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Abstract 

 

This paper analyzes the effects of the chaotic signals used by the brain to perform some cognitive 

functions on the Spiking Neural Network (SNN), defined as the third-generation Artificial Neural 

Network (ANN) that best represents the biological neuron. In the first phase of the paper, neural networks 

with different layers are designed to perform classifications like ANN and SNN. Classification 

performances of these deep networks using the Rectified Linear Unit activation function in ANN mode 

and the Izhikevich Neuron model in SNN mode are presented comparatively. It is observed that SNNs 

perform at least as well as ANNs under normal conditions. In the second stage of the study, the 

classification performances of these deep networks in the SNN mode were analyzed in different chaotic 

environments, and the findings were reported. In light of the findings, it is seen that SNNs can exhibit a 

classification success similar to ANNs and maintain this success rate up to a certain chaotic 

current intensity. Moreover, some levels of chaotic current contribute to the network's classification 

performance. This is the first study to investigate the chaotic environment behavior of SNNs. 
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1. Introduction 

The Artificial Neural Network (ANN) is created by 

placing units, also called artificial neurons, which are 

the mathematical representations of the biological 

neuron in one or more layers. These units use non-linear 

activation functions such as hyperbolic tangent, 

sigmoid, and Rectified Linear Unit (ReLu) that make it 

possible to learn by iteratively changing the weight of 

each neuron in the network. Since the ANN emerged 

with Rosenblatt's Perceptron in 1958, ANN has been 

used in many studies [1]. Although it lost its popularity 

from time to time, ANNs regained their popularity with 

two studies conducted in 2009 and 2012. The first is a 

back propagation ANN study developed for the speech 

recognition problem [2] and the other is an image 

classification study AlexNet [3] for estimating the 

dominant object in the given image. Apart from these, 

ANNs have been used in pattern recognition, two or 

multi-class seizure classification, and human-robot 

interaction systems. It has been reported that the 

classification performance of ANNs is better than other 

classification methods in many studies [4]  

 

Although ANNs developed with inspiration from the 

brain, they do not have an information transmission 

mechanism that has the firing pattern of a real biological 

neuron. This mechanism is defined by the Spiking 

Neural Network (SNN), which is considered to be the 

third generation ANN and is thought to revolutionize 

the field in the future [5] SNNs use neuron models 

expressed with differential equations such as Integrated 

and Fire [6], Hudking-Huxley [7], Izhikevich [8], 

FitzHugh-Nagumo [9], Morris-Lecar Neurons [10]. 

These models frequently used in the field of 

computational neuroscience are the mathematical 

equations that best express the biological neuron today. 

In recent years, more realistic, energy-efficient, and 

physically applicable machine learning studies have 

been carried out by the use of these models with 

machine learning. For example, [11] has presented a 

state-of-the-art review of the development of spiking 

neurons and SNNs, and it has provided insight into their 

evolution through their article [12], introduced a new 

class of SNN, dynamic eSNN, that utilizes both rank-

order learning and dynamic synapses to learn spatial and 

spectro-temporal data in a fast, on-line mode with their 

study. Although most of the SNN-based studies are 

based on image classification [13], there are also studies 

mailto:eerkan@bartin.edu.tr
https://orcid.org/0000-0002-2386-1271


 

              Celal Bayar University Journal of Science  
 Volume 20, Issue 4, 2024, p 92-100 

 Doi: 10.18466/cbayarfbe.1538362                                                                                                                    E. Erkan 

 

93 

on electroencephalography (EEG) classification. In a 

study, it was compared spiking Neurons with other 

traditional classifiers commonly used in the recognition 

of motor imagery tasks [14]. [15] presented brain-

inspired SNN architecture to explore the modeling of 

neural networks underlying the tinnitus symptom by 

using EEG. In another study, [16] proposed a novel 

method of using the SNNs and the EEG processing 

techniques to recognize emotion states. [17] introduced 

a biologically plausible speech recognition approach by 

using an unsupervised self-organizing map (SOM) for 

feature representation and event-driven SNN for 

spatiotemporal pattern classification. SNNs were also 

used for acoustic modeling and evaluated their 

performance in a few vocabulary recognition tasks [18].  

 

In ANNs, the number of layers of the network expresses 

the depth of the network. For example, AlexNet is 

known as a deep network consisting of 8 layers and 

millions of parameters. Equipped with trainable 

parameters in multiple layers, the deep learning 

architecture has shown outstanding performance in 

ANN [19]. The same architecture can be adaptable to 

SNN. Realizing a deep SNN comparable to traditional 

Deep Neural Networks (DNN) is a challenge due to 

hardware constraints. Therefore, the classification 

performance of SNNs is not as good as the classification 

performance of DNNs [20].  

