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Abstract

COVID-19, which emerged in 2019 and was subsequently classified as a pandemic, has affected millions of individuals worldwide.
Different variations of the illness continue to persist, even though it may seem to have subsided at the moment. Hence, it remains
essential to promptly and precisely diagnose COVID-19. Chest imaging has been proven to clearly demonstrate COVID-19 infection
even in the early stages of the disease, assisting physicians and radiologists in making quicker and more accurate judgements. This
study proposes a hybrid model with feature fusion based on Convolutional Neural Network based models and classifiers to accurately
distinguish infected patients from healthy people. The extracted features from two different Convolutional Neural Network based
models are concatenated, or added before feature selection. On a publicly accessible radiography database containing 21168 images
of the four classes (Covid, Lung Opacity, Normal, and Viral Pneumonia), extensive tests utilizing five fold cross-validation have been
conducted. According to the tests, an accuracy rate of about 96% has been obtained. The findings also demonstrate that the proposed
approach can contribute significantly to the rapidly expanding workload in health-care systems.
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Oz

COVID-19, diinya ¢apinda milyonlarca kisiyi etkiledi. Su anda azalmis gibi goriinse de hastaligin farkli varyasyonlar1 devam ediyor. Bu
nedenle, COVID-19'u hizli ve kesin bir sekilde teshis etmek hala hayati 6nem tasiyor. Gogiis goriintiilemenin, hastaligin erken
evrelerinde bile COVID-19 enfeksiyonunu agik¢a gosterdigi, doktorlarin ve radyologlarin daha hizli ve daha dogru kararlar almasina
yardimci oldugu kanitlanmistir. Bu ¢alisma, enfekte hastalar1 saglikh insanlardan dogru bir sekilde ayirt etmek i¢in Evrisimsel Sinir
Ag1 tabanlh modellere ve siniflandiricilara dayali ézellik fiizyonuna sahip hibrit bir model 6nermektedir. Iki farkl Evrisimsel Sinir Ag1
tabanl modelden ¢ikarilan 6zellikler birlestirilir veya 6zellik seciminden dnce eklenir. Dort siniftan (Covid, Lung_Opacity, Normal ve
Viral Pneumonia) 21.168 goriintiiyi iceren, kamuya acik bir radyografi veritabaninda, bes kat ¢capraz dogrulamayi kullanan kapsamh
testler yapilmistir. Yapilan testlere gore yaklasik %96 oraninda dogruluk orani elde edildi. Bulgular ayrica 6nerilen yaklasimin saghk
sistemlerinde hizla artan is ytlikiine 6nemli 6l¢lide katkida bulunabilecegini gostermektedir.

Anahtar Kelimeler: Oznitelik Ctkarma, Oznitelik Fiizyonu, Derin Ofrenme

Artificial intelligence has made significant strides in various
medical fields in recent years, particularly in the realm of medical
imaging [3-7]. The use of radiological imaging technologies has

1. Introduction

As of February 25, 2024, 7,035,337 fatalities and 774,771,942
confirmed cases of COVID-19 had been reported to WHO (World

Health Organization) globally. There have been 279,075,579
cases registered only in Europe. Western Pacific (208,245,005)
and America (193,196,825) are the places with the highest
number of cases after Europe. Among COVID-19 patients, fever,
coughing, exhaustion, dyspnea, and sputum are the most known
symptoms [1]. The fastincrease in the number of illnesses caused
by the epidemic exceeded the capacity of hospitals in countries,
both in terms of equipment and personnel, putting the entire
healthcare system in peril [2]. As a result, it was critical to be able
to detect and isolate affected people in a timely, cost-effective,
and dependable manner.
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become increasingly prominent, enabling the rapid identification
and isolation of infected individuals. Furthermore, these
technologies enhance the precise differentiation of various
pneumonia types [8]. Based on the findings, several studies have
been done to use image processing and artificial intelligence
approaches to autonomously diagnose tomography and x-ray
images [9-16]. It is seen that many studies in the literature use
deep learning architectures. Studies in the literature will be
discussed in more detail in Section 2. The point to be mentioned
in this section is that in some of the studies using deep learning
architectures, deep learning is used only in the feature extraction
step while other methods such as support vector machine (SVM)
and k nearest neighbor (KNN) are used in classification [17-18].
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These studies are within the scope of hybrid models. The reason
why hybrid models are preferred is that although deep learning
architectures work well for feature extraction, they take a very
long time to complete classification process [19-20].

In this study, which integrates hybrid models with feature fusion,
we conducted a comprehensive comparison of various fusion
techniques, feature quantities, and classifiers. This paper's main
contributions are as follows:

e Introducing novel models aimed at alleviating the burdens on
hospitals induced by the COVID-19 pandemic and aiding
clinicians in enhancing the precision of COVID-19 detection
through X-ray images.

¢ Enhancing hybrid models through the incorporation of feature
fusion techniques.

¢ Developing models that offer faster results compared to
traditional Convolutional Neural Network (CNN) based
classification methods.

The remainder of the study is structured as follows: The
literature review is described in Section 2. The materials and
methods utilized in this paper are described in Section 3, and the
results analysis is covered in Section 4. There is a comparison
with the studies in the literature in Section 5. Finally, the
conclusions are mentioned in Section 6.

2. Literature Review

A deep learning based model based on MobileNetV2 were
suggested by Kaya and Giirsoy [21] to detect COVID-19 infection
using a dataset of 1,576 normal, 3,616 COVID-19, and 4,265
pneumonia X-ray images. The accuracy rate of the proposed
method is 97.61%.

