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Abstract 

COVID-19, which emerged in 2019 and was subsequently classified as a pandemic, has affected millions of individuals worldwide. 
Different variations of the illness continue to persist, even though it may seem to have subsided at the moment. Hence, it remains 
essential to promptly and precisely diagnose COVID-19.  Chest imaging has been proven to clearly demonstrate COVID-19 infection 
even in the early stages of the disease, assisting physicians and radiologists in making quicker and more accurate judgements. This 
study proposes a hybrid model with feature fusion based on Convolutional Neural Network based models and classifiers to accurately 
distinguish infected patients from healthy people. The extracted features from two different Convolutional Neural Network based 
models are concatenated, or added before feature selection. On a publicly accessible radiography database containing 21168 images 
of the four classes (Covid, Lung_Opacity, Normal, and Viral Pneumonia), extensive tests utilizing five fold cross-validation have been 
conducted.  According to the tests, an accuracy rate of about 96% has been obtained. The findings also demonstrate that the proposed 
approach can contribute significantly to the rapidly expanding workload in health-care systems. 

Keywords: Feature Extraction, Feature Fusion, Deep Learning  

 

Öz 

COVID-19, dünya çapında milyonlarca kişiyi etkiledi. Şu anda azalmış gibi görünse de hastalığın farklı varyasyonları devam ediyor. Bu 
nedenle, COVID-19'u hızlı ve kesin bir şekilde teşhis etmek hala hayati önem taşıyor. Göğüs görüntülemenin, hastalığın erken 
evrelerinde bile COVID-19 enfeksiyonunu açıkça gösterdiği, doktorların ve radyologların daha hızlı ve daha doğru kararlar almasına 
yardımcı olduğu kanıtlanmıştır. Bu çalışma, enfekte hastaları sağlıklı insanlardan doğru bir şekilde ayırt etmek için Evrişimsel Sinir 
Ağı tabanlı modellere ve sınıflandırıcılara dayalı özellik füzyonuna sahip hibrit bir model önermektedir. İki farklı Evrişimsel Sinir Ağı 
tabanlı modelden çıkarılan özellikler birleştirilir veya özellik seçiminden önce eklenir. Dört sınıftan (Covid, Lung_Opacity, Normal ve 
Viral Pneumonia) 21.168 görüntüyü içeren, kamuya açık bir radyografi veritabanında, beş kat çapraz doğrulamayı kullanan kapsamlı 
testler yapılmıştır. Yapılan testlere göre yaklaşık %96 oranında doğruluk oranı elde edildi. Bulgular ayrıca önerilen yaklaşımın sağlık 
sistemlerinde hızla artan iş yüküne önemli ölçüde katkıda bulunabileceğini göstermektedir. 
Anahtar Kelimeler: Öznitelik Çıkarma, Öznitelik Füzyonu, Derin Öğrenme 

 

1. Introduction 

As of February 25, 2024, 7,035,337 fatalities and 774,771,942 
confirmed cases of COVID-19 had been reported to WHO (World 
Health Organization) globally. There have been 279,075,579 
cases registered only in Europe. Western Pacific (208,245,005) 
and America (193,196,825) are the places with the highest 
number of cases after Europe. Among COVID-19 patients, fever, 
coughing, exhaustion, dyspnea, and sputum are the most known 
symptoms [1]. The fast increase in the number of illnesses caused 
by the epidemic exceeded the capacity of hospitals in countries, 
both in terms of equipment and personnel, putting the entire 
healthcare system in peril [2]. As a result, it was critical to be able 
to detect and isolate affected people in a timely, cost-effective, 
and dependable manner. 

Artificial intelligence has made significant strides in various 
medical fields in recent years, particularly in the realm of medical 
imaging [3-7]. The use of radiological imaging technologies has 
become increasingly prominent, enabling the rapid identification 
and isolation of infected individuals. Furthermore, these 
technologies enhance the precise differentiation of various 
pneumonia types [8]. Based on the findings, several studies have 
been done to use image processing and artificial intelligence 
approaches to autonomously diagnose tomography and x-ray 
images [9-16]. It is seen that many studies in the literature use 
deep learning architectures. Studies in the literature will be 
discussed in more detail in Section 2. The point to be mentioned 
in this section is that in some of the studies using deep learning 
architectures, deep learning is used only in the feature extraction 
step while other methods such as support vector machine (SVM) 
and k nearest neighbor (KNN) are used in classification [17-18]. 
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These studies are within the scope of hybrid models. The reason 
why hybrid models are preferred is that although deep learning 
architectures work well for feature extraction, they take a very 
long time to complete classification process [19-20]. 

In this study, which integrates hybrid models with feature fusion, 
we conducted a comprehensive comparison of various fusion 
techniques, feature quantities, and classifiers. This paper's main 
contributions are as follows: 

• Introducing novel models aimed at alleviating the burdens on 
hospitals induced by the COVID-19 pandemic and aiding 
clinicians in enhancing the precision of COVID-19 detection 
through X-ray images. 

• Enhancing hybrid models through the incorporation of feature 
fusion techniques. 

• Developing models that offer faster results compared to 
traditional Convolutional Neural Network (CNN) based 
classification methods. 

The remainder of the study is structured as follows: The 
literature review is described in Section 2. The materials and 
methods utilized in this paper are described in Section 3, and the 
results analysis is covered in Section 4. There is a comparison 
with the studies in the literature in Section 5. Finally, the 
conclusions are mentioned in Section 6. 

2. Literature Review 

A deep learning based model based on MobileNetV2 were 
suggested by Kaya and Gürsoy [21] to detect COVID-19 infection 
using a dataset of 1,576 normal, 3,616 COVID-19, and 4,265 
pneumonia X-ray images. The accuracy rate of the proposed 
method is 97.61%. 

A CNN approach called LW-CORONet was presented by Nayak et 
al. and tested on two datasets [22]. 2,250 images made up 
dataset-1 (750 of pneumonia, 750 of normal, and 750 of COVID-
19) used in the study, whereas 15,999 images made up dataset-2 
(5,575 of pneumonia, 8,066 of normal, and 2,358 of COVID-19). 
The custom CNN was trained for 100 epochs, resulting in 
identification accuracies of 98.67% for dataset-1 and 95.67% for 
dataset-2 across three categories. 

