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 ABSTRACT 

The bending behaviour of two-directional functionally graded beams (FGBs) subjected to various sets of boundary conditions is 

investigated by using a shear and normal deformation theory and the Symmetric Smoothed Particle Hydrodynamics (SSPH) 

method. A simply supported conventional FGB problem is studied to validate the developed code. The comparison studies are 

performed along with the analytical solutions and the results from previous studies. The numerical calculations in terms of 

maximum dimensionless transverse deflections, dimensionless axial and transverse shear stresses are performed for various 

gradation exponents, aspect ratios (L/h) and sets of boundary conditions. The effects of the gradation exponents on the accuracy 

and the robustness of the SSPH method are also investigated for the two directional functionally graded beams which are having 

clamped-free boundary condition..  

Keywords: Meshless method, Functionally graded beam, SSPH method, Shear and normal deformation theory. 

Dört Bilinmeyenli Kayma ve Normal Deformasyon 

Teorisi Kullanılarak İki Yönlü Fonksiyonel 

Derecelendirilmiş Kirişlerin Eğilme Analizleri  

ÖZ 

Kesme ve normal deformasyon teorisi ve Simetik Düzgünleştirilmiş Parçacık Hidrodinamiği (SSPH) kullanılarak, çeşitli sınır 

koşullarına tabi tutulmuş iki yönlü fonksiyonel derecelendirilmiş kirişlerin (FGBs) eğilme davranışı araştırıldı. Geliştirilen kodun 

doğrulanması için basit mesnetlenmiş bir fonksiynel derecelendirilmiş kiriş problem üzerinde çalışıldı. Karşılaştırma çalışmaları, 

analitik çözümler ve daha önceki çalışmaların sonuçları vasıtasıyla gerçekleştirildi. Çeşitli üst dereceleri, en-boy oranları (L/h), 

ve sınır koşulları için maksimum boyutsuz çökme değerleri, boyutsuz eksenel ve kayma gerilmeleri şeklinde numerik 

hesaplamalar yapıldı. Ankastre-serbest uç şeklinde sınır koşullarına sahip iki yönlü fonksiyonel derecelendirilmiş kirişler için, üst 

derecelerinin, SSPH yönteminin doğruluğu ve gücü üzerindeki etkileri de araştırıldı.  

Anahtar Kelimeler: Ağsız yöntem, Fonksiyonel derecelendirilmiş kiriş, SSPH yöntemi, Kayma ve normal deformasyon 

teorisi. 

1. INTRODUCTION 

In recent years, the use of the structures which are made 

of composite materials have been increasing in many 

modern engineering applications such as aerospace, 

marine, automotive, and civil engineering due to 

attractive properties in strength, stiffness and lightness.  

Researchers have been developed various beam theories 

for analysis of the structural behaviour of the composite 

beams during the last decade, the review of these 

theories is given in [1]. The Euler-Bernoulli beam 

theory (EBT) is widely used to solve the bending 

behaviour of the thin beams. When the beam is thick or 

short, the effect of the transverse shear deformation 

cannot be neglected and refined shear deformation 

theories are needed. One of the theories which have 

been developed to eleminate the assumption which is 

Functionally Graded Materials (FGMs) are composite 

materials which can be classified as advanced materials. 

The FGMs are inhomogeneous and made up of two (or 

more) different materials combined in solid states with 

varying properties as the dimension changes. There is a 

rapid increase in the use of these materials especially in 

the following areas; the aerospace, biomedical, defense, 

energy, optoelectronics, automotive, turbine blade, 

reactor components and etc. Since the FGMs have lower 

transverse shear stresses, high resistance to temperature 

shocks and no interface problems through the layer 

interfaces, they have advantages over the conventional 

and classical composite materials. 

Due to the significant shear deformation effects 

especially for the thick FGBs, three main theories that 

are first-order shear deformation theory, higher-order 



 

 

shear deformation theory and shear and normal 

deformation theory have been employed by the 

researchers to predict and to understand the static, 

vibration and buckling responses of these structures 

during the last decade [1-24]. On the other hand, the 

conventional FGMs (or 1D-FGM) with material 

properties which vary in one direction used in practical 

engineering applications are not efficient to fulfill the 

technical requirements such as the temperature and 

stress distributions in two or three direction for 

aerospace craft and shuttles [25]. 