A CNN approach called LW-CORONet was presented by Nayak et
al. and tested on two datasets [22]. 2,250 images made up
dataset-1 (750 of pneumonia, 750 of normal, and 750 of COVID-
19) used in the study, whereas 15,999 images made up dataset-2
(5,575 of pneumonia, 8,066 of normal, and 2,358 of COVID-19).
The custom CNN was trained for 100 epochs, resulting in
identification accuracies of 98.67% for dataset-1 and 95.67% for
dataset-2 across three categories.

Pneumonia, COVID-19, and typical chest X-ray images were
successfully classified from chest X-ray image dataset by Sanida
et al.'s CAD system with a hybrid identification technique [23].
Outstanding outcomes were attained by the hybrid Deep
Convolutional Neural Networks (DCNN) identification method,
including a 99.25% accuracy rate.

In the study of Sanida et al. [24], a CNN-based model was
proposed to detect COVID-19. The dataset used includes the
samples of normal (10,192 images), COVID-19 (3,616 images),
lung opacity (6,012 images), and viral pneumonia (1,345 images).
The developed model achieved an classification accuracy rate of
95.80%.

In the study of Ayadi et al. [25], the COVID-AleXception model
was introduced, which combines features from two pre-trained
CNN-based models (Xception and AlexNet). The dataset used for
this study consisted of 15,153 X-ray images, including 1,345
pneumonia, 3,616 COVID-19, and 10,192 normal images. Each
CNN model underwent 100 epochs of training. Remarkably, the
COVID-AleXception model achieved an impressive identification
accuracy rate of 98.68%, surpassing the individual performances
of Xception (95.63%) and AlexNet (94.86%).

Abespoke CNN prediction system for chest X-rays was created by
Hafeez et al. and compared to two pre-trained CNN approaches,

VGG16 and AlexNet [26]. The evaluation involved three
categories: normal, COVID-19, and virus bacteria. Their model
attained an accuracy rate of 89.855%, while VGG16 achieved
89.015%, and AlexNet achieved 89.155%.

Moving on to the study of Huang et al. [27], the authors proposed
a novel CNN technique for detecting COVID-19 using X-ray
images. They tested their approach with seven pre-trained CNN-
based systems, including InceptionV3, Xception, ResNet50V2,
MobileNetV2, DenseNet121, EfficientNet-B0, and EfficientNetV2.
The dataset included the samples of COVID-19 (600 images),
normal (600 images), and pneumonia (600 images). Each CNN
model underwent 50 epochs of training. The proposed method
achieved an accuracy rate of 98.33%, with EfficientNetV2 closely
following at 97.73%.

Ghose et al. developed a customized CNN-based automatic
diagnosis system using a dataset of 10,293 X-ray images, which
included 4,200 pneumonia, 2,875 COVID-19, and 3,218 normal
images [28]. Their custom CNN was trained for 25 epochs and
they obtained an impressive 98.50% accuracy rate.

In the study of Ibrokhimov et al. [29], a DL diagnosis system was
proposed for pneumonia detection using X-ray images. VGG19
and ResNet50 were compared for three lung diseases. The
dataset included the samples of pneumonia (11,263 images),
COVID-19 (11,956 images), and normal (10,701 images). Both
CNN methods were trained for 180 epochs, with the VGG19
method achieving a 96.60% accuracy rate and ResNet50
achieving 95.80%.

In the study of Kong and Cheng [8], chest X-ray image
classification was performed with an average accuracy of 98.0%
for binary classification and 97.3% for three-category
classification. The model utilized ResNet34 for efficient dataset
segmentation and feature extraction and incorporated attention
mechanisms to improve classification accuracy.

Ji et al. employed four different CNN-based models and two
cascaded network models to classify X-ray samples into two
categories: individuals with COVID-19 and healthy individuals
[30]. Model 2 of the cascade network showed exceptional
performance with an accuracy of 96%, significantly aiding in
COVID-19 detection.

Narin et al. used chest X-rays to identify patients infected with
coronavirus pneumonia by using five CNN-based models
(ResNet50, ResNet101, ResNet152, InceptionV3, and Inception-
ResNetV2) [31].

Hussain et al. [32] developed a new CNN based model, namely
CoroDet. In the study where 2-class, 3-class and 4-class
classification results are given, success rates of 99.1%, 94.2% and
91.2% are achieved, respectively.

DarkNet was used in the study of Ozturk et al. [33]. They obtained
98.08% accuracy rate for binary classification, and 87.02%
accuracy rate for 3-class classification.

Shaban et al. [17] proposed a hybrid feature selection
methodology combining fast selection stage (FSS) and accurate
selection stage (ASS). FSS is based on filtering while ASS is based
on genetic algorithm (GA). Additionally, they suggest enhanced
KNN (EKNN) to overcome the trapping problem of KNN.

In the study of Khan et al. [34], CoroNet was introduced, based on
the Xception method. It underwent 80 epochs of training and it
achieved anaccuracy rate of 89.60% in classifying images into the
four classes.

Additionally, in the study of Khan and Aslam [35], four different
CNN-based models (VGG16, ResNet50, DenseNet121, and



DEU FMD 27(80) (2025) 326-336

VGG19) were compared for diagnosing X-ray images as COVID-
19 or normal (2020). The dataset consists of the samples for
normal (802 images) and COVID-19 (790 images). Each CNN
model underwent 30 epochs of training. The accuracy rates of
VGG16, ResNet50, DenseNet121 and VGG19 are 99.33%, 97.00%,
96.66% and 96.66%), respectively.

Loey et al. used the GoogLeNet to classify the dataset consisting
of the samples for COVID-19, bacterial pneumonia, viral
pneumonia, and normal cases [18]. They achieved an accuracy
rate of 80.6%.

These studies collectively showcase substantial progress in
automated COVID-19 diagnosis using chest X-ray images, with
various models consistently achieving high accuracy rates.