Pneumonia, COVID-19, and typical chest X-ray images were 
successfully classified from chest X-ray image dataset by Sanida 
et al.'s CAD system with a hybrid identification technique [23]. 
Outstanding outcomes were attained by the hybrid Deep 
Convolutional Neural Networks (DCNN) identification method, 
including a 99.25% accuracy rate. 

In the study of Sanida et al. [24], a CNN-based model was 
proposed to detect COVID-19. The dataset used includes the 
samples of normal (10,192 images), COVID-19 (3,616 images), 
lung opacity (6,012 images), and viral pneumonia (1,345 images). 
The developed model achieved an classification accuracy rate of 
95.80%. 

In the study of Ayadi et al. [25], the COVID-AleXception model 
was introduced, which combines features from two pre-trained 
CNN-based models (Xception and AlexNet). The dataset used for 
this study consisted of 15,153 X-ray images, including 1,345 
pneumonia, 3,616 COVID-19, and 10,192 normal images. Each 
CNN model underwent 100 epochs of training. Remarkably, the 
COVID-AleXception model achieved an impressive identification 
accuracy rate of 98.68%, surpassing the individual performances 
of Xception (95.63%) and AlexNet (94.86%). 

A bespoke CNN prediction system for chest X-rays was created by 
Hafeez et al. and compared to two pre-trained CNN approaches, 

VGG16 and AlexNet [26]. The evaluation involved three 
categories: normal, COVID-19, and virus bacteria. Their model 
attained an accuracy rate of 89.855%, while VGG16 achieved 
89.015%, and AlexNet achieved 89.155%. 

Moving on to the study of Huang et al. [27], the authors proposed 
a novel CNN technique for detecting COVID-19 using X-ray 
images. They tested their approach with seven pre-trained CNN-
based systems, including InceptionV3, Xception, ResNet50V2, 
MobileNetV2, DenseNet121, EfficientNet-B0, and EfficientNetV2. 
The dataset included the samples of COVID-19 (600 images), 
normal (600 images), and pneumonia (600 images). Each CNN 
model underwent 50 epochs of training. The proposed method 
achieved an accuracy rate of 98.33%, with EfficientNetV2 closely 
following at 97.73%. 

Ghose et al. developed a customized CNN-based automatic 
diagnosis system using a dataset of 10,293 X-ray images, which 
included 4,200 pneumonia, 2,875 COVID-19, and 3,218 normal 
images [28]. Their custom CNN was trained for 25 epochs and 
they obtained an impressive 98.50% accuracy rate. 

In the study of Ibrokhimov et al. [29], a DL diagnosis system was 
proposed for pneumonia detection using X-ray images. VGG19 
and ResNet50 were compared for three lung diseases. The 
dataset included the samples of pneumonia (11,263 images), 
COVID-19 (11,956 images), and normal (10,701 images). Both 
CNN methods were trained for 180 epochs, with the VGG19 
method achieving a 96.60% accuracy rate and ResNet50 
achieving 95.80%. 

In the study of Kong and Cheng [8], chest X-ray image 
classification was performed with an average accuracy of 98.0% 
for binary classification and 97.3% for three-category 
classification. The model utilized ResNet34 for efficient dataset 
segmentation and feature extraction and incorporated attention 
mechanisms to improve classification accuracy. 

Ji et al. employed four different CNN-based models and two 
cascaded network models to classify X-ray samples into two 
categories: individuals with COVID-19 and healthy individuals 
[30]. Model 2 of the cascade network showed exceptional 
performance with an accuracy of 96%, significantly aiding in 
COVID-19 detection. 

Narin et al. used chest X-rays to identify patients infected with 
coronavirus pneumonia by using five CNN-based models 
(ResNet50, ResNet101, ResNet152, InceptionV3, and Inception-
ResNetV2) [31]. 

Hussain et al. [32] developed a new CNN based model, namely 
CoroDet. In the study where 2-class, 3-class and 4-class 
classification results are given, success rates of 99.1%, 94.2% and 
91.2% are achieved, respectively.  

DarkNet was used in the study of Ozturk et al. [33]. They obtained 
98.08% accuracy rate for binary classification, and 87.02% 
accuracy rate for 3-class classification. 

Shaban et al. [17] proposed a hybrid feature selection 
methodology combining fast selection stage (FSS) and accurate 
selection stage (ASS). FSS is based on filtering while ASS is based 
on genetic algorithm (GA). Additionally, they suggest enhanced 
KNN (EKNN) to overcome the trapping problem of KNN.  

In the study of Khan et al. [34], CoroNet was introduced, based on 
the Xception method. It underwent 80 epochs of training and it 
achieved an accuracy rate of 89.60% in classifying images into the 
four classes. 

Additionally, in the study of Khan and Aslam [35], four different 
CNN-based models (VGG16, ResNet50, DenseNet121, and 
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VGG19) were compared for diagnosing X-ray images as COVID-
19 or normal (2020). The dataset consists of the samples for 
normal (802 images) and COVID-19 (790 images). Each CNN 
model underwent 30 epochs of training. The accuracy rates of 
VGG16, ResNet50, DenseNet121 and VGG19 are 99.33%, 97.00%, 
96.66% and 96.66%, respectively. 

Loey et al. used the GoogLeNet to classify the dataset consisting 
of the samples for COVID-19, bacterial pneumonia, viral 
pneumonia, and normal cases [18]. They achieved an accuracy 
rate of 80.6%. 

These studies collectively showcase substantial progress in 
automated COVID-19 diagnosis using chest X-ray images, with 
various models consistently achieving high accuracy rates. 

3. Materials and Methods 

3.1. Dataset 

The dataset ‘COVID-19 Radiography Database’ utilized in this 
study comprises of X-Ray images divided into four classes: 
COVID, Lung Opacity, Normal, and Viral Pneumonia (Table 1) 
[37]. It is available for download from Kaggle. There are 3619 
images belonging to the 'Covid' class, 6012 images belonging to 
the 'Lung Opacity' class, 10192 images belonging to the 'Normal' 
class, and 1345 images belonging to the 'Viral Pneumonia' class 
in the data set. There are 21168 images in total. The samples from 
the dataset are depicted in Figure 1. These images are gray level 
and 299×299 sizes. 