A new type FGM with material properties varying in 

two or three directions is needed to overcome this 

deficiency of the conventional FGM. To eliminate the 

drawback of the conventional FGM, the mechanical and 

thermal behaviours of two-directional FG structures 

have been investigated so far. 2D steady-state free and 

forced vibrations of two-directional FGBs by using the 

Element Free Galerkin Method are analyzed in [26]. 

The state-space based differential quadrature method is 

employed to obtain the semi-analytical elasticity 

solutions for bending and thermal deformations of 

FGBs with various end conditions [27]. A symplectic 

elasticity solution for static and free vibration analyses 

of two-directional FGBs with the material properties 

varying exponentially in both axial and thickness 

direction is presented in [28]. The buckling of 

Timoshenko beams composed of two directional FGM 

is studied in [29]. The static behavior of the two 

directional FGBs by using various beam theories is 

presented in [30]. The flexure of the two directional FG 

sandwich beams is analyzed in [31].  

As it is seen from above discussions, the studies 

employing a shear and normal deformation theory 

which includes both shear deformation and thickness 

stretching effects related to static and dynamic analysis 

of the two-directional FGBs are very limited according 

to the author knowledge. Since, thickness-stretching 

effect becomes very important especially for the thick 

two directional FGBs, a shear and normal deformation 

theory should be considered for this complicated 

problem with various end conditions, aspect ratios and 

gradation exponents. One may easily show that the 

numerical methods such as finite element methods 

(FEM), meshless methods, GDQM, etc. can be used to 

overcome this problem which have complex governing 

equations.  

Meshless methods are the most promising and have 

attracted considerable attention for the analysis of 

engineering problems with intrinsic complexity. 

Meshless methods are widely used in static and dynamic 

analyses of the isotropic, laminated composite and FGM 

beam problems [32-38].  However, the studies are very 

limited regarding to the analysis of two directional FG 

structures by employing a meshless method [26, 30, 39-

41]. 

The main novelty of this paper is that the flexure 

behavior of the two directional FGBs is analyzed based 

on a quasi-3D theory by using the SSPH method with 

four different end conditions. Moreover, the weight 

(kernel) functions used for the numerical computations 

by employing the SSPH method given in [30, 42-45] 

cannot provide satisfactory results for the solution of 

these complex engineering problems. To overcome this 

deficiency, a weight function [46] which is used for the 

interpolation by employing the compactly supported 

radial basis function is introduced. And finally, the 

thickness stretching effect is important and should be 

considered especially for the thick beams. 

In section 2, the formulation of the basis function of the 

SSPH method is given. In section 3, the homogenization 

of material properties of the two directional FGB is 

presented. The formulation of the shear and normal 

deformation theory is given in Section 4. In Section 5, 

numerical results are given for the problems with four 

different boundary conditions which are simply 

supported (SS), clamped- simply supported (CS), 

clamped-clamped (CC) and clamped-free (CF). 

 

2. FORMULATION OF SYMMETRIC 

SMOOTHED PARTICLE HYDRODYNAMICS 

METHOD 

Taylor Series Expansion (TSE) of a scalar function for 

1D case can be given by 

𝑓(𝜉) = 𝑓(𝑥) + (𝜉 − 𝑥)𝑓′(𝑥) +
1

2!
(𝜉 − 𝑥)2𝑓′′(𝑥) + 

+
1

3!
(𝜉 − 𝑥)3𝑓′′′(𝑥) +

1

4!
(𝜉 − 𝑥)4𝑓(𝐼𝑉)(𝑥) + 

1

5!
(𝜉 − 𝑥)5𝑓(𝑉)(𝑥) +

1

6!
(𝜉 − 𝑥)6𝑓(𝑉𝐼)(𝑥)+. ..               (1) 

where 𝑓(𝜉) is the value of the function at ξ located in 

near of x. If the seventh and higher order terms are 

neglected, the Eq. (1) can be expressed as  

𝑓(𝜉) = 𝑷(𝜉, 𝑥)𝑸(𝑥)                                           (2) 

where 

 𝑸(𝑥) = [𝑓(𝑥),
𝑑𝑓(𝑥)

𝑑𝑥
,
1

2!