3. Materials and Methods
3.1. Dataset

The dataset ‘COVID-19 Radiography Database’ utilized in this
study comprises of X-Ray images divided into four classes:
COVID, Lung Opacity, Normal, and Viral Pneumonia (Table 1)
[37]. It is available for download from Kaggle. There are 3619
images belonging to the 'Covid' class, 6012 images belonging to
the 'Lung Opacity' class, 10192 images belonging to the 'Normal'
class, and 1345 images belonging to the 'Viral Pneumonia' class
in the data set. There are 21168 images in total. The samples from
the dataset are depicted in Figure 1. These images are gray level
and 299x299 sizes.

Table 1. The distribution of the classes in dataset.

Class The Number of the Images
Covid 3,619
Lung Opacity 6,012
Normal 10,192
Viral Pneumonia 1,345
SUM 21,168

. ]

p 2

(a) (b)

(©

(d)
Figure 1. Image samples from the dataset (a) Covid (b)
Lung_Opacity (c) Normal (d) Viral Pneumonia.

3.2. Feature extraction

Deep learning is a type of machine learning that is multi-layered.
Itis utilized in a variety of applications. For feature extraction and
conversion, it employs many layers of nonlinear processing units.
Each succeeding layer takes the output from the preceding layer
as input. The number of layers in artificial neural networks is
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increased to construct deep learning systems. One of these
architectures is the Convolutional Neural Network (CNN). Table
2 lists the fundamental layers of CNN-based models. In this work,
we evaluated four CNN-based models: ResNet18 [37], ResNet50
[38], ResNet101 [39], and GoogLeNet [40].

Table 2. Basic layers of CNN.

Layer Description

It is this layer that extracts the features from the
input images. This layer performs the
mathematical operations of convolution between
the input image and a filter of size MxM. The dot
product between the filter and the sections of the
input image with regard to the filter size (MxM) is
obtained by sliding the filter over the image.

Convolution

Activation layers give the network nonlinearity by
appending an activation function to the output of
the layer that came before it. It will take the output
of the convolution layer and apply an element-
wise activation function. Relu is the most often
utilized activation function. In this layer, the input
data's negative values are set to 0, which speeds
up the network's learning process.

Activation Function

The main objective of this layer is to minimize the
convolved feature map's size in order to save
computational costs. Reducing the links between
layers and working separately on every feature
map help achieve this. Different approaches result
in different sorts of pooling techniques. It
basically encapsulates the properties that a
convolution layer produces. In this way, it speeds
up the computation, saves memory, and prevents
overfitting.

Pooling

This stage flattens the input pictures from the
preceding layers and supplies them to the FC
layer. The flattened vector is subsequently routed
via a few further FC levels, where the
mathematical function operations are often done.
At this point, the classification step is performed.

Fully Connected

Layer

3.3. Feature selection

Feature selection is a crucial step in model creation, involving the
careful identification and inclusion of relevant features. When
attribute selection is neglected, several challenges may arise:

e Extended model training times can occur, impacting
efficiency.

Model simplicity and interpretability are compromised
when dealing with an excessive number of features.
Overfitting becomes a concern, leading to high
performance on training data but poor generalization to

test data, especially when the datasets differ.

As a result, prioritizing data cleaning and feature selection as
primary and essential steps in the model creation process is
imperative for addressing these potential issues.

The maximum relevance and minimal redundancy (mRMR)
technique [41] is used to assess the importances of variables in
this study. Each characteristic may be rated according to how
important it is to the target variable, and the ranking procedure
can take into account the duplication of these features at the same
time [42]. The mutual information, I(M, N), is used to determine
the level of similarity between M and N in this feature selection
technique, which treats each feature individually from the
dataset (1). The mutual information between features i and j is
denoted by I (F;, F}). I(F;, H) represents how similar every feature
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i is to the vector of class labels and its related discrete random
variable, H. S is the set of features to be chosen and /S/ is the
number of elements in the set of features. To guarantee that the
cluster to be selected is the best cluster that can be selected, the
conditions of maximum relevance (2) and minimum redundancy
(3) must be met.

p(m,n)
104, N) = Z Z p(m,n)log (p1(m)p2 m

(1)
NneEN meM
1
maxW, W = —Z I(F;,H) (2)
IS| Lapes
1
minV,V = ISIZZ Ny I(Fi, F) 3)

]

3.4. Classification

One of the simplest and most intuitive classification technique is
the K Nearest Neighbour (K-NN) algorithm [43]. Within this
algorithm, the K value is selected to represent the number of
neighboring data points to be considered for classification. To
calculate these distances, various distance measures such as
Euclidean, Manhattan, and Minkowski can be used to measure the
similarity between elements in the dataset. The K-NN algorithm
operates by identifying the K nearest neighbors of a given data
point based on these selected distance measures. It then predicts
the class to which the data point belongs by examining the classes
of its nearest neighbors. As a result, the data point is assigned to
the class that is most common among its nearest neighbors.

Ensemble Learning (EL) is a classification approach thatrelies on
predictions and judgments from several classifiers [44]. [t applies
each classifier's result by consensus using input from more than
one classifier at the same time. In most circumstances, this
technique outperforms a single classifier. The fact that the
classifiers’ errors differ increases ensemble classification
performance. To obtain variations in classifier predictions,
different subsets of the training dataset are employed. The
bootstrap technique is used to generate and train subsets of the
training dataset. In this study, AdaBoost algorithm based on
boosting approach has been used as the EL algorithm.