 

On the other hand, chaotic regimes induced by the 

environmental influences in the firing activity of 

neurons have recently attracted the attention of 

researchers [21]. In a study, it has been shown that sleep 

is governed by stable self-sustaining oscillations 

whereas the silent wake state and active wakefulness 

state are governed by both disordered oscillations and 

chaotic dynamics [22]. In [23], it has been noted that the 

Onchidium Pacemaker neuron exhibits chaotic spiking 

behavior when exposed to certain periodic signals. With 

the emergence of chaotic firings in neurons, studies 

have been conducted in computational neuroscience 

examining the dynamics of neurons responding to 

stimuli in a chaotic environment [24]. It has been shown 

that some cognitive functions in the brain can be 

performed in the presence of optimal chaotic current. 

For instance, [25] showed that a bistable system can be 

steadily designed to certain logic gate operations at the 

ideal chaotic signal intensity in computational 

neuroscience. As far as it is known, the chaotic 

environment behaviors of deep SNNs have not been 

examined yet. With this motivation, in the first phase of 

this study, which is carried out in two stages, neural 

networks with different layers that can classify in ANN 

and SNN modes are introduced to classify images and 

brain signals separately. The classification results of 

these networks are analyzed comparatively in both 

modes. In the second stage of the study, the 

classification performances of designed networks 

activated by Izhikevich neurons in SNN mode were 

tested in chaotic environments with different chaotic 

current intensities. The results are compared in both 

modes of the networks with the same layer structure and 

the number of neurons. According to the author’s best 

knowledge, this is the first study that investigated the 

classification success of brain and image signals by 

using deep SNNs in a chaotic environment. 

 

The remainder of this paper is organized as follows: 

Section 2 introduces the mathematical structure of the 

feature extraction method, neuron, and network models. 

Section 3 includes the comparison of the ANN and SNN 

modes of the neural networks are designed and gives the 

classification results of deep biologically capable SNNs 

in a chaotic environment. Conclusions are drawn in 

Section 4. 

 

2. Materials and Methods 

 

2.1. Datasets 

 

The methods proposed in this study are tested on two 

different datasets containing EEG and image data. 

 

2.1.1. ECoG Dataset 

 

The electrocorticography (ECoG) dataset consisting of 

brain signals was recorded with 64 channels in BCI 

competition III. During the recording phase, the subject 

made imaginary movements with his left little finger or 

tongue. ECoG signals were acquired with electrodes on 

the contralateral (right) motor cortex, with a 3-second 

time series and 1000 Hz sampling rate, and amplified to 

microvolt levels. Every trial consisted of either an 

imagined tongue or finger movement. The training 

dataset contains 139 tongue and 139 finger class labeled 

data [26]. The performances of proposed neural 

networks were evaluated on the ECoG dataset for motor 

imaginary tasks. 

 

2.1.2. MNIST Dataset 

 

It is also tested the performance of the neural networks 

in a digit recognition task. For this reason, data samples 

were used from the MNIST database, which contains 

centered, grayscale, 28x28 pixel images of handwritten 

numbers 0-9 [27]. The training dataset contains 10000 

samples, and the test dataset contains 60000 samples. It 

trained the system with 400 samples of the MNIST 

dataset in 200 iterations for the 4-digit classification 

task. MNIST is a numeric character database popularly 

used for machine learning research. The classes used in 

the MNIST dataset are given in Figure 1 as a 

representation. 
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Figure 1. MNIST dataset sample for 4 class 

2.2. Continuous Wavelet Transform 

 

Feature extraction of the ECoG dataset is based on 

Continuous Wavelet Transform (CWT), which is a 

technique that allows to model variations of an entire 

signal, within the scale-time domain [28]. Continuous 

wavelet transform (CWT) is often used in the analysis 

of time-frequency information for engineering and real-

life problems. It is preferred in signal analysis because it 

preserves time-frequency information. A basis function, 

named the mother wavelet (ψ(t)) is formulated in 

Equation 2.1. The 𝑠 and 𝑛 represent the scale and 

position of the signal respectively. Using scaled and 

dilated forms of the ψ(t), the Continuous Wavelet 

Transform (CWT) decomposes a finite-energy signal, 

x(t). The CWT coefficients obtained by decomposing 

x(t), are given in Equation 2.2. ψs,n
∗ (t) denotes the 

complex conjugate of the mother wavelet function. The 

x(t) is a finite-energy function, that is, x(t) ∈ L2(R). 