𝑑2𝑓(𝑥)

𝑑𝑥2
 , … ,

1

6!

𝑑6𝑓(𝑥)

𝑑𝑥6
]
𝑇

              (3) 

𝑷(𝜉, 𝑥) = [1, (𝜉 − 𝑥), (𝜉 − 𝑥)2, … , (𝜉 − 𝑥)6]             (4) 

The order of the governing equations play an important 

role to define the number of terms assigned in the 

Taylor series expansion. If the number of terms in the 

TSE is increased, there will be an increment in the CPU 

time and one may expect that the accuracy will increase. 

However, in some cases it may not be true and 

determination of the number of terms depends on the 

researcher’s experience. To determine the unknown 

variables given in the 𝐐(x), both sides of Eq. (2) are 

multiplied with W(ξ, x)𝐏(ξ, x)T and evaluated for every 

node in the CSD. In the global numbering system, let 

the particle number of the jth particle in the compact 

support of W(ξ, x) be r ( j ). The following equation is 

obtained 



 

 

∑ 𝑓(𝜉𝑟(𝑗))

𝑁(𝑥)

𝑗=1

𝑊(𝜉𝑟(𝑗), 𝑥)𝑷(𝜉𝑟(𝑗), 𝑥)
𝑇
 

= ∑ [𝑷(𝜉𝑟(𝑗), 𝑥)
𝑇
𝑊(𝜉𝑟(𝑗), 𝑥)𝑷(𝜉𝑟(𝑗), 𝑥)]

𝑁(𝑥)
𝑗=1 𝑸(𝑥)   (5) 

where N(x) is the number nodes in the compact support 

domain (CSD) of the W(ξ, x) as shown in Figure 1. 

Then, Eq. (5) can be given by 

𝑪(𝜉, 𝑥)𝑸(𝑥) = 𝑫(𝜉, 𝑥)𝑭(𝑥)(𝜉, 𝑥)                                (6) 

Where 𝐂(ξ, x) = 𝐏(ξ, x)T𝐖(ξ, x)𝐏(ξ, x) and 𝐃(ξ, x) =

𝐏(ξ, x)T 𝐖(ξ, x). 

The solution of Eq. (6) is given by 

𝑸(𝑥) =  𝑲(𝜉, 𝑥)𝑭(𝜉)                                           (7) 

where 𝐊(x)(ξ, x) = 𝐂(ξ, x)−1𝐃(ξ, x). 

 

 

 

 

 

 

 

 

 

Figure 1. Compact support of the weight function W(ξ, x) for 

the node located at x = (xi, yi). 

 

Eq. (7) can be also written as follows 

𝑄𝐼(𝑥) = ∑ 𝐾𝐼𝐽𝐹𝐽  
𝑀
𝐽=1 ,       𝐼 = 1,2, … ,7               (8) 

where M is the number of nodes and FJ = f(ξJ). Seven 

components of Eq. (8) for 1D case are written as 

𝑓(𝑥) = 𝑄1(𝑥) = ∑𝐾1𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝑑𝑓(𝑥)

𝑑𝑥
= 𝑄2(𝑥) = ∑𝐾2𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝑑2𝑓(𝑥)

𝑑𝑥2
= 2! 𝑄3(𝑥) = 2!∑𝐾3𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝑑3𝑓(𝑥)

𝑑𝑥3
= 3! 𝑄4(𝑥) = 3!∑𝐾4𝐽𝐹𝐽  

𝑀

𝐽=1

 

 
𝑑4𝑓(𝑥)

𝑑𝑥4
= 4!𝑄5(𝑥) = 4!∑𝐾5𝐽𝐹𝐽                 

𝑀

𝐽=1

 

 
𝑑5𝑓(𝑥)

𝑑𝑥5
= 5!𝑄6(𝑥) = 5!∑𝐾6𝐽𝐹𝐽  

𝑀

𝐽=1

            

𝑑6𝑓(𝑥)

𝑑𝑥6
= 6! 𝑄7(𝑥) = 6! ∑ 𝐾7𝐽𝐹𝐽  

𝑀
𝐽=1                              (9) 

Details of the SSPH method can be found in [30, 42-

45]. 

