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Abstract

Rock structures built in rock masses will remain under constant load during the process starting
with the construction phase and continuing throughout their service life. Particularly, medium
strength rocks will undergo time-dependent deformation under constant load after the commence-
ment of mining or civil engineering works. Following the beginning of deformations start with the
closing of the discontinuities, the rock material will undergo deformation depending on the load
of which it is exposed to. In this case, the deformation properties of the rock mass can become im-
portant for the stability of an engineering structure. Generating empirical equations in the design
of rock structures will pave the way for more practical designs as compared to more expensive
and time-consuming in situ testing. These equations use laboratory-acquired uniaxial compressive
strength and elastic modulus values of rocks as parameters. These formulas produced for design
can be used safely in engineering. In this study, time-dependent deformation properties under
constant load on four different and medium strength rocks from different locations were analyzed.
The results showed that rocks of medium hardness deform differently under various constant
loads. In addition, a significant time-load-strength-deformation function was obtained from the
results of laboratory experiments performed on different rock types under various constant loads.
Key Words: Deformation mechanism, hypersurface approximation, medium strength rocks

Ozet

Kaya kiitleleri igine insa edilen kaya yapilari, insaat asamasmdan baslayarak hizmet omrii boyunca
devam eden siirecte siirekli yiik altinda kalacaktir. Ozellikle orta mukavemete sahip kayaclar, madenci-
lik veya insaat mithendisligi ¢alismalarimin baslamasindan sonra sabit yiik altinda zamana bagh defor-
masyona ugrayacaktwr. Stireksizliklerin kapammuyla birlikte deformasyonlar basladiktan sonra kayag
malzemesi maruz kaldigi yiike bagl olarak deformasyona ugrayacaktir. Bu durumda, kaya kiitlesinin
deformasyon ozellikleri miihendislik yapisimin stabilitesi agisindan 6nemli hale gelmektedir. Kaya yapi-
larimin tasaruminda ampirik denklemlerin iiretilmesi, pahali ve zaman alict yerinde testler yerine daha
pratik tasarimlarin oniinii acacaktir. Bu denklemler, kayaglarin laboratuvarda elde edilen tek eksenli
basing dayanimi ve elastisite modiilii degerlerini parametre olarak kullanmaktadir. Tasarim igin tiretilen
bu formiiller miihendislikte giivenle kullanilabilmektedir. Bu ¢alismada, farkli konumlardaki dort farki
ve orta dayamml kayamn sabit yiik altinda zamana bagli deformasyon ozellikleri analiz edilmistir. Elde
edilen sonuglar, orta sertlikteki kayaglarin ¢esitli sabit yiikler altinda farkl sekilde deforme olduklarim
gostermistir. Ayrica, farkl kayag tiirleri tizerinde ¢esitli sabit yiikler altinda yapilan laboratuvar deneyle-
rinin sonug¢larmdan énemli bir zaman-yiik-dayanim-deformasyon fonksiyonu elde edilmistir.

Anahtar Kelimeler: Deformasyon mekanizmasi, hiperyiizey yaklasimi, orta dayamimli kayalar.
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1. Introduction

In a rock engineering design, the properties of the rock should be appropriately represented.
Many researchers developed empirical equations widely used instead of in situ tests, as in situ
tests are expensive, time consuming and inconsistent (Palmstrém and Singh 2001). Therefore,
it became more common to determine the deformation modulus of the rock mass with the
empirical equations (Nicholson and Bieniawski 1990; Mitri et al. 1994; Hoek and Diederichs
2006; Aksoy et al. 2012; Aksoy et al. 2022). The other parameter is the rock mass strength,
which can also be determined by empirical equations. The Uniaxial Compressive Strength
(UCSI) of intact rock is a parameter in empirical equations (Cai et al. 2007; Dinc et al. 2011,
Kalamaris and Bieniawski 1995; Brown 2008; Aksoy et al. 2018).

Barla (2002) stated that some rocks have high deformation ability which may take a long time.
The time dependent behavior of the rock mass in fractured rocks is very important (Bieniawski
1973). In this study, the deformation behavior of four different rocks of medium strength under
various loads was investigated. Finally, meaningful equations representing the time-load-
strength dependent deformation properties of the rocks were introduced.

2. Material and Method
A hydraulic servo-controlled loading machine was installed to analyze the deformation
behavior of rocks under constant load and over time. (Fig. 1)

Fig. 1. Hydraulic servo controlled loading machine

After preparing the samples according to ISRM Recommended Method (2007), various

constant loads were applied to samples taken from various rock types. The level of constant
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load to be applied was determined as 50%, 60%, 70% and 80% of the UCSi value of the rock.
The set-up system (Fig. 2) was able to measure the deformations in the sample. The experiment

was considered to be completed when no more deformation was recorded on the sample.