Low-frequency information is obtained at larger scales 

while high-frequency information is obtained at smaller 

scales [28]. 

 

ψs,n(t) = s−1/2ψ (
t−n

s
)                                            (2.1) 

CW𝑇𝑥(𝑠, 𝑛; ψ) =< x(𝑡), ψ𝑠,𝑛(𝑡) > 𝑠−1/2 ∫ 𝑥(𝑡)ψ𝑠,𝑛
∗ (𝑡)𝑑𝑡

+∞
−∞                                          

(2.2) 

 

CWT is used for feature extraction for the ECoG 

dataset. EEG signals are converted to image format with 

this method. 2-D time-frequency images called a 

scalogram, represent the square of CWT. The time-

frequency images are used as input for the proposed 

model. 

 

2.3. Neuron Model (Izhikevich) 

 

The change of the cell membrane potential of the 

Izhikevich neuron with time is given by Equation 2.3 

[8]. 

 
𝑑𝑉

𝑑𝑡
=

𝑘(𝑉 − 𝑉𝑟)(𝑉 − 𝑉𝑡) − 𝑈 + 𝑝𝐼 + ϵ𝐼𝑐ℎ𝑎𝑜𝑠

𝐶
        (𝟐. 𝟑) 

 
𝑑𝑈

𝑑𝑡
= a(𝑏(𝑉 − 𝑉𝑟) − 𝑈)   

If   V ≥ 𝑉𝑝𝑒𝑎𝑘 ,  thenV ← 𝑐,  U ← 𝑈 + d                  (2.4) 

 

The 𝑉, C = 100 μF/cm2, Vt, Vr, 𝐼, 𝑈 express the 

membrane potential, the membrane capacitance, the 

instantaneous threshold potential, the resting membrane 

potential, the input current, and the recovery current 

respectively. The model's a, b, c, and d parameters in 

Equation 2.4 are also expressed as recovery position 

constant, resistance for input, voltage reset parameter, 

and the downstroke current during the spike. The 

Ichaos = ϵx represents chaotic current. The ϵ is the level 

of chaotic activity and 𝑥 is a chaotic signal source [29]: 

 
𝑑𝑥

𝑑𝑡
= σ(𝑦 − 𝑥),

𝑑𝑦

𝑑𝑡
= px − y,

𝑑𝑧

𝑑𝑡
= xz − λ𝑧(𝟐. 𝟓) 

 

The time series of chaotic signal 𝑥 generated by the 

Lorenz system and 𝑥 − 𝑧 phase plane diagram of the 

chaotic Lorenz system are given in Figure 2 a and b  

respectively. It can be seen in Figure 2 that the 𝑥 signal 

is in a chaotic oscillation state. 

 

 
Figure 2. (A) Time series of chaotic signal 𝑥 ; (B) 

Phase diagram of chaotic Lorenz system. 

The Izhikevich neuron model exhibits different firing 

patterns at different parameter values. In this study, 

Class 1 excitable type Izhikevich neuron is used. The 

firing rates (FR) produced by the neuron in response to 

different input currents are given in Figure 3. In the 

inset of Figure 3, it is seen that the neuron can produce 

spikes when currents above approximately 51.4  μA are 

applied. To make the model more similar to the ReLu, 

an external current (51.4  μA) is applied to the model. 

Additionally, the model is moved to a more appropriate 

input output space by multiplying the input current I and 

the firing rate FR by the coefficients p and q, 

respectively. A similar modulation process has also 

been shown in the brain in an experimental study with 

mice [30]. 
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Figure 3. Firing rates of the model

 
Figure 4. The output of Rectified Izhikevich neuron. 

 

In the study, this model revised with 𝑝 and 𝑞 

coefficients is called the corrected Izhikevich model. 

Figure 4 is shown the normalized input and output of 

the corrected Izhikevich neuron by choosing the 𝑝 and 𝑞  

values as 104 and 10−3, respectively. The FR of the 

neuron is obtained by calculating the number of spikes 

produced by the neuron membrane potential in response 

to the 𝐼 for 1000 ms using the Euler method. 

 

2.4. Deep Neural Networks 

 

Figure 5 and Figure 6 show the structure of 8 and 4-

layer deep neural networks which exhibit ANN or SNN 

behavior according to the activation mechanism. The 

neurons that make up the network are activated by ReLu 

or rectified Izhikevich neurons depending on the mode 

of the network. In SNN mode, the rectified Izhikevich 

neuron produces FR as output in response to input, the 

rectified Izhikevich neuron produces FR as output in 

response to input 𝐼. The data given as a column matrix 

at the input of the network express the current 𝐼. At each 

layer of the network, the current I from the previous 

layer is multiplied by the weight w of the network 

represented by green prisms, normalized by pink 

prisms, and transformed into a nonlinear form by the 

activation function represented by blue prisms. The 

classification result is gained at the softmax output, 

which is the last layer of the network. 

