to the dataset features. Using 

SMOTE helped address the class imbalance issue in the stroke dataset and improved the 

generalization ability of the models. 

The ANN model in this study outperformed similar models in previous studies such as 

Kansadub et al. (Kansadub et al., 2015), showing an accuracy of 91.56% compared to their accuracy 

of 74%. This improvement is likely due to the optimized learning parameters. Overall, the findings 

show that the performance of traditional algorithms can be significantly improved through model 

design, parameter tuning, and data preprocessing strategies. 

 

5. Conclusions and Recommendations 

 

This work explored that the stroke risk prediction can be significantly improved through the 

application of ML algorithms combined with hyperparameter optimization. Among the models 

evaluated, the RF algorithm outperformed others with the highest accuracy (96.98%) and AUC 

(0.993), indicating its strong capability to model complex relationships within the data. The success 

of RF can be largely attributed to hyperparameter fine-tuning, which enhanced its ability to generalize 

and reduced the risk of overfitting. 

Hyperparameter optimization played a crucial role across all models tested. Classical 

algorithms like LR and NB, although initially less accurate, showed competitive performance after 

proper tuning, suggesting that model selection alone is not sufficient how the model is trained matters 



Karadeniz Fen Bilimleri Dergisi 15(2), 633-647, 2025 645 

equally. GridSearchCV and Keras-Tuner allowed the identification of optimal configurations for each 

algorithm, resulting in noticeable improvements in classification metrics, particularly for RF, KNN, 

and ANN. 

One of the key strengths of this study is the integration of preprocessing strategies such as class 

balancing using SMOTE, which contributed to more stable and fair evaluations. Furthermore, unlike 

many previous studies that relied on default hyperparameters, this research emphasized systematic 

tuning, which appears to be a decisive factor in achieving state-of-the-art results. 

Despite promising outcomes, this study has certain limitations. The dataset used is imbalanced 

and relatively small in stroke-positive samples, even after SMOTE adjustment. In real-world clinical 

environments, datasets may contain noise, missing values, or more complex patterns, which could 

affect model performance. Therefore, it is recommended that future studies validate these results 

using larger, more diverse datasets possibly from hospital records or multi-institutional databases. 

Additionally, while the RF model performed best, it is computationally more expensive than 

simpler models. In time-critical medical applications, lighter models like LR or NB with acceptable 

accuracy and faster inference times might be more appropriate. This highlights the importance of 

aligning model selection with specific application requirements. 

In future studies, researchers can focus on ensemble or hybrid models that combine the 

strengths of multiple classifiers to improve model performance. They can also use more advanced 

hyperparameter optimization techniques such as Bayesian optimization or genetic algorithms to 

further improve model accuracy. The use of deep learning architectures such as Convolutional Neural 

Networks (CNNs) or Long Short-Term Memory (LSTM) networks can also be useful, especially 

when working with temporal or image-based stroke indicators. 

In conclusion, this study confirms that both traditional and advanced ML models can effectively 

predict stroke risk when appropriately tuned and supported by data preprocessing strategies. The 

findings offer a valuable foundation for developing real-time, ML-based stroke screening systems in 

healthcare settings. 
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