A/D Converter RS485

+180000 Steps Keyboard/Display
8x Digital In

8x Digital Out
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24avDC/30W
EDC 222V:
230V AC

Drive Interface

Fig. 2. Deformation recording system
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This study aims to estimate the deformation that occurs over time under constant load in various
rocks. The environmental parameters related to tests such as temperature and humidity were
kept constant during the experiments. The detailed information regarding the rock samples used
in this study is given in Table 1, while the results of the tests are illustrated in Table 2. Within
the context of the study, deformability tests were performed on a sum of 64 rock samples with
medium-strength and their average results are presented in Table 2.

Table 1. Types, properties and lithology of the rocks tested

Sample : : . -
N Project Rock Properties Lithology and Rock Description
0
UCS;: 28.40 MPa
Tavsanl- o ]
. Ei: 3210 MPa Gray-dark gray, generally jointed, hard-medium
Omerler
TC v: 0.33 strength, Claystone,
Underground
) 0;:39.92 GSl: 45
Coal Mine
¢i:0.297 MPa
UCSi: 27.02 MPa
Soma-Igiklar Ei: 4900 MPa Gray-dark gray, locally jointed, generally massive,
IC Underground v: 0.31 hard-medium-weak strength, Claystone
Coal Mine ®;: 38.94 GSI: 50
ci: 0.793 MPa
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UCS;: 34,26 MPa .
Homogeneous structure, hard and generally massive.
Soma-Isiklar Ei: 1560 MPa ]
Gray-light gray, and when they are broken, they turn
IM Underground v: 0.26 . .
) into a light gray color called ash color. They are
Coal Mine ®;: 47.70 ) )
medium thick layers., Marl, GSI: 55
ci: 0.445 MPa
UCS;: 47.11 MPa Gray-light gray, generally massive, locally jointed,
Soma-Isiklar Ei: 4420 MPa clay infilling, hard, sometimes medium, Limestone,
IL Underground v: 0.27 GSI: 60
Coal Mine ®;: 53
ci: 0.862 MPa

UCS;: uniaxial compressive strength, E;: elastic modulus of intact rock, v: Poisson’s ratio, ®@;: internal
friction angle of intact rock, ci: cohesion.

Tab. 2. Time-Dependent Deformations for Rocks under Constant Load

Time - Deformation
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— 180
5 160
2 140
= 120
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E
]
IC Claystone £ 2
40
20
2 L
0328 027 026 0325 028 o8 0,5 0,56 0,57 068 069 07
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_ 120
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F BO
IM Marl £ -
= a0
0
o
0,015 -0.013 0,011 0,009 0,007 0005 0015 0,02 0,025
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—e—45KN —e—S0KN —e—S5KN —e—GOKN —e—45KN —e—SOKN —e—5S5KN —e—GOKN
Time - Deformation
220
200
180 |
= 160 "
Fl 140 "
£ 120 v
. F 100 .
E 20
Imestone £ e
40
o, = |
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3. Hypersurface model for time-dependent deformation behavior of rocks

The results of the time dependent deformation tests under constant load and uniaxial
compressive strength of rocks were evaluated and the new mathematical model was developed
to define load — time — uniaxial compressive strength hypersurface of rock deformation

characteristics.

In this section, multivariable function u = f(x,v,z) is defined on R* for the function with
three independent variables x,y,z and u the dependent variable. The hypersurface u =
f(x,y,z) is considered to approximate over a region that is gridded by (xi,yj,zk) on R3
and w;;, = f(x;,;,2,) data given for the function of three variables at the distinct points in
the solid rectangular region where x is load (kKN), y is time (h), z is the uniaxial compressive

strength (MPa) and u is horizontal or vertical deformation (mm).

The partial derivative of the function having three variables is its derivative with respect to one
of those variables where the others are held constant. Partial differentiation is used when we
take one of the tangent lines of the graph of the given function and obtain its slope. For medium-
strength rocks, the rate of change in the deformation with respect to the load or the time is
linearly proportional to the deformation and their slopes are positive. The rate of change in the
deformation with respect to the strength is inversely proportional to the deformation and its

slope is negative. Accordingly, the following definition is:

Let

a—u=Lnb.u>O,a—uanc.u>0anda—uand.u<0 1)
ox ay 0z

where u is positive variable b, c and d are positive constants. The total differential du of the

function f(x,y,z) is

du=§—£dx+g—£dy+3—’; dz . ()
This differential is rewritten as

i—u = ILnb.dx + Lnc.dy + Lnd.dz 3)
and the general solution of this differential is obtained as

Lnu =ILnb.x + Lnc.y+ILnd.z+ k 4)

u = elo8eb x+logecy+loged.z+k — (eloge b )x(eloge c )y(eloge d )Zek (5)
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and
u=f(xy,2) =ab*c’d* (6)

where a = e* and k is the integral constant.