 

 

 

 

 

Figure 5. The proposed deep neural network model with 8 layers. 
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Figure 6. The proposed deep neural network model with 4 layers.. 

 

3. Experimental Results 

 

The ECoG and MNIST datasets are classified by using 

proposed neural networks that can classify in both 

modes. For the ECoG dataset, the image feature vectors 

of 28x28x3 are created from the Wavelet scalogram of 

each trial for the three channels (channel numbers 12, 

38, and 29) determined in a previous study [31]. The 

weights represented by 𝑤 of the network layers are 

initially assigned randomly and updated according to 

the error rate after each iteration. The learning rate α is 

chosen as 1x10−6 and 5x10−4 for ECoG and MNIST 

datasets, respectively. Experiments are carried out with 

different learning rates in both types of networks and 

experiments are continued with the learning rates that 

achieved optimum classification success. The 

determined learning rates can be considered as 

constraints for the study. Experiments are performed in 

MATLAB 2021b.

 
Figure 7. The classification results of the ECoG dataset, 

(A) accuracies for ANN and SNN modes, (B) Kappa 

values for ANN and SNN modes (𝛼 = 1𝑥10−6). 

Figure 8. The classification results of the MNIST 

dataset, (A) accuracies for ANN and SNN modes, (B) 

Kappa values for ANN and SNN modes. (𝛼 = 5𝑥10−4) 

The classification results are given in Figure 7 A and B, 

for the ECoG dataset. Figure 7A is shown that the 

network exhibits similar classification results in SNN 

and ANN mode. These classification results are 

supported by Kappa values of 0.70 and above that 

represent significant classification harmony given in 

Figure 7 B. Similarly, the MNIST dataset with 4 classes 

is classified by the ANN mode of the deep neural 

network given in Figure 6. The high classification result 

( 98%) supported by Kappa value (0.97) is obtained 

and presented in Figure 8. Classification accuracies and 

Kappa values for 200 iterations are shown in Figure 8 A 

and B. 

 

In the first phase of the study, it is seen that 8 and 4-

layer deep neural networks are exhibited similar 

classification results for both modes. One of these 

parameters is the chaotic current, which is thought to be 

used in the execution of some cognitive functions in the 
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brain [32]. In line with this idea, in the second stage of 

the study, 4 different intensities of chaos currents were 

applied to the rectified Izhikevich neurons in these 

neural networks to analyze the classification results of 

the deep SNNs with biological capability in a chaotic 

environment. The chaotic current applied to the 

Rectified Izhikevich neuron is demonstrated in Figure 9. 

 
Figure 9. The demonstration of chaotic current on 

rectified Izhikevich neuron. 

This section, it is aimed to investigate the effects of the 

chaotic environment on the classification performance 

of the designed SNNs. The average FRs of the rectified 

Izhikevich neuron as a result of chaotic currents of 

varying intensity acting on it are shown in Figure 10 in 

the range [−1, 1]. As seen in Figure 10, the consistency 

of the firing pattern decreases inversely with the chaotic 

current intensity applied to the neuron. While this 

consistency is highest with chaos level ϵ = 0.001, it is 

lowest with chaos level ϵ = 0.1 which represents the 

highest chaotic current intensity.  

 
Figure 10. Firing patterns of rectified Izhikevich neuron 

exposed to different chaotic signal levels. 

The classification accuracies, Kappa values, and their 

average classification accuracies of the SNN consisting 

of Izhikevich neurons exposed to these different levels 

of chaotic currents are given in detail in Figure 11, 

Figure 12, and Table 1, respectively for the ECoG 

dataset. When both figures and Table 1 are examined, it 

is seen that the SNNs perform almost the same or even 

more successful classification compared to an ANN 

with the same structure activated with the ReLu 

function, with the selected classification features. More 

importantly, it has been observed that this classification 

result is maintained and slightly increased at the optimal 

chaotic environment level (ϵ = 0.01). It is seen that the 

classification performance decreases considerably at 

chaotic current intensities above the optimal level. 

 
Figure 11. The classification accuracies of the neuron 

model with ECoG dataset in different level chaos 

mediums. (𝛼 = 1𝑥10−6) 

 

 

Figure 12. The classification Kappas of the neuron 

model with ECoG dataset in different level chaos 

mediums. (𝛼 = 1𝑥10−6) 
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Table 1. Comparison of overall accuracy for ECoG 

dataset in different chaotic mediums. 