The Support Vector Machine (SVM) is a machine learning
algorithm developed for classification when the relationships
between variables are not well understood Like Decision Trees
(DTs), SVM can also be applied to regression analysis. The dataset
is usually divided into two subsets: the training set and the test
set. Using a labeled training set, the SVM algorithm identifies the
ideal hyperplane separating the classes [45]. More than one
hyperplane can potentially be used to separate the two classes.
The optimal hyperplane is defined in this context as the one that
maximizes the distance from the nearest data points of each class.

A multi-variable algorithm called discriminant analysis (DA)
ensures the division of N elements into two or more classes
according to diverse characteristics and provides the necessary
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functions. Linear discriminant analysis (LDA) has been used in
this study [46]. It can be applied provided that the variance-
covariance matrices between groups of randomly drawn sample
data matrices from populations with multivariate normal
distribution are equal.

3.5. The proposed system

The model proposed in this study is built upon two types of pre-
trained CNN models, namely ResNetl8 and GoogleNet. This
model encompasses four fundamental steps. Firstly, the features
are extracted through ResNet18 and GoogleNet after undergoing
necessary pre-processing operations. Subsequently, the feature
set obtained by merging these features undergoes MRMR feature
selection. Finally, the classification step is executed using the
refined feature set. The flow chart of the model is given in Figure
4.

This system is based on two types of feature-level fusion:
concatenating the features, summing the features. The difference
between the two types is the way they combine features drawn
from different models.

3.5.1 Concatenating the features

In this type of fusion, FS=[fs1_1,...fs1_nfs2_1,...fs2_m] is obtained
by combining feature set FS_1=[fs1_1,...,fs1_n] taken from a CNN-
based architecture with feature set FS_2=[fs2_1,...fs2_m] taken
from the other CNN-based architecture (Figure 2). The next steps
are performed with this new set.

[fs14.f515...., £81,] [fs21.£524...., £82,4]
[fs11.f51s,. ., f51,, 521,152, f52,,]

Figure 2. Concantenation of the features.
3.5.2 Summing the features

In this type of fusion, FS=[fs1_1+fs5_1,.., fs1_n+fs2_n]is obtained by
summing the feature set FS_1=[fs1_1,...fs1_n] taken from a CNN-
based architecture with the feature set FS 2=[fs2 1,...fs2_m]
taken from the other architecture (Figure 3). The next steps are
carried out using the new feature set, as in the previous fusion
model.

[fs1y.f515,

\

[fs1y+152¢, fs15+1s2,,...

Cf51,] [fs21.fs25....,

/

, f31,+152,]

fs2,]

Figure 3. Summation of the features.
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Figure 4. Flow chart of the model developed using concatenating the features.

4. Experimental Results

In this paper, deep learning-based models have been
incorporated to classify the images. The performances of the
systems are validated by computing the evaluation metrics of
accuracy, sensitivity (recall), specificity, precision, and F1 score.
These metrics are calculated by using the values of true positive
(TP), true negative (TN), false positive (FP), and false negative
(FN). When we consider a dataset with two classes, covid and
non-covid (normal), accuracy is the division of the number of
correctly classified images (TP+TN) by the total number of
images (2). It assesses the overall correctness of the models.
Sensitivity is the division of the number of correctly classified
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images for covid class by the sum of TP and FN (3). Sensitivity
measures the model's capacity to capture all positive cases while
avoiding false negatives. The ratio of correctly identified non-
covid images to all non-covid images in the dataset gives
specificity value (4). Specificity refers to the number of negative
cases correctly predicted. To get around the limitations of
accuracy metric, the precision metric is employed. It investigates
how many people that are actually infected with covid are
classified as infected (5). F1 calculates the harmonic mean of
precision and recall (6).
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Accuracy=(TP+TN)/(TP+TN+FP+FN) (2)
Sensitivity (Recall)=TP/(TP+FN) 3)
Specificity=TN/(TN+FP) 4)
Precision=TP/(TP+FP) (5)
F1=(2xPrecisionxRecall)/(Precision+Recall) (6)

The dataset has been split into two subsets for training and
testing. Specifically, 70% of the dataset has been allocated for
training the proposed model, while the remaining 30% has been
reserved for testing the model's performance.

Information regarding the layers from which features are
extracted can be found in Table 3. Specifically, 1,000 features are
extracted from the 'fc1000' layer of ResNet18, while 1,024
features are extracted from the 'pool5-drop_7x7_s1' layer of
GoogLeNet. These extracted features are then used in the
subsequent stages of the model.

Table 3. Information about the layers.

Model Layer Feature Number
ResNet18 fc1000 1000
ResNet50 fc1000 1000
ResNet101 fc1000 1000
GoogLeNet pool5-drop_7x7_s1 1024

Table 4. Results for hybrid models without using feature selection.

4.1. xperimental results for hybrid models

The findings in Table 4 show the classification performance of the
features drawn from ResNet18, ResNet50, ResNet101, and
GoogLeNet without applying any feature selection method. It is
evident that the highest success is achieved when the features
pulled from ResNet50 are classified by SVM (0.9113). The worst
success is seen when the hybrid model of ResNet101&EL is used
(0.7764). When the accuracy averages of feature extractors are
examined, the averages of ResNet18, ResNet50, ResNet101, and
GoogLeNet are 0.8347, 0.8619, 0.8462, and 0.8268, respectively.
On the other hand, the average accuracy values of the classifiers
are 0.809, 0.7888, 0.8868, 0.885 for KNN, EL, SVM and DA,
respectively.

Table 5 provides insights into the classification performance of
features extracted from the architectures after applying the
mRMR feature selection method. Here, the effect of different
feature numbers on performance is also examined. Therefore, the
results for 250 features have been tested first, and then the
results for 500 features have been tested. It is seen that the
highest success is obtained when 500 of the features drawn from
ResNet50 are selected with the help of mRMR and classified with
SVM (0.9067). The average accuracy rate obtained when the
number of features is 250 is 0.8360, while the average accuracy
rate obtained when the number of features is 500 is 0.8413. From
this, it can be deduced that the results obtained for 500 features
are higher.