Given a hypersurface u = f(x,y,z) to approximate over the solid rectangular region that
wije = f(x0, ), z,) = a b¥ic¥id?r passes through each point in the solid rectangular region.
The problem of the hypersurface approximation satisfying the data with minimum error is

called finding the most optimal function.

Let us suppose that there exists a nonlinear hypersurface with independent variables load, time
and uniaxial compressive strength that are called x,y and z respectively, and dependent
variables horizontal and vertical deformations named as wu;, = a, b, c,¥dy*and u, =
a, b,*c,”can be formulated. Finally, the least squares method can be used for determining the
coefficients a;, and a, and parameters by, cy, dy, b, ¢, , d,, which are obtained by various
methods using the generalized inverses, especially the least squares method which is applied
to the best approximate solution for the inconsistent system of the linear equations (Penrose
1955; Bazaraa et al. 1993).

These hypersurface can be transformed to the linear forms as follows:

Upo=A,+Byx+ Chy+Dpz =g(x,y,2) @)
and

U,=A4,+B,x+C,y+D,z=h(x,y,2) (8)

where U, = Lnu,, U, = Lnu,,, A, = Lna,, A, =Lna,, By = Lnby,B,=Lnb,, C,=
Lncy, C, = Lnc,, D, = Lndj, and D,, = Lnb,,.

We now consider Eq. 7 and EQq.8 to approximate over the solid rectangular region. Assumed

that Unijp = 9(x,yj,2) and Uy, .. = h(x;,y;,2) data are given for the function of three

ijk
variables at the distinct points in the solid rectangular region, there are the best hyperplanes

approximation on R*,

In our experimental study, there have been about 9167 measurements involving horizontal and

vertical deformation values of each rock. The problem is formulated for using data as
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Ah + thi + Chyi + Dth' = Uhi’ for i = 1,2,..,n (9)

and
Av + B,,xi + vai + Din = Uvi ,for i=12,..,n (10)

where n is experimental number of data. Eq. 9 and Eq.10 can be defined the matrix equation,

which is used to find the coefficients as follows:

_1 Xl 3’1 Zq 7 -Ah- -Uhl-
e | b I R (12)
: H H H Ch :
_1 Xn Yn Znl -Dh- -Uhn-
and
-1 x1 yl Zl- -A‘U -le
R |l B et (12)
: : : : C, :
_1 le yn ZTL- -DU -U‘V'I'l
or
AWh = th (13)
Aw, =t, (14)
1 xl yl Zl Ah A‘U Uhl le
Z B B .
where A = X2 y:Z 2wy, = Ch cwo =t = U?Z , t, = U}’Z and A isan
h v . .

1 X Yo Zn Dy, D, Unn Upn
n X 4 coefficient matrix with rank 4, w,, and w,, are 4 x 1 vectors of the unknown parameters
and coefficients, t; and t,, are n X 4 vectors consist of the horizontal and vertical deformations,
respectively. The rank of n X 4 rectangular matrix is 4 and the rank of the augmented matrix
[A: ty]or[A: t,]is 5. Since systems have the same coefficient matrix, the matrix equation

to find the best approximate solutions is defined as follows:
A 01[Whr]_[tn
0 A] [wv]'[tv] (15)

ARL)w=t (16)
. . . . Wh . th .
where I, isa 2 X 2 identity matrix, w = [W ] is the 8x 1vector and t = [t ] isthe2n x 1
v v

and ® is the Kronecker product. Furthermore, the optimal solution is the one that has the
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minimum length one of errors ||(A ® I,)w — t|| . This solution with minimum norm is also the

best approximate the least squares solution of any inconsistent linear system (Penrose, 1956).

The least squares method is applied to the system defined in Eq.16 as follows:
Pw) = (A Iw —t||> = W'(ATQL)—t") (AR I)w —t)=¢"e (17)

is to be minimized respect to w coefficients elements of the matrix where AT is the transpose

matrix of A and & is 2nx 1 error vector. The least squares estimator must satisfy
VP(w) = Z—: =2(ATA® L,)w — 2ATt = 0 (18)
which simplifies to the normal equation
(ATA ® I,)w = ATt. (19)
The Moore-Penrose generalized inverse A* of A is obtained by using the normal equation and

the unique solution of the normal equation is found in the form

A" 0 ]
t
0 A

where At = (AAT)"1AT s the Moore-Penrose inverse A* of A. Using Eq. 20, the vectors wy,

w=(ATA TR I,)ATt = (20)

and w,, of the unknown parameters and coefficients are computed easily as
w, = Att, = (AAT)"1ATt, and w, = A*t, = (AAT)"1AT¢,, (21)

The coefficients a;, and a,, and parameters by,,cy,, dy, b, c,, d,, are calculated using Eq.21.
Finally, the coefficient and parameters of the horizontal and vertical deformations formulas for

4 different medium-strength rocks types are computed, respectively.