Table 1. The distribution of the classes in dataset. 

Class The Number of the Images 

Covid 3,619 
Lung Opacity 6,012 
Normal 10,192 
Viral Pneumonia 1,345 
SUM 21,168 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1. Image samples from the dataset (a) Covid (b) 
Lung_Opacity (c) Normal (d) Viral Pneumonia. 

3.2. Feature extraction   

Deep learning is a type of machine learning that is multi-layered. 
It is utilized in a variety of applications. For feature extraction and 
conversion, it employs many layers of nonlinear processing units. 
Each succeeding layer takes the output from the preceding layer 
as input. The number of layers in artificial neural networks is 

increased to construct deep learning systems. One of these 
architectures is the Convolutional Neural Network (CNN). Table 
2 lists the fundamental layers of CNN-based models. In this work, 
we evaluated four CNN-based models: ResNet18 [37], ResNet50 
[38], ResNet101 [39], and GoogLeNet [40]. 

Table 2. Basic layers of CNN. 

Layer Description 

Convolution 

It is this layer that extracts the features from the 
input images. This layer performs the 
mathematical operations of convolution between 
the input image and a filter of size MxM. The dot 
product between the filter and the sections of the 
input image with regard to the filter size (MxM) is 
obtained by sliding the filter over the image. 

Activation Function 

Activation layers give the network nonlinearity by 
appending an activation function to the output of 
the layer that came before it. It will take the output 
of the convolution layer and apply an element-
wise activation function. Relu is the most often 
utilized activation function. In this layer, the input 
data's negative values are set to 0, which speeds 
up the network's learning process. 

Pooling 

The main objective of this layer is to minimize the 
convolved feature map's size in order to save 
computational costs. Reducing the links between 
layers and working separately on every feature 
map help achieve this. Different approaches result 
in different sorts of pooling techniques. It 
basically encapsulates the properties that a 
convolution layer produces. In this way, it speeds 
up the computation, saves memory, and prevents 
overfitting. 

Fully Connected 
Layer 

This stage flattens the input pictures from the 
preceding layers and supplies them to the FC 
layer. The flattened vector is subsequently routed 
via a few further FC levels, where the 
mathematical function operations are often done. 
At this point, the classification step is performed. 

3.3. Feature selection   

Feature selection is a crucial step in model creation, involving the 
careful identification and inclusion of relevant features. When 
attribute selection is neglected, several challenges may arise: 

 Extended model training times can occur, impacting 
efficiency. 

 Model simplicity and interpretability are compromised 
when dealing with an excessive number of features. 

 Overfitting becomes a concern, leading to high 
performance on training data but poor generalization to 
test data, especially when the datasets differ. 

As a result, prioritizing data cleaning and feature selection as 
primary and essential steps in the model creation process is 
imperative for addressing these potential issues. 

The maximum relevance and minimal redundancy (mRMR) 
technique [41] is used to assess the importances of variables in 
this study. Each characteristic may be rated according to how 
important it is to the target variable, and the ranking procedure 
can take into account the duplication of these features at the same 
time [42]. The mutual information, I(M, N), is used to determine 
the level of similarity between M and N in this feature selection 
technique, which treats each feature individually from the 
dataset (1). The mutual information between features i and j is 
denoted by 𝐼(𝐹𝑖 , 𝐹𝑗). 𝐼(𝐹𝑖 ,𝐻) represents how similar every feature 
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i is to the vector of class labels and its related discrete random 
variable, H. S is the set of features to be chosen and |S| is the 
number of elements in the set of features. To guarantee that the 
cluster to be selected is the best cluster that can be selected, the 
conditions of maximum relevance (2) and minimum redundancy 
(3) must be met. 

𝐼(𝑀,𝑁) = ∑ ∑ 𝑝(𝑚,𝑛)log(
𝑝(𝑚, 𝑛)

𝑝1(𝑚)𝑝2(𝑛)
)

𝑚∈𝑀𝑛∈𝑁

 (1) 

max𝑊,𝑊 =
1

|𝑆|
∑ 𝐼(𝐹𝑖 ,𝐻)

𝐹𝑖∈𝑆
 (2) 

𝑚𝑖𝑛𝑉, 𝑉 =
1

|𝑆|2
∑ 𝐼(𝐹𝑖 , 𝐹𝑗)

𝐹𝑖 ,𝐹𝑗∈𝑆
 (3) 

3.4. Classification   

One of the simplest and most intuitive classification technique is 
the K Nearest Neighbour (K-NN) algorithm [43]. Within this 
algorithm, the K value is selected to represent the number of 
neighboring data points to be considered for classification. To 
calculate these distances, various distance measures such as 
Euclidean, Manhattan, and Minkowski can be used to measure the 
similarity between elements in the dataset. The K-NN algorithm 
operates by identifying the K nearest neighbors of a given data 
point based on these selected distance measures. It then predicts 
the class to which the data point belongs by examining the classes 
of its nearest neighbors. As a result, the data point is assigned to 
the class that is most common among its nearest neighbors. 

Ensemble Learning (EL) is a classification approach that relies on 
predictions and judgments from several classifiers [44]. It applies 
each classifier's result by consensus using input from more than 
one classifier at the same time. In most circumstances, this 
technique outperforms a single classifier. The fact that the 
classifiers' errors differ increases ensemble classification 
performance. To obtain variations in classifier predictions, 
different subsets of the training dataset are employed. The 
bootstrap technique is used to generate and train subsets of the 
training dataset. In this study, AdaBoost algorithm based on 
boosting approach has been used as the EL algorithm. 