 

3. HOMOGENIZATION OF MATERIAL 

PROPERTIES 

 

We assume that the two-directional functionally graded 

beam of length L, width b, thickness h is made of two 

different constituents. Further, the material properties 

vary not only in the z direction (thickness direction) but 

also in the x direction (along the length of the beam) as 

shown in Fig. 2. The rule of mixture is used to find the 

effective material properties at a point. According to the 

rule of mixtures, the effective material properties of the 

beam, Young’s modulus E and shear modulus G can be 

given by In Figure 2. 

Figure 2. Geometry and coordinate of a two-directional FGB. 

 

The stress-strain relationship of a kth orthotropic lamina 

in the material coordinate axes is given by: 

𝐸(𝑥, 𝑧) = 𝐸1𝑉1(𝑥, 𝑧) + 𝐸2𝑉2(𝑥, 𝑧) 

𝐺(𝑥, 𝑧) = 𝐺1𝑉1(𝑥, 𝑧) + 𝐺2𝑉2(𝑥, 𝑧)                           (10) 

where 𝐸1, 𝐸2, 𝐺1 and 𝐺2 are the material properties of 

two constituents, 𝑉1 and 𝑉2are volume fractions of the 

constituents. The relation of the volume fractions can be 

expressed as follows; 

𝑉1(𝑥, 𝑧) + 𝑉2(𝑥, 𝑧) = 1                                         (11) 

According to the power law form, the volume fraction 

of the constitute 1 can be given 

 𝑉1(𝑥, 𝑧) = (1 −
𝑥

2𝐿
)
𝑝𝑥
(
1

2
+

𝑧

ℎ
)
𝑝𝑧

                           (12) 

where 𝑝𝑥 and 𝑝𝑧 are the gradation exponents (power-

law index) which determine the material properties 

through the thickness (h) and length of the beam (L), 

respectively. When the 𝑝𝑥 and 𝑝𝑧 are set to zero then the 

beam becomes homogeneous. The effective material 

properties can be found by using the Eqs. (10), (11) and 

(12) as follows 

𝐸(𝑥, 𝑧) = (𝐸1 − 𝐸2) (1 −
𝑥

2𝐿
)
𝑝𝑥

(
1

2
+
𝑧

ℎ
)
𝑝𝑧

+ 𝐸2 

𝐺(𝑥, 𝑧) = (𝐺1 − 𝐺2) (1 −
𝑥

2𝐿
)
𝑝𝑥
(
1

2
+

𝑧

ℎ
)
𝑝𝑧
+ 𝐺2       (13) 

𝒙𝒊 
 

𝒙𝒈 

Compact 

Support 

Domain 



 

 

Fig.3 illustrates the variation of the dimensionless 

modulus of elasticity through the depth of the beam for 

various values of the gradation exponent (𝑝𝑧) in the z 

direction. The variation of the dimensionless modulus of 

elasticity through the length of the beam for different 

gradation exponent (𝑝𝑥) in the x direction is presented 

in Fig. 4. 

Figure 3. Variation of the dimensionless modulus of elasticity 

through the depth of the beam for various values of the 

gradation exponent (𝑝𝑧) in z direction 

Figure 4. Variation of the dimensionless modulus of elasticity 

through the length of the beam for different gradation 

exponent (𝑝𝑥) in x direction 

 

4. MATHEMATICAL FORMULATION 

The axial and transverse displacements of a beam by 

using the present shear and normal deformation theory 

[17] including both shear deformation and thickness 

stretching effects are given by  

𝑈(𝑥, 𝑧) = 𝑢(𝑥, 𝑡) − 𝑧
𝑑𝑤𝑏(𝑥)

𝑑𝑥
−
4𝑧3

3ℎ2
𝑑𝑤𝑠(𝑥)