MODEL Classifier ACC SENS SPEC PREC F1
KNN 0.7936 0.9344 0.9899 0.8812 0.9070
RESNET18 EL 0.7996 0.9467 0.9791 0.7475 0.8354
SVM 0.8728 0.9309 0.9948 0.9332 0.9320
DA 0.8728 0.9659 0.9931 0.9109 0.9376
KNN 0.8370 0.9697 0.9907 0.8852 0.9256
0.9228 0.977 0.7237 08112
RESNET50 EL 0.7922
SVM 09113 0.9703 0.9953 0.9362 0.9529
DA 0.9072 0.9712 0.9949 0.9320 0.9512
KNN 0.8090 0.9700 0.9910 0.8927 0.9297
0.9546 0.9813 0.7821 0.8598
RESNET101 EL 0.7764
SVM 0.9076 0.9700 0.9947 0.9288 0.9490
DA 0.8918 0.9703 0.9925 0.9012 0.9344
KNN 0.7964 0.9084 0.9880 0.8589 0.8830
GOOGLENET EL 0.7871 0.9021 0.9791 0.7525 0.8205
SVM 0.8555 0.9207 0.9959 0.9480 0.9341
DA 0.8682 0.9436 0.9931 0.9109 0.9270
Table 5. Results for hybrid models using MRMR feature selection.
MODEL FEAT CLASS. ACC SENS SPEC PREC F1
KNN 0.8362 0.9627 0.9879 0.8491 0.9023
EL 0.7551 0.92871 0.9687 0.6366 0.7554
250 SVM 0.8745 0.9612 0.9920 0.8959 0.9274
DA 0.8591 0.9535 0.9917 0.8937 0.9227
ResNet18 KNN 0.8359 09616 0.9881 0.8512 0.9030
c00 EL 0.7565 0.9416 0.9686 0.6344 0.7581
SVM 0.8798 0.9596 0.9930 0.9086 0.9334
DA 0.8725 0.9581 0.9920 0.899 0.9276
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Table 5 (continued)
MODEL FEAT CLASS. ACC SENS SPEC PREC F1

KNN 0.8557 0.9760 0.9895 0.8661 09178

EL 0.7896 0.9205 0.9780 0.7386 0.8196

250 SVM 0.8979 0.9668 0.9946 0.9288 0.9474

ResNets0 DA 0.8707 0.9726 0.9897 0.8661 0.9162
KNN 0.8561 0.9778 0.9912 0.8884 0.9310

EL 0.7921 0.9327 0.9782 0.7365 0.8230

500 SVM 0.9067 0.9680 0.9949 0.9309 0.9491

DA 0.8879 0.9745 0.9919 0.8937 0.9324

KNN 0.8480 0.9720 0.9910 0.8863 0.9272

EL 0.7784 0.9530 0.9808 0.7758 0.8553

250 SVM 0.8922 0.9608 0.9952 0.9373 0.9489

ResNet101 DA 0.8671 0.9674 0.9908 0.8820 0.9227
KNN 0.8388 0.9775 0.9903 0.8789 0.9256

500 EL 0.7759 0.9488 0.9802 0.7683 0.8491

SVM 0.9000 0.9670 0.9950 0.9330 0.9497

DA 0.8821 0.9679 0.9921 0.8969 0.9311

KNN 0.8231 0.9606 0.9862 0.8300 0.8905

EL 0.7411 0.9138 0.9649 0.5972 0.7224

250 SVM 0.8592 0.9596 0.9909 0.8842 0.9204

GoogLeNet DA 0.8276 0.8936 0.9891 0.8661 0.8797
KNN 0.8167 0.9503 0.9847 0.8130 0.8763

EL 0.7402 0.8929 0.9631 0.5760 0.7003

500 SVM 0.8694 0.9644 0.9917 0.8927 0.9272

DA 0.8499 0.9302 0.9915 0.8927 09111

Figure 5 offers a comparison of model and classifier
performances both before and after feature selection.

Model-based comparison Classifier-based comparison

0,83 & \ 0,81 — /

ResNetl8 ResNet30 ResNetl01 GoogleNet KNN EL SVM DA
e without feature selection e without feature selection
250 features 250 features

500 features

(a) (b)

Figure 5. Comparisons using average accuracy rates (a) Model-
based (b) Classifier-based.

In this graph, blue lines show the results when feature selection
is not applied, red lines show the results obtained for 250
features, and green lines show the results obtained for 500
features. When Figure 5(a) is examined, the average accuracy
rates obtained when classification is performed without applying
feature selection are very close to the average accuracy rates
obtained when 500 features are extracted using mRMR and
classification is performed. Classification performances for 250
features are always slightly lower. Among the four models, the
CNN model from which the features with the highest
classification performance are extracted is ResNet50. GoogLeNet
is the CNN model that produces the lowest performing and most
vulnerable features to changes. Looking at Figure 5(b), it can be
seen that SVM is the classifier with the highest performance.
Especially when SVM is used, the results obtained for all three

500 features
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cases (for without feature selection, for 250 features, and for 500
features) are close to each other, while the accuracy rates
obtained from other classifiers differs.

The classifier with the second highest success is DA. However, it
is seen that DA is not as robust as SVM and its success decreases
when feature selection is applied. Classifiers other than KNN
perform better when feature selection is not applied. If we talk
about the number of features, it can be said that while the
performance is lower for 250 features, higher performance is
achieved for 500 features. This is valid for both graphs in Figure
5.