The Support Vector Machine (SVM) is a machine learning 
algorithm developed for classification when the relationships 
between variables are not well understood Like Decision Trees 
(DTs), SVM can also be applied to regression analysis. The dataset 
is usually divided into two subsets: the training set and the test 
set. Using a labeled training set, the SVM algorithm identifies the 
ideal hyperplane separating the classes [45]. More than one 
hyperplane can potentially be used to separate the two classes. 
The optimal hyperplane is defined in this context as the one that 
maximizes the distance from the nearest data points of each class. 

A multi-variable algorithm called discriminant analysis (DA) 
ensures the division of N elements into two or more classes 
according to diverse characteristics and provides the necessary 

functions. Linear discriminant analysis (LDA) has been used in 
this study [46]. It can be applied provided that the variance-
covariance matrices between groups of randomly drawn sample 
data matrices from populations with multivariate normal 
distribution are equal. 

3.5. The proposed system 

The model proposed in this study is built upon two types of pre-
trained CNN models, namely ResNet18 and GoogleNet. This 
model encompasses four fundamental steps. Firstly, the features 
are extracted through ResNet18 and GoogleNet after undergoing 
necessary pre-processing operations. Subsequently, the feature 
set obtained by merging these features undergoes MRMR feature 
selection. Finally, the classification step is executed using the 
refined feature set. The flow chart of the model is given in Figure 
4.  

This system is based on two types of feature-level fusion: 
concatenating the features, summing the features. The difference 
between the two types is the way they combine features drawn 
from different models. 

3.5.1 Concatenating the features 

In this type of fusion, FS=[fs1_1,…,fs1_n,fs2_1,…,fs2_m] is obtained 
by combining feature set FS_1=[fs1_1,…,fs1_n] taken from a CNN-
based architecture with feature set FS_2=[fs2_1,…,fs2_m] taken 
from the other CNN-based architecture (Figure 2). The next steps 
are performed with this new set. 

  

Figure 2. Concantenation of the features. 

3.5.2 Summing the features 

In this type of fusion, FS=[fs1_1+fs_1,…, fs1_n+fs2_n] is obtained by 
summing the feature set FS_1=[fs1_1,…,fs1_n] taken from a CNN-
based architecture with the feature set FS_2=[fs2_1,…,fs2_m] 
taken from the other architecture (Figure 3). The next steps are 
carried out using the new feature set, as in the previous fusion 
model. 

  

Figure 3. Summation of the features. 
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Figure 4. Flow chart of the model developed using concatenating the features. 

4. Experimental Results  

In this paper, deep learning-based models have been 
incorporated to classify the images. The performances of the 
systems are validated by computing the evaluation metrics of 
accuracy, sensitivity (recall), specificity, precision, and F1 score. 
These metrics are calculated by using the values of true positive 
(TP), true negative (TN), false positive (FP), and false negative 
(FN). When we consider a dataset with two classes, covid and 
non-covid (normal), accuracy is the division of the number of 
correctly classified images (TP+TN) by the total number of 
images (2). It assesses the overall correctness of the models.  
Sensitivity is the division of the number of correctly classified 

images for covid class by the sum of TP and FN (3). Sensitivity 
measures the model's capacity to capture all positive cases while 
avoiding false negatives. The ratio of correctly identified non-
covid images to all non-covid images in the dataset gives 
specificity value (4). Specificity refers to the number of negative 
cases correctly predicted. To get around the limitations of 
accuracy metric, the precision metric is employed. It investigates 
how many people that are actually infected with covid are 
classified as infected (5).  F1 calculates the harmonic mean of 
precision and recall (6). 
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Accuracy=(TP+TN)/(TP+TN+FP+FN) (2) 

Sensitivity (Recall)=TP/(TP+FN) (3) 

Specificity=TN/(TN+FP) (4) 

Precision=TP/(TP+FP) (5) 

F1=(2×Precision×Recall)/(Precision+Recall) (6) 

The dataset has been split into two subsets for training and 
testing. Specifically, 70% of the dataset has been allocated for 
training the proposed model, while the remaining 30% has been 
reserved for testing the model's performance.  

Information regarding the layers from which features are 
extracted can be found in Table 3. Specifically, 1,000 features are 
extracted from the 'fc1000' layer of ResNet18, while 1,024 
features are extracted from the 'pool5-drop_7x7_s1' layer of 
GoogLeNet. These extracted features are then used in the 
subsequent stages of the model. 

Table 3. Information about the layers. 
Model Layer Feature Number 

ResNet18 fc1000 1000 

ResNet50 fc1000 1000 

ResNet101 fc1000 1000 

GoogLeNet pool5-drop_7x7_s1 1024 

4.1. xperimental results for hybrid models 

The findings in Table 4 show the classification performance of the 
features drawn from ResNet18, ResNet50, ResNet101, and 
GoogLeNet without applying any feature selection method.  It is 
evident that the highest success is achieved when the features 
pulled from ResNet50 are classified by SVM (0.9113). The worst 
success is seen when the hybrid model of ResNet101&EL is used 
(0.7764). When the accuracy averages of feature extractors are 
examined, the averages of ResNet18, ResNet50, ResNet101, and 
GoogLeNet are 0.8347, 0.8619, 0.8462, and 0.8268, respectively. 
On the other hand, the average accuracy values of the classifiers 
are 0.809, 0.7888, 0.8868, 0.885 for KNN, EL, SVM and DA, 
respectively. 

Table 5 provides insights into the classification performance of 
features extracted from the architectures after applying the 
mRMR feature selection method. Here, the effect of different 
feature numbers on performance is also examined. Therefore, the 
results for 250 features have been tested first, and then the 
results for 500 features have been tested. It is seen that the 
highest success is obtained when 500 of the features drawn from 
ResNet50 are selected with the help of mRMR and classified with 
SVM (0.9067). The average accuracy rate obtained when the 
number of features is 250 is 0.8360, while the average accuracy 
rate obtained when the number of features is 500 is 0.8413. From 
this, it can be deduced that the results obtained for 500 features 
are higher. 