𝑑𝑥
 

= 𝑢(𝑥) − 𝑧𝑤𝑏
′ (𝑥) − 𝑓(𝑧)𝑤𝑠

′(𝑥)                         (14a) 

𝑊(𝑥, 𝑧) = 𝑤𝑏(𝑥) + 𝑤𝑠(𝑥) + (1 −
4𝑧2

ℎ2
)𝑤𝑧(𝑥) 

= 𝑤𝑏(𝑥) + 𝑤𝑠(𝑥) + 𝑔(𝑧)𝑤𝑧(𝑥)                         (14b) 

where 𝑢,𝑤𝑏 , 𝑤𝑠 and 𝑤𝑧 are four variables to be 

determined. 

The only nonzero strains associated with the 

displacement field given in Eq. (14) can be written by: 

𝜀𝑥 =
𝜕𝑈

𝜕𝑥
= 𝑢′ − 𝑧𝑤𝑏

′′ − 𝑓(𝑧)𝑤𝑠
′′                         (15a) 

𝜀𝑧 =
𝜕𝑊

𝜕𝑧
= 𝑔′(𝑧)𝑤𝑧                                                  (15b) 

𝛾𝑥𝑧 =
𝜕𝑊

𝜕𝑥
+

𝜕𝑈

𝜕𝑧
= 𝑔(𝑧)( 𝑤𝑠

′ + 𝑤𝑧
′)                            (15c) 

 

The following linear elastic constitutive equation can be 

written by using the related stresses and strains: 

[

𝜎𝑥
𝜎𝑧
𝜎𝑥𝑧
] =

𝐸(𝑥,𝑧)

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

] [

𝜀𝑥
𝜀𝑧
𝛾𝑥𝑧
]                           (16) 

To obtain the governing equations, the virtual strain 

energy of the beam can be written as: 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑥𝑧𝐴

𝐿

0
𝛿𝛾𝑥𝑧 + 𝜎𝑧𝑔

′𝛿𝜀𝑧)𝑑𝐴𝑑𝑥     (17) 

The stress resultants 𝑁𝑥, 𝑀𝑥
𝑏 , 𝑀𝑥

𝑠, 𝑄𝑥𝑧  and 𝑅𝑧 can be 

written respectively as follows: 

𝑁𝑥 = ∫ 𝑏𝜎𝑥𝑑𝑧
+ℎ/2

−ℎ/2
                                                    (18a) 

𝑀𝑥
𝑏 = ∫ 𝑏𝜎𝑥𝑧𝑑𝑧

+ℎ/2

−ℎ/2
                                                 (18b) 

𝑀𝑥
𝑠 = ∫ 𝑏𝜎𝑥𝑓𝑑𝑧

+ℎ/2

−ℎ/2
                                                 (18c) 

𝑄𝑥𝑧 = ∫ 𝑏𝜎𝑥𝑧𝑔𝑑𝑧
+ℎ/2

−ℎ/2
                                              (18d) 

𝑅𝑧 = ∫ 𝑏𝜎𝑧𝑔
′𝑑𝑧

+ℎ/2

−ℎ/2
                                                 (18e) 

Using the Eq. (18), one can rewrite the Eq. (17) as: 

𝛿𝑈 = ∫ [𝑁𝑥𝛿𝑢
′ −𝑀𝑥

𝑏𝛿𝑤𝑏
′′ −𝑀𝑥

𝑠𝛿𝑤𝑠
′′ + 𝑄𝑥𝑧(𝛿𝑤𝑠

′ +
𝐿

0

𝛿𝑤𝑧
′) + 𝑅𝑧𝛿𝑤𝑧]𝑑𝑥                                        (19a) 

The virtual potential energy of the transverse load 𝑞(𝑥) 
is given by 

𝛿𝑉 = −∫ 𝑞(𝛿𝑤𝑏 + 𝛿𝑤𝑠)𝑑𝑥
𝐿

0
                                     (20) 

Since the total virtual work done equals zero and the 

coefficients of 𝛿𝑢, 𝛿𝑤𝑏 , 𝛿𝑤𝑠 and 𝛿𝑤𝑧 are zero in 0 <
𝑥 < 𝐿, one can obtain the following governing 

equations, 

𝑑𝑁𝑥

𝑑𝑥
= 0                                                                     (21a) 