4.2. Experimental results for hybrid models with feature
fusion

The performances obtained by classifying fused features without
feature selection are given in Table 6. Because 1000 features are
extracted from ResNet architectures and 1024 features are
extracted from GoogLeNet, the sum of two feature vectors of
different sizes cannot be made. Therefore, only the performance
metrics obtained for concatenating the fetaures are included in
this table.

Classification success of the features extracted from
ResNet50&ResNet101 with SVM is 0.9509. This rate is the
highest accuracy rate in the table. It is striking that the
performances of SVM and DA are close to each other. On the other
hand, it is obvious that EL is always the worst performing
classifier in all cases.

The success rates achieved when employing feature selection in
hybrid models with feature fusion are presented in Table 7.
Notably, when classifying the ResNet50&ResNet101 fusion using
VM, a higher result has been obtained (0.9575) surpassing all
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results obtained after applying feature selection. This
achievement closely approaches the success (0.9509) achieved
without implementing feature selection. When concatenating is
applied to features as a fusion model, an average accuracy of
0.8811 is achieved, while an average accuracy rate of 0.8722 is
achieved when summing is applied as a fusion model.

Table 8 includes average accuracy rates of the fusion models. It is
observed that the highest result is achieved when
ResNet50&ResNet101 is used (0.9112). While the average
success rates achieved after feature selection increase in some
models such as ResNet18&ResNet101, ResNet50&ResNet101,

and ResNet101&GoogLeNet, the average success rates decrease
in the models such as ResNetl8&ResNet50, and
ResNet50&GoogLeNet. In the ResNet101&GoogLeNet model, the
success rates obtained in each case are approximately the same.

When a classifier-based comparison is made, it can be said that
SVM is the best classifier while EL is the classifier that gives the
lowest successful results in this study (Table 9). It seems that DA
is as successful as SVM, but its success begins to decrease as the
number of features decreases, indicating that it is not as robust
as SVM.

Table 6. Results for hybrid models with feature fusion without using feature selection.