4. Results and discussions

Consequently, it is seen that the amount of deformation tends to increase with increasing
constant load. When the graphs are scrutinized, it is seen that deformation curves (horizontal
and vertical) generally form a cluster. Deformation curves generally cluster at loads of 50%,
60%, 70% of the UCS; of the rock. In experiments performed at 80% of the UCS; of the rock,
there is no change in deformation characteristic of the sample, but there is a visible rise for
deformation which it is exposed to.

UCS; is used as a parameter in the formulas when the strength of rock masses UCS,,, is

calculated. Nonetheless, when the adequacy of rock mass strength is questioned in rock
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engineering designs, time and load on the rock mass are not considered. From this point of
view, the strength of the rock material gains more importance. Although the deformation
characteristics differ according to the discontinuity properties (Carter et.al., 2007; Carvalho
et.al., 2007; Komurlu et al., 2017; Diederichs et.al., 2007), the amount of time-dependent
deformation of the rock material under constant load and its characterization are significant in
terms of stability. Especially, it should be considered while determining the deformation model
of the rocks in numerical modeling analysis. While describing the deformation characteristics
of the rock mass, it is useful to identify deformation behavior of rock masses under various

loads.

The characterizations of the rock mass deformation dependent on time, load and uniaxial
compressive strength were determined for four different medium-strength rock samples. The
characterizations of the function with four variables were determined as a mathematical model.
The defined hypersurfaces were stated with exponential function formulas and a mathematical
model was developed to define load-time—uniaxial compressive strength hypersurface of rock

deformation and the multivariable functions u,, = a,, b,*c,”d,” and u, = a, b,*c,”d,” are

as follows:
11,08501 12,56977
0,01014 0,00166
— + — ) _ + _ )
Wi = A"t = 00091 | Wr = AT = |0,000477
—0,47701 —0,48055

From Eq. 7 and Eq. 8, the hypersurfaces are obtained as

u, = 65186,77943(1,01019)*(1,00091)% (0,620634)* (22)
and
u, = 287727,53882 (1,00166)*(1,00048)¥(0,61844)* (23)

As a result of the performed experiments, an equation was developed as explained in the
previous section for the purpose of determining time-dependent deformation. It should be noted
that the equation has unique constants for each rock type. Verification of the derived equations
are given Eq. 22 and Eq.23.The correlation between the deformation values predicted by means
of equations and the measured deformation values that were obtained from the results of the

laboratory tests belonging 64 different rock samples, is given in Figure 3.
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Fig. 3. Performance of the developed equation for horizontal and vertical deformation

When the graphs that illustrate the result of horizontal deformations obtained from the derived
equation are scrutinized, it can be noted that accuracy ratios were calculated by the equation
0,9143 and 0,9345 for horizontal and vertical deformations, respectively (Figure 3). The
amount of deformation measured for the same conditions under a constant load of 30kN (80%
of the UCS;) was nearly 0,391 mm while the final deformation amount after 168 hours under
a constant load of 25 kKN (70% of the UCS;) was 0,377 mm in TC sample. The same rock
underwent 96% more deformation under a constant load of (30kN). In TC, accuracy ratio
happened to be 0.9345 when results obtained from the equation were analyzed.

As the amount of load applied to the rocks increases, the amount of deformation will also
increase depending on the UCSi and type of intact rock. However, there will be no change in

the behavior of deformation.

5. Conclusions

The studies in literature about time-dependent deformation behavior of rocks under constant
load is limited. Since the rock structures remain under constant loads for a long time, the loads
are crucial for long-term stability of rocks. The deformation behavior of the rock mass is also
important for the safety of the design. In this research, an exponential empirical formula was
developed to determine the deformation behavior of medium strength rocks under various
constant loads. This formula predicts deformation with a high degree of accuracy when
analyzed on the basis of rock type. The deformation estimated by this equation can be used to
evaluate the amount of deformation allowed for the rock structure. In other words, all the
characteristics of the rock mass, including the weakness, are taken into account when
determining the rock class of the rock mass. The UCSi of the rock is an important parameter in
many rock mass classification systems, being a constant derived from laboratory experiments

as well as the elasticity modulus. The most important contribution of this research is to propose
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a new empirical formula for the estimation of rock deformation under different constant loads
to which medium strength rock is exposed over time in rock structure design. This study will
serve to guide practical mining and civil engineers working in underground conditions. The
most significant contribution of the paper will be in tunnel construction projects, espacially in
the phase of selecting excavation techniques. Also, it will assist underground engineers to plan
the excavation and design of long-term support systems of underground structures thus enabling

the managers for precise decision-making.
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