 

Table 4. Results for hybrid models without using feature selection. 
MODEL Classifier ACC SENS SPEC PREC F1 

RESNET18 

KNN 0.7936 0.9344 0.9899 0.8812 0.9070 

EL 0.7996 0.9467 0.9791 0.7475 0.8354 

SVM 0.8728 0.9309 0.9948 0.9332 0.9320 

DA 0.8728 0.9659 0.9931 0.9109 0.9376 

RESNET50 

KNN 0.8370 0.9697 0.9907 0.8852 0.9256 

EL 0.7922 0.9228 0.977 0.7237 0.8112 

SVM 0.9113 0.9703 0.9953 0.9362 0.9529 

DA 0.9072 0.9712 0.9949 0.9320 0.9512 

RESNET101 

KNN 0.8090 0.9700 0.9910 0.8927 0.9297 

EL 0.7764 0.9546 0.9813 0.7821 0.8598 

SVM 0.9076 0.9700 0.9947 0.9288 0.9490 

DA 0.8918 0.9703 0.9925 0.9012 0.9344 

GOOGLENET 

KNN 0.7964 0.9084 0.9880 0.8589 0.8830 

EL 0.7871 0.9021 0.9791 0.7525 0.8205 

SVM 0.8555 0.9207 0.9959 0.9480 0.9341 

DA 0.8682 0.9436 0.9931 0.9109 0.9270 

Table 5. Results for hybrid models using MRMR feature selection. 

MODEL FEAT CLASS. ACC SENS SPEC PREC F1 

ResNet18 

250 

KNN 0.8362 0.9627 0.9879 0.8491 0.9023 

EL 0.7551 0.92871 0.9687 0.6366 0.7554 

SVM 0.8745 0.9612 0.9920 0.8959 0.9274 

DA 0.8591 0.9535 0.9917 0.8937 0.9227 

500 

KNN 0.8359 0.9616 0.9881 0.8512 0.9030 

EL 0.7565 0.9416 0.9686 0.6344 0.7581 

SVM 0.8798 0.9596 0.9930 0.9086 0.9334 

DA 0.8725 0.9581 0.9920 0.899 0.9276 
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Table 5 (continued) 
 

MODEL FEAT CLASS. ACC SENS SPEC PREC F1 

ResNet50 

250 

KNN 0.8557 0.9760 0.9895 0.8661 0.9178 

EL 0.7896 0.9205 0.9780 0.7386 0.8196 

SVM 0.8979 0.9668 0.9946 0.9288 0.9474 

DA 0.8707 0.9726 0.9897 0.8661 0.9162 

500 

KNN 0.8561 0.9778 0.9912 0.8884 0.9310 

EL 0.7921 0.9327 0.9782 0.7365 0.8230 

SVM 0.9067 0.9680 0.9949 0.9309 0.9491 

DA 0.8879 0.9745 0.9919 0.8937 0.9324 

ResNet101 

250 

KNN 0.8480 0.9720 0.9910 0.8863 0.9272 

EL 0.7784 0.9530 0.9808 0.7758 0.8553 

SVM 0.8922 0.9608 0.9952 0.9373 0.9489 

DA 0.8671 0.9674 0.9908 0.8820 0.9227 

500 

KNN 0.8388 0.9775 0.9903 0.8789 0.9256 

EL 0.7759 0.9488 0.9802 0.7683 0.8491 

SVM 0.9000 0.9670 0.9950 0.9330 0.9497 

DA 0.8821 0.9679 0.9921 0.8969 0.9311 

GoogLeNet 

250 

KNN 0.8231 0.9606 0.9862 0.8300 0.8905 

EL 0.7411 0.9138 0.9649 0.5972 0.7224 

SVM 0.8592 0.9596 0.9909 0.8842 0.9204 

DA 0.8276 0.8936 0.9891 0.8661 0.8797 

500 

KNN 0.8167 0.9503 0.9847 0.8130 0.8763 

EL 0.7402 0.8929 0.9631 0.5760 0.7003 

SVM 0.8694 0.9644 0.9917 0.8927 0.9272 

DA 0.8499 0.9302 0.9915 0.8927 0.9111 

Figure 5 offers a comparison of model and classifier 
performances both before and after feature selection.  

 

(a)                                                             (b) 

Figure 5. Comparisons using average accuracy rates (a) Model-
based (b) Classifier-based. 

In this graph, blue lines show the results when feature selection 
is not applied, red lines show the results obtained for 250 
features, and green lines show the results obtained for 500 
features. When Figure 5(a) is examined, the average accuracy 
rates obtained when classification is performed without applying 
feature selection are very close to the average accuracy rates 
obtained when 500 features are extracted using mRMR and 
classification is performed. Classification performances for 250 
features are always slightly lower. Among the four models, the 
CNN model from which the features with the highest 
classification performance are extracted is ResNet50. GoogLeNet 
is the CNN model that produces the lowest performing and most 
vulnerable features to changes. Looking at Figure 5(b), it can be 
seen that SVM is the classifier with the highest performance. 
Especially when SVM is used, the results obtained for all three 

cases (for without feature selection, for 250 features, and for 500 
features) are close to each other, while the accuracy rates 
obtained from other classifiers differs. 

The classifier with the second highest success is DA. However, it 
is seen that DA is not as robust as SVM and its success decreases 
when feature selection is applied. Classifiers other than KNN 
perform better when feature selection is not applied. If we talk 
about the number of features, it can be said that while the 
performance is lower for 250 features, higher performance is 
achieved for 500 features. This is valid for both graphs in Figure 
5. 

4.2. Experimental results for hybrid models with feature  
 fusion 

The performances obtained by classifying fused features without 
feature selection are given in Table 6. Because 1000 features are 
extracted from ResNet architectures and 1024 features are 
extracted from GoogLeNet, the sum of two feature vectors of 
different sizes cannot be made. Therefore, only the performance 
metrics obtained for concatenating the fetaures are included in 
this table. 

Classification success of the features extracted from 
ResNet50&ResNet101 with SVM is 0.9509. This rate is the 
highest accuracy rate in the table. It is striking that the 
performances of SVM and DA are close to each other. On the other 
hand, it is obvious that EL is always the worst performing 
classifier in all cases. 