FUSION Classifier ACC SENS SPEC PREC F1
KNN 0.8570 0.9789 0.9918 0.8959 0.9356
RESNET18 & RESNET50 EL 0.7823 0.9501 0.9732 0.6796 0.7924
SVM 0.9099 0.9790 0.9953 0.9368 0.9574
DA 0.9051 0.9724 0.9939 0.9182 0.9446
KNN 0.8525 0.9773 0.9919 0.8981 0.9361
RESNET18 & RESNET101 EL 0.7755 0.9421 09777 0.7383 0.8278
SVM 0.9097 0.9736 0.9951 0.9338 0.9533
DA 0.9073 0.9716 0.9938 0.9160 0.943
KNN 0.8602 0.9732 0.9915 0.8914 0.9305
RESNET18 & GOOGLENET EL 0.7750 0.9489 0.9727 0.6766 0.7899
SVM 0.9000 0.9741 0.9941 0.9219 0.9473
DA 0.8959 0.9741 0.9942 0.9234 0.9481
KNN 0.8381 0.9877 0.9952 0.9405 0.9635
RESNETSO & RESNET101 BV 0.8325 0.9676 0.9835 0.7938 0.8722
SVM 0.9509 0.9892 0.9980 0.9713 0.9802
DA 0.9494 0.9868 0.9966 0.9522 0.9692
KNN 0.8681 0.9877 0.9953 0.9405 0.9635
RESNETS0 & GOOGLENET  EL 0.8183 0.9745 0.9753 0.6908 0.8085
SVM 0.9448 0.9914 0.9983 0.9766 0.9839
DA 0.9507 0.9934 0.9977 0.9671 0.9801
KNN 0.8345 0.9821 0.9947 0.9352 0.9581
RESNET101 & GOOGLENET EL 0.8254 0.9664 0.9834 0.7938 0.8716
SVM 0.9482 0.9935 0.9978 0.9692 0.9812
DA 0.9480 0.9956 0.9975 0.9649 0.9444
Table 7. Results for hybrid models with feature fusion using MRMR feature selection.
FUSION FEAT. CLASS.  ACC SENS SPEC PREC F1 FUSION FEAT.  CLASS. ACC SENS  SPEC  PREC F1
KNN 0.8669 09765 09910  0.8842 0.9281 KNN 0.8537 0.9728 0.9901 0.8746 0.9211
2s0e250  EV 07862 09099 09773 07301 0.8101 50 EL 07750 0.9569 0.9715 0.6610 0.7819
SVM 0.8987 09624 09943  0.9245 0.9431 SVM 0.8911 09612 09940 0.9214 0.9409
Res"‘é‘etlg DA 08905 09713 09924 08990 09338 | ResNetls DA 08728 0.9659 0.9925 0.9033  0.9336
ResNet50 KNN 0.8663 0.9779 09916 08916 09327 | ResNetS50 KNN 0.8499  0.9739 09898 0.8714 0.9198
EL 07917 09171 09784 07407 0.8195 EL 07797  0.9525 09716 0.6599 0.7797
500+500 500
SVM 09023 09614 09945 09267 0.9437 SVM 0.8988  0.9657 0.9945 0.9267 0.9458
DA 09029 09717 09934  0.9118 0.9408 DA 0.8913  0.9704 0.9928 0.9054 0.9368
KNN 0.8942 09867 09957 09437 0.9647 KNN 0.8845  0.9865 0.9947 0.9309 0.9579
EL 0.8254 09694 09845  0.8087 0.8818 EL 08161  0.9550 0.9865 0.8353 0.8912
250+250 250
SVM 09421 09871 09982  0.9745 0.9807 SVM 09353  0.9838 0.9975 0.9660 0.9748
Res’;{‘*lg DA 09432 09835  0.9963  0.9479 0.9654 ReSl\i"‘“B DA 09303 0.9812  0.9960 0.9447 0.9626
ResNet101 KNN 0.8832 09922 09958 09458 0.9684 | ResNet101 KNN 0.8703  0.9863 0.9939 09214 0.9527
EL 0.8221 09703 09836 07981 0.8758 EL 0.8072  0.9382 0.9853 0.8225 0.8766
500+500 500
SVM 09438 09870 09978  0.9692 0.9780 SVM 09405  0.9892 0.9978 0.9692 0.9791
DA 09515 0.9847  0.9970  0.9575  0.9709 DA 09421  0.9835 0.9966 0.9522 0.9676
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Table 7 (continued)
KNN 0.8959 09876  0.9949  0.9320 0.9590 KNN 0.8932 0.9887 0.9948 0.9320 0.9595
ss0e250 EL 0.8429 09677 09864  0.8289 0.8930 50 L 08302 09616 0.9859 0.8247 0.8879
SVM 09518 09839 09983  0.9756 0.9797 SVM 09454  0.9850 0.9982 0.9756 0.9802
Res’;{‘“So DA 0.9476  0.9846 09966  0.9522 0.9681 Res"ietso DA 09328  0.9845 0.9961 0.9469 0.9653
ResNet101 KNN 0.8837 09899 09950 09352 0.9617 | ResNet101 KNN 0.8892  0.9922 0.9955 0.9405 0.9656
so0ss00  EL 0.8468 09715 09869  0.8342 0.8977 s00 L 08318 09594 09862 0.8289 0.8894
SVM 0.9575 009881 09982 09745 0.9813 SVM 09528  0.9892 0.9983 0.9766 0.9829
DA 0.9567 0.9890  0.9971  0.9596 0.9741 DA 0.9444  0.9879 0.9967 0.9543 0.9708
KNN 0.8584 09736 09892  0.8618 0.9143 KNN 08543 09771 09891 0.8608 0.9153
EL 07701 09349 09709  0.6567 0.7715 EL 07630  0.9092 0.9701 0.6493 0.7576
2504250 250
SVM 0.8877 09676 09939  0.9192 0.9428 SVM 08819 09612 09940 0.9214 0.9409
Res";tm DA 0.8746 09624  0.9921  0.8969 0.9285 Res’i"‘tlg DA 0.8594  0.9499 0.9912 0.8874 0.9176
GoogLeNet KNN 08553 09726 09896  0.8682 09175 | GoogleNet KNN 0.8495 0.9723 09888 0.8576 0.9113
EL 07720 09440 09701  0.6451 0.7664 EL 07670 09222 09706 0.6546 0.7657
500+500 500
SVM 0.8939 09676 09940 09203 0.9434 SVM 08881 09707 0.9935 09138 0.9414
DA 0.8869  0.9673  0.9933  0.9118 0.9387 DA 0.8764  0.9680 0.9924 0.9012 0.9334
KNN 0.8642 09749 09897 0.8672 0.9179 KNN 08643 09810 0.9903 0.8757 0.9253
EL 07911 09118 09771  0.7248 0.8076 EL 07807 09489 09772 07301 0.8252
250+250 250
SVM 09007 09710 09945  0.9267 0.9483 SVM 0.8937 09688 0.9942 09235 0.9456
Resl\éetSO DA 0.8867  0.9780  0.9922  0.8980  0.9363 Res”i‘*tso DA 0.8646 09698  0.9913  0.8884 0.9273
GoogLeNet KNN 08651 09810 09904 08767 0.9259 | GoogLeNet KNN 08617 09751 0.9903 0.8757 0.9227
EL 07926 09084 09781 07375 0.8141 EL 07873 09472 09785 0.7439 0.8333
500+500 500
SVM 09081 09765 09946  0.9277 0.9515 SVM 09052  0.9744 | 0.9947 0.9288 0.9510
DA 09021 09785 09940  0.9192  0.9479 DA 0.8867  0.9726  0.9929  0.9065 0.9384
KNN 0.8875 09875 09941 09224 0.9538 KNN 0.8873  0.9875 0.9943 09256 0.9556
as0s250 L 08291 09652 09835 07949 0.8718 50 FE 08134 09704 09838 0.8023 0.8784
SVM 09426 09828 09978 09692 0.9759 SVM 09340 09774 09976 09671 0.9722
ReSNgftlol DA 09338 09811 09955 09373 09587 | ReSNeI0 DA 09199 09798  0.9947 09277 09531
GoogleNet KNN 08719 09899 09950 09352 0.9617 | GoogLeNet KNN 0.8755  0.9887 0.9943 09267 0.9567
s00s500 Y 08281 09641 09839  0.8002 0.8746 s00 U 08167 09646 0.9845 0.8098 0.8804
SVM 09470 09903 09982 09756 0.9829 SVM 09417 09860 0.9980 09724 0.9791
DA 09471 09846 09964  0.9501 0.9670 DA 09351 0.9823  0.9961 0.9458  0.9637
Table 8. Average accuracy rates of fusion models.
FUSION without feature 2504250  500+500 MODEL 250 500
selection
ResNet18&ResNet50 0.8636 0.8606 0.8658  ResNet18+ResNet50 0.8482 0.8549
ResNet18&ResNet101 0.8613 0.9012 0.9002 ResNet18+ResNet101 0.8916 0.8900
ResNet50&ResNet101 0.8578 0.9096 0.9112  ResNet50+ResNet101 0.9004 0.9046
ResNet18&GoogLeNet 0.8927 0.8477 0.8520 ResNet18+GoogLeNet 0.8397 0.8453
ResNet50&GoogLeNet 0.8955 0.8607 0.8670 ResNet50+GoogLeNet 0.8508 0.8602
ResNet101&GoogLeNet 0.8890 0.8983 0.8985 ResNet101+GoogLeNet 0.8887 0.8923
Table 9. Classifier based comparison.
CLASSIFIER without feature 250+250 500+500 250 500
selection
KNN 0.8517 0.8779 0.8709 0.8729 0.8660
EL 0.8015 0.8075 0.8089 0.7964 0.7983
SVM 0.9273 0.9206 0.9254 0.9136 0.9212
DA 0.9261 0.9127 0.9245 0.8966 0.9127