Neuron Type* Mean 

Accuracy% 

Mean 

Kappa 

ReLu 86.00  0.72 

Izhikevich without 

chaos 

84.67  0.69 

Izhikevich with 

chaos ϵ = 0.001 

83.17  0.66 

Izhikevich with 

chaos ϵ = 0.01 

85.33  0.71 

Izhikevich with 

chaos ϵ = 0.05 

61.33  0.23 

Izhikevich with 

chaos ϵ = 0.1 

51.00  0.02 

   

 

Similarly, the classification accuracies, Kappa values, 

and their average classification accuracies of the SNN 

consisting of Izhikevich neurons exposed to different 

levels of chaotic currents are given in detail in Figure 

13, Figure 14, and Table 2, respectively for the MNIST 

dataset. When both figures and Table 2 are examined, 

results that are in line with the results achieved from the 

ECoG dataset are obtained. The 4-layer deep neural 

network given in Figure 6 produced successful results 

like ANN mode, up to a certain chaotic signal level (ϵ =
0.01) in SNN mode but it could not maintain the 

classification performance at chaotic levels above ϵ =
0.05. These results are confirmed by the Kappa values 

given in Figure 14 and the averages given in Table 2. 

 

 
Figure 13. The classification accuracies of the neuron 

model with MNIST dataset in different level chaos 

mediums. (𝛼 = 5𝑥10−4) 

Figure 14. The classification Kappas of the neuron 

model with MNIST dataset in different level chaos 

mediums. (𝛼 = 5𝑥10−4) 

Table 2. Comparison of overall accuracy for MNIST 

dataset in different chaotic mediums 

Neuron Type Mean 

Accuracy% 

Mean 

Kappa 

ReLu      98.00        0.97 

Izhikevich without 

chaos 

     98.00        0.97 

Izhikevich with 

chaos ϵ = 0.001 

     98.00        0.97 

Izhikevich with 

chaos ϵ = 0.01 

     98.00       0.97 

Izhikevich with 

chaos ϵ = 0.05 

     96.33       0.95 

Izhikevich with 

chaos ϵ = 0.1 

     40.17       0.20 

   

 

In Figure 14, classification accuracies of 8 and 4-layer 

SNNs that classify ECoG and MNIST datasets are given 

according to the chaotic current levels applied to the 

neurons in the network. When Figure 15 is examined, it 

is seen that at a certain chaotic current level (ϵ = 0.01), 

the classification performance increases slightly, at least 

the classification performance is preserved. The chaotic 

current effect is seen more clearly in the classification 

results of the ECoG dataset. The classification success 

of the SNN is lower in regions outside the detected 

chaotic current level (ϵ = 0.01). 
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Figure 15. Classification accuracies according to 

chaotic levels. 

4. Conclusion 

 

In the first phase of the paper, neural networks with 

different layers are designed to perform classifications 

like ANN and SNN. These neural networks are 

successfully tested on motor imagery and image 

datasets.  In the first phase of the study, a classification 

success similar to that of the ANN mode is observed in 

the SNN mode. In the second stage of the study, starting 

from the idea that some cognitive brain functions are 

realized via irregular chaotic neuronal firings [32], the 

classification performance of the deep SNNs consisted 

rectified Izhikevich neurons is investigated in different 

chaotic environments. To the best of our knowledge, the 

present study is the first to analyze the classification 

performance of a deep SNN in a chaotic medium. In 

light of the results obtained, it is seen that the chaotic 

current applied to the neurons in the network 

significantly reduces the information processing 

capability of the network, and this situation is inversely 

proportional to the intensity of the applied chaotic 

current. It is noticed that deep SNNs can tolerate the 

negative effects of chaotic current up to a certain level 

and even increase the classification performance at 

some chaotic current levels (ϵ = 0.01). The highest 

classification accuracies are achieved at this chaotic 

signal level in both of the data sets used in the study. 

However, the information processing ability of the 

SNNs exhibits rapid declines above this value. It is also 

predicted that a reasonable level of chaotic current will 

contribute to preventing the overfitting of neural 

networks. Since the SNNs can express the biological 

neuron more realistically, these designed SNNs offer the 

opportunity to investigate the effect of different 

parameters such as chaotic signals on the neuron. In 

future studies, it is aimed to investigate similar effects 

with different data sets on complex neuron models such 

as Hodgkin Huxley, which better represent the 

biological neuron. 
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