The success rates achieved when employing feature selection in 
hybrid models with feature fusion are presented in Table 7. 
Notably, when classifying the ResNet50&ResNet101 fusion using 
VM, a higher result has been obtained (0.9575) surpassing all 
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results obtained after applying feature selection. This 
achievement closely approaches the success (0.9509) achieved 
without implementing feature selection. When concatenating is 
applied to features as a fusion model, an average accuracy of 
0.8811 is achieved, while an average accuracy rate of 0.8722 is 
achieved when summing is applied as a fusion model. 

Table 8 includes average accuracy rates of the fusion models. It is 
observed that the highest result is achieved when 
ResNet50&ResNet101 is used (0.9112). While the average 
success rates achieved after feature selection increase in some 
models such as ResNet18&ResNet101, ResNet50&ResNet101, 

and ResNet101&GoogLeNet, the average success rates decrease 
in the models such as ResNet18&ResNet50, and 
ResNet50&GoogLeNet. In the ResNet101&GoogLeNet model, the 
success rates obtained in each case are approximately the same. 

When a classifier-based comparison is made, it can be said that 
SVM is the best classifier while EL is the classifier that gives the 
lowest successful results in this study (Table 9). It seems that DA 
is as successful as SVM, but its success begins to decrease as the 
number of features decreases, indicating that it is not as robust 
as SVM. 
 

Table 6. Results for hybrid models with feature fusion without using feature selection. 

FUSION Classifier ACC SENS SPEC PREC F1 

RESNET18 & RESNET50 

KNN 0.8570 0.9789 0.9918 0.8959 0.9356 

EL 0.7823 0.9501 0.9732 0.6796 0.7924 

SVM 0.9099 0.9790 0.9953 0.9368 0.9574 

DA 0.9051 0.9724 0.9939 0.9182 0.9446 

RESNET18 & RESNET101 

KNN 0.8525 0.9773 0.9919 0.8981 0.9361 

EL 0.7755 0.9421 0.9777 0.7383 0.8278 

SVM 0.9097 0.9736 0.9951 0.9338 0.9533 

DA 0.9073 0.9716 0.9938 0.9160 0.943 

RESNET18 & GOOGLENET 

KNN 0.8602 0.9732 0.9915 0.8914 0.9305 

EL 0.7750 0.9489 0.9727 0.6766 0.7899 

SVM 0.9000 0.9741 0.9941 0.9219 0.9473 

DA 0.8959 0.9741 0.9942 0.9234 0.9481 

RESNET50 & RESNET101 

KNN 0.8381 0.9877 0.9952 0.9405 0.9635 

EL 0.8325 0.9676 0.9835 0.7938 0.8722 

SVM 0.9509 0.9892 0.9980 0.9713 0.9802 

DA 0.9494 0.9868 0.9966 0.9522 0.9692 

RESNET50 & GOOGLENET 

KNN 0.8681 0.9877 0.9953 0.9405 0.9635 

EL 0.8183 0.9745 0.9753 0.6908 0.8085 

SVM 0.9448 0.9914 0.9983 0.9766 0.9839 

DA 0.9507 0.9934 0.9977 0.9671 0.9801 

RESNET101 & GOOGLENET 

KNN 0.8345 0.9821 0.9947 0.9352 0.9581 

EL 0.8254 0.9664 0.9834 0.7938 0.8716 

SVM 0.9482 0.9935 0.9978 0.9692 0.9812 

DA 0.9480 0.9956 0.9975 0.9649 0.9444 

Table 7. Results for hybrid models with feature fusion using MRMR feature selection. 
FUSION FEAT. CLASS. ACC SENS SPEC PREC F1 FUSION FEAT. CLASS. ACC SENS SPEC PREC F1 

ResNet18 
& 

ResNet50 

250+250 

KNN 0.8669 0.9765 0.9910 0.8842 0.9281 

ResNet18 
+ 

ResNet50 

250 

KNN 0.8537 0.9728 0.9901 0.8746 0.9211 

EL 0.7862 0.9099 0.9773 0.7301 0.8101 EL 0.7750 0.9569 0.9715 0.6610 0.7819 

SVM 0.8987 0.9624 0.9943 0.9245 0.9431 SVM 0.8911 0.9612 0.9940 0.9214 0.9409 

DA 0.8905 0.9713 0.9924 0.8990 0.9338 DA 0.8728 0.9659 0.9925 0.9033 0.9336 

500+500 

KNN 0.8663 0.9779 0.9916 0.8916 0.9327 

500 

KNN 0.8499 0.9739 0.9898 0.8714 0.9198 

EL 0.7917 0.9171 0.9784 0.7407 0.8195 EL 0.7797 0.9525 0.9716 0.6599 0.7797 

SVM 0.9023 0.9614 0.9945 0.9267 0.9437 SVM 0.8988 0.9657 0.9945 0.9267 0.9458 

DA 0.9029 0.9717 0.9934 0.9118 0.9408 DA 0.8913 0.9704 0.9928 0.9054 0.9368 

ResNet18 
& 

ResNet101 

250+250 

KNN 0.8942 0.9867 0.9957 0.9437 0.9647 

ResNet18 
+ 

ResNet101 

250 

KNN 0.8845 0.9865 0.9947 0.9309 0.9579 

EL 0.8254 0.9694 0.9845 0.8087 0.8818 EL 0.8161 0.9550 0.9865 0.8353 0.8912 

SVM 0.9421 0.9871 0.9982 0.9745 0.9807 SVM 0.9353 0.9838 0.9975 0.9660 0.9748 

DA 0.9432 0.9835 0.9963 0.9479 0.9654 DA 0.9303 0.9812 0.9960 0.9447 0.9626 

500+500 

KNN 0.8832 0.9922 0.9958 0.9458 0.9684 

500 

KNN 0.8703 0.9863 0.9939 0.9214 0.9527 

EL 0.8221 0.9703 0.9836 0.7981 0.8758 EL 0.8072 0.9382 0.9853 0.8225 0.8766 

SVM 0.9438 0.9870 0.9978 0.9692 0.9780 SVM 0.9405 0.9892 0.9978 0.9692 0.9791 

DA 0.9515 0.9847 0.9970 0.9575 0.9709 DA 0.9421 0.9835 0.9966 0.9522 0.9676 
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Table 7 (continued) 