5. Discussion

A multi-level fusion approach for radiography images has been
presented in this paper. For this purpose, the successes have been
compared as a result of fusing different numbers of features
taken from different CNN models. In this study, where multi-
feature fusion with CNN is examined from various aspects, the
fusion model that shows the highest success is
ResNet50&ResNet101 with 95.75% (for 500+500 features).
When compared to the studies in the literature, it is seen that this
success is much higher than the studies of Hafeez et al. [18] and
Khan et al. [29]. A comparison with other studies in the literature
is illustrated in Table 10.

6. Conclusion

While CNN-based classification shows high performance, it is
known to have a disadvantage in time. So, the reason why hybrid
models are preferred instead of CNN-based classification is to
take advantage of time. Hybrid studies reveal that CNN has high
performance not only in classification but also in feature

extraction. In this study, the performances of hybrid models are
compared with the performances of the systems that implement
hybrid models with feature level fusion. This is valid both when
feature selection is applied and when it is not applied. The
purpose of using feature fusion is to investigate whether
performance can be further improved.

In this study, where the feature extraction performances of
different versions of residual networks (ResNet18, ResNet50,
ResNet101) and GooglLeNet are tested, striking results are
achieved. While the success in hybrid models reaches a maximum
of 0.9113 (ResNet50&SVM), the success increases up to 0.9575
(ResNet50&ResNet101&SVM) when feature level fusion is used.
The success of ResNet50 surpasses other CNN models. It is
observed that the success of ResNet50 exceeds other CNN models
in hybrid models, and the results obtained when feature level
fusion is used are compatible with the graph given in Figure 5. It
can be seen that the second most successful CNN model is
ResNet101 and that ResNet50 gives the most successful results
when fused with ResNet101.
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When evaluated on a classifier basis, the highest success is
achieved when classification is performed with SVM, whether
feature selection is applied or not. The second most successful
classifier is found to be DA. When DA is used for classification, the
results obtained are very close to the results of SVM. The fact that
DA gives results in a much shorter time compared to SVM may be
a justified reason why DA is preferable.

In addition, a different number of features have been selected
using MRMR, which is a feature selection method, and the effect
of the number of features on the performance has been examined.
According to the experimental studies, although choosing 250 or
500 features from the models does not affect the achievements
much, generally higher results are obtained if 500 features are
selected for both hybrid systems and hybrid systems with feature
fusion (except for some cases of KNN).

Two different fusion models have been used in the feature level
fusion: concatenating the features, and summing the features.

Table 10. A comparison with the other studies in the literature.

The average accuracy rate obtained when concatenating the
features is used is slightly higher than the average accuracy value
obtained when summing the features is used. On the other hand,
the number of features obtained in the concatenating process is
double that of the features obtained in the summing process.
Therefore, when concatenating is preferred instead of summing,
the classification time increases slightly.

It is a known fact that most of the completion time of CNN-based
models is spent in the classification phase. Despite all its positive
aspects, it is clear that extracting features from two models
instead of one in hybrid models with multi-feature fusion causes
extraloss of time. Itis also obvious that hybrid models with multi-
feature fusion give results in a longer time compared to hybrid
models.

In the future study, it is aimed to improve the existing CNN
models in terms of time and performance and compare them with
the multi-feature fusion examined in this study.

Study Model

Dataset Accuracy

MobileNetV2-Based Model [13] Based on MobileNetV2

LW-CORONet [17] Custom CNN

COVID-AleXception [20] Combination of Xception and

AlexNet

Custom CNN [21] Custom CNN

Lightweight CNN for COVID-19 [22] Seven pre-trained CNNs
(InceptionV3, Xception,
ResNet50V2, etc.)

Custom CNN Diagnosis [23] Custom CNN

DL Diagnosis (VGG19 and VGG19 and ResNet50

ResNet50) [24]

CoroNet [29] Based on Xception

VGG16, ResNet50, DenseNet121,
VGG19

Comparative DL Analysis [30]

Our Study Multi-feature fusion

1,576 normal, 3,616 COVID-19,
4,265 pneumonia images

Dataset-1 with 2,250 images (750
pneumonia, 750 normal, and 750
COVID-19), and dataset-2 with
15,999 images (5,575 pneumonia,
8,066 normal, and 2,358 COVID-19)
15,153 X-ray images (1,345

97.61%

98.67% for dataset-1 and 95.67%
for dataset-2

pneumonia, 3,616 COVID-19, 98.68%
10,192 normal)
Not specified. 80.855%

600 COVID-19, 600 normal, 600

pneumonia images 98.33% (EfficientNetV2: 97.73%)

10,293 X-ray images (4,200
pneumonia, 2,875 COVID-19, 3,218
normal)

98.50%

11,263 pneumonia, 11,956 COVID-

. 0,
19, 10,701 normal images VGG19: 96.60%,

ResNet50: 95.80%

330 bacterial pneumonia, 327 viral
pneumonia, 284 COVID-19, 310
normal X-ray images

1,592 X-ray images (802 normal,
790 COVID-19)

89.60%

VGG16:99.33%,
ResNet50: 97.00%, DenseNet121,
VGG19: 96.66%

21,168 X-ray images (3,619
covid, 6,012 lung_opacity, 10,192
normal, 1,345 viral pneumonia)

95.75%
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