ResNet50 
& 

ResNet101 

250+250 

KNN 0.8959 0.9876 0.9949 0.9320 0.9590 

ResNet50 
+ 

ResNet101 

250 

KNN 0.8932 0.9887 0.9948 0.9320 0.9595 

EL 0.8429 0.9677 0.9864 0.8289 0.8930 EL 0.8302 0.9616 0.9859 0.8247 0.8879 

SVM 0.9518 0.9839 0.9983 0.9756 0.9797 SVM 0.9454 0.9850 0.9982 0.9756 0.9802 

DA 0.9476 0.9846 0.9966 0.9522 0.9681 DA 0.9328 0.9845 0.9961 0.9469 0.9653 

500+500 

KNN 0.8837 0.9899 0.9950 0.9352 0.9617 

500 

KNN 0.8892 0.9922 0.9955 0.9405 0.9656 

EL 0.8468 0.9715 0.9869 0.8342 0.8977 EL 0.8318 0.9594 0.9862 0.8289 0.8894 

SVM 0.9575 0.9881 0.9982 0.9745 0.9813 SVM 0.9528 0.9892 0.9983 0.9766 0.9829 

DA 0.9567 0.9890 0.9971 0.9596 0.9741 DA 0.9444 0.9879 0.9967 0.9543 0.9708 

ResNet18 
& 

GoogLeNet 

250+250 

KNN 0.8584 0.9736 0.9892 0.8618 0.9143 

ResNet18 
+ 

GoogLeNet 

250 

KNN 0.8543 0.9771 0.9891 0.8608 0.9153 

EL 0.7701 0.9349 0.9709 0.6567 0.7715 EL 0.7630 0.9092 0.9701 0.6493 0.7576 

SVM 0.8877 0.9676 0.9939 0.9192 0.9428 SVM 0.8819 0.9612 0.9940 0.9214 0.9409 

DA 0.8746 0.9624 0.9921 0.8969 0.9285 DA 0.8594 0.9499 0.9912 0.8874 0.9176 

500+500 

KNN 0.8553 0.9726 0.9896 0.8682 0.9175 

500 

KNN 0.8495 0.9723 0.9888 0.8576 0.9113 

EL 0.7720 0.9440 0.9701 0.6451 0.7664 EL 0.7670 0.9222 0.9706 0.6546 0.7657 

SVM 0.8939 0.9676 0.9940 0.9203 0.9434 SVM 0.8881 0.9707 0.9935 0.9138 0.9414 

DA 0.8869 0.9673 0.9933 0.9118 0.9387 DA 0.8764 0.9680 0.9924 0.9012 0.9334 

ResNet50 
& 

GoogLeNet 

250+250 

KNN 0.8642 0.9749 0.9897 0.8672 0.9179 

ResNet50 
+ 

GoogLeNet 

250 

KNN 0.8643 0.9810 0.9903 0.8757 0.9253 

EL 0.7911 0.9118 0.9771 0.7248 0.8076 EL 0.7807 0.9489 0.9772 0.7301 0.8252 

SVM 0.9007 0.9710 0.9945 0.9267 0.9483 SVM 0.8937 0.9688 0.9942 0.9235 0.9456 

DA 0.8867 0.9780 0.9922 0.8980 0.9363 DA 0.8646 0.9698 0.9913 0.8884 0.9273 

500+500 

KNN 0.8651 0.9810 0.9904 0.8767 0.9259 

500 

KNN 0.8617 0.9751 0.9903 0.8757 0.9227 

EL 0.7926 0.9084 0.9781 0.7375 0.8141 EL 0.7873 0.9472 0.9785 0.7439 0.8333 

SVM 0.9081 0.9765 0.9946 0.9277 0.9515 SVM 0.9052 0.9744 0.9947 0.9288 0.9510 

DA 0.9021 0.9785 0.9940 0.9192 0.9479 DA 0.8867 0.9726 0.9929 0.9065 0.9384 

ResNet101 
& 

GoogLeNet 

250+250 

KNN 0.8875 0.9875 0.9941 0.9224 0.9538 

ResNet101 
+ 

GoogLeNet 

250 

KNN 0.8873 0.9875 0.9943 0.9256 0.9556 

EL 0.8291 0.9652 0.9835 0.7949 0.8718 EL 0.8134 0.9704 0.9838 0.8023 0.8784 

SVM 0.9426 0.9828 0.9978 0.9692 0.9759 SVM 0.9340 0.9774 0.9976 0.9671 0.9722 

DA 0.9338 0.9811 0.9955 0.9373 0.9587 DA 0.9199 0.9798 0.9947 0.9277 0.9531 

500+500 

KNN 0.8719 0.9899 0.9950 0.9352 0.9617 

500 

KNN 0.8755 0.9887 0.9943 0.9267 0.9567 

EL 0.8281 0.9641 0.9839 0.8002 0.8746 EL 0.8167 0.9646 0.9845 0.8098 0.8804 

SVM 0.9470 0.9903 0.9982 0.9756 0.9829 SVM 0.9417 0.9860 0.9980 0.9724 0.9791 

DA 0.9471 0.9846 0.9964 0.9501 0.9670 DA 0.9351 0.9823 0.9961 0.9458 0.9637 

Table 8. Average accuracy rates of fusion models. 

FUSION 
without feature 

selection 
250+250  500+500  MODEL 250  500  

ResNet18&ResNet50 0.8636 0.8606 0.8658 ResNet18+ResNet50 0.8482 0.8549 

ResNet18&ResNet101 0.8613 0.9012 0.9002 ResNet18+ResNet101 0.8916 0.8900 

ResNet50&ResNet101 0.8578 0.9096 0.9112 ResNet50+ResNet101 0.9004 0.9046 

ResNet18&GoogLeNet 0.8927 0.8477 0.8520 ResNet18+GoogLeNet 0.8397 0.8453 

ResNet50&GoogLeNet 0.8955 0.8607 0.8670 ResNet50+GoogLeNet 0.8508 0.8602 

ResNet101&GoogLeNet 0.8890 0.8983 0.8985 ResNet101+GoogLeNet 0.8887 0.8923 

Table 9. Classifier based comparison. 

CLASSIFIER 
without feature 

selection 
250+250 500+500 250 500 

KNN 0.8517 0.8779 0.8709 0.8729 0.8660 
EL 0.8015 0.8075 0.8089 0.7964 0.7983 
SVM 0.9273 0.9206 0.9254 0.9136 0.9212 
DA 0.9261 0.9127 0.9245 0.8966 0.9127 

5. Discussion 

A multi-level fusion approach for radiography images has been 
presented in this paper. For this purpose, the successes have been 
compared as a result of fusing different numbers of features 
taken from different CNN models. In this study, where multi-
feature fusion with CNN is examined from various aspects, the 
fusion model that shows the highest success is 
ResNet50&ResNet101 with 95.75% (for 500+500 features). 
When compared to the studies in the literature, it is seen that this 
success is much higher than the studies of Hafeez et al. [18] and 
Khan et al. [29]. A comparison with other studies in the literature 
is illustrated in Table 10. 

6. Conclusion 

While CNN-based classification shows high performance, it is 
known to have a disadvantage in time. So, the reason why hybrid 
models are preferred instead of CNN-based classification is to 
take advantage of time. Hybrid studies reveal that CNN has high 
performance not only in classification but also in feature 

extraction. In this study, the performances of hybrid models are 
compared with the performances of the systems that implement 
hybrid models with feature level fusion. This is valid both when 
feature selection is applied and when it is not applied. The 
purpose of using feature fusion is to investigate whether 
performance can be further improved. 

In this study, where the feature extraction performances of 
different versions of residual networks (ResNet18, ResNet50, 
ResNet101) and GoogLeNet are tested, striking results are 
achieved. While the success in hybrid models reaches a maximum 
of 0.9113 (ResNet50&SVM), the success increases up to 0.9575 
(ResNet50&ResNet101&SVM) when feature level fusion is used. 
The success of ResNet50 surpasses other CNN models. It is 
observed that the success of ResNet50 exceeds other CNN models 
in hybrid models, and the results obtained when feature level 
fusion is used are compatible with the graph given in Figure 5. It 
can be seen that the second most successful CNN model is 
ResNet101 and that ResNet50 gives the most successful results 
when fused with ResNet101. 
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When evaluated on a classifier basis, the highest success is 
achieved when classification is performed with SVM, whether 
feature selection is applied or not. The second most successful 
classifier is found to be DA. When DA is used for classification, the 
results obtained are very close to the results of SVM. The fact that 
DA gives results in a much shorter time compared to SVM may be 
a justified reason why DA is preferable. 

In addition, a different number of features have been selected 
using MRMR, which is a feature selection method, and the effect 
of the number of features on the performance has been examined. 
According to the experimental studies, although choosing 250 or 
500 features from the models does not affect the achievements 
much, generally higher results are obtained if 500 features are 
selected for both hybrid systems and hybrid systems with feature 
fusion (except for some cases of KNN). 

Two different fusion models have been used in the feature level 
fusion: concatenating the features, and summing the features. 

The average accuracy rate obtained when concatenating the 
features is used is slightly higher than the average accuracy value 
obtained when summing the features is used. On the other hand, 
the number of features obtained in the concatenating process is 
double that of the features obtained in the summing process. 
Therefore, when concatenating is preferred instead of summing, 
the classification time increases slightly. 

It is a known fact that most of the completion time of CNN-based 
models is spent in the classification phase. Despite all its positive 
aspects, it is clear that extracting features from two models 
instead of one in hybrid models with multi-feature fusion causes 
extra loss of time. It is also obvious that hybrid models with multi-
feature fusion give results in a longer time compared to hybrid 
models. 

In the future study, it is aimed to improve the existing CNN 
models in terms of time and performance and compare them with 
the multi-feature fusion examined in this study.

Table 10. A comparison with the other studies in the literature. 

Study Model Dataset Accuracy 

MobileNetV2-Based Model [13] Based on MobileNetV2 
 

1,576 normal, 3,616 COVID-19, 
4,265 pneumonia images 

97.61% 
 

LW-CORONet [17] Custom CNN Dataset-1 with 2,250 images (750 
pneumonia, 750 normal, and 750 
COVID-19), and dataset-2 with 
15,999 images (5,575 pneumonia, 
8,066 normal, and 2,358 COVID-19) 

98.67% for dataset-1 and 95.67% 
for dataset-2 

COVID-AleXception [20] Combination of Xception and 
AlexNet 

15,153 X-ray images (1,345 
pneumonia, 3,616 COVID-19, 
10,192 normal) 

98.68% 
 

Custom CNN [21] Custom CNN Not specified. 
 

89.855% 

Lightweight CNN for COVID-19 [22] Seven pre-trained CNNs 
(InceptionV3, Xception, 
ResNet50V2, etc.) 

600 COVID-19, 600 normal, 600 
pneumonia images 98.33% (EfficientNetV2: 97.73%) 

Custom CNN Diagnosis [23] Custom CNN 10,293 X-ray images (4,200 
pneumonia, 2,875 COVID-19, 3,218 
normal) 

 

98.50% 
 

 

DL Diagnosis (VGG19 and 
ResNet50) [24] 

VGG19 and ResNet50 11,263 pneumonia, 11,956 COVID-
19, 10,701 normal images 

 

VGG19: 96.60%,  
ResNet50: 95.80% 

CoroNet [29] Based on Xception 330 bacterial pneumonia, 327 viral 
pneumonia, 284 COVID-19, 310 
normal X-ray images 

89.60% 

Comparative DL Analysis [30] VGG16, ResNet50, DenseNet121, 
VGG19 

1,592 X-ray images (802 normal, 
790 COVID-19) 

VGG16: 99.33%,  
ResNet50: 97.00%, DenseNet121,  

VGG19: 96.66% 
 

Our Study Multi-feature fusion 21,168 X-ray images (3,619 
covid, 6,012 lung_opacity, 10,192 
normal, 1,345 viral pneumonia) 

95.75% 
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