𝑑2𝑀𝑥
𝑏

𝑑𝑥2
+ 𝑞(𝑥) = 0                                                      (21b) 

 
𝑑2𝑀𝑥

𝑠

𝑑𝑥2
+

𝑑𝑄𝑥𝑧

𝑑𝑥
+ 𝑞(𝑥) = 0                                        (21c) 

𝑑𝑄𝑥𝑧

𝑑𝑥
− 𝑅𝑧 = 0                                                      (21d) 

Using Eq. (16), the stress resultants given in Eq. (18) 

can be expressed as, 

{
 
 

 
 
𝑁𝑥
𝑀𝑥
𝑏

𝑀𝑥
𝑠

𝑄𝑥𝑧
𝑅𝑧 }
 
 

 
 

=

[
 
 
 
 
𝐴 𝐵 𝐵𝑠 𝑋 0
𝐵 𝐷 𝐷𝑠 𝑌 0
𝐵𝑠 𝐷𝑠 𝐻 𝑌𝑠 0
𝑋 𝑌 𝑌𝑠 𝑍 0
0 0 0 0 𝐴𝑠]

 
 
 
 

{
 
 

 
 

𝑢′

−𝑤𝑏
′′

−𝑤𝑠
′′

𝑤𝑧
𝑤𝑠
′ + 𝑤𝑧

′}
 
 

 
 

         (22) 

where  

(𝐴, 𝐵, 𝐵𝑠, 𝐷, 𝐷𝑠 , 𝐻, 𝑍) =

∫
𝐸(𝑥,𝑧)𝑏

1−𝜈2
(1, 𝑧, 𝑓, 𝑧2, 𝑓𝑧, 𝑓2, 𝑔′2)𝑑𝑧

+ℎ/2

−ℎ/2
           (23a) 

𝐴𝑠 = ∫
𝐸(𝑥,𝑧)𝑏

2(1+𝜈)
𝑔2𝑑𝑧

+ℎ/2

−ℎ/2
                                    (23b) 

(𝑋, 𝑌, 𝑌𝑠) = ∫
𝐸(𝑥,𝑧)𝜈𝑏

1−𝜈2
𝑔′(1, 𝑧, 𝑓)𝑑𝑧

+ℎ/2

−ℎ/2
                   (23c) 
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The governing equations of the quasi-3D theory can be 

obtained by substituting Eq. (22) into Eq. (21) as: 

𝐴𝑢′′ + 𝐴′𝑢′ − (𝐵𝑤𝑏
′′′ + 𝐵′𝑤𝑏

′′) − (𝐵𝑠𝑤𝑠
′′′ + 𝐵𝑠

′𝑤𝑠
′′) +

𝑋𝑤𝑧
′ + 𝑋′𝑤𝑧 = 0                                                      (24a) 

𝐵𝑢′′′ + 2𝐵′𝑢′′ + 𝐵′′𝑢′ − (𝐷𝑤𝑏
(𝐼𝑉) + 2𝐷′𝑤𝑏

′′′ +

𝐷′′𝑤𝑏
′′) − (𝐷𝑠𝑤𝑠

(𝐼𝑉) + 2𝐷𝑠
′𝑤𝑠

′′′ + 𝐷𝑠
′′𝑤𝑠

′′) + 𝑌𝑤𝑧
′′ +

2𝑌′𝑤𝑧
′ + 𝑌′′𝑤𝑧 − 𝑞 = 0                              (24b) 

𝐵𝑠𝑢
′′′ + 2𝐵𝑠

′𝑢′′ + 𝐵𝑠
′′𝑢′ − (𝐷𝑠𝑤𝑏

(𝐼𝑉) + 2𝐷𝑠
′𝑤𝑏

′′′ +

𝐷𝑠
′′𝑤𝑏

′′) − (𝐻𝑤𝑠
(𝐼𝑉) + 2𝐻′𝑤𝑠

′′′ +𝐻′′𝑤𝑠
′′) + 𝑌𝑠𝑤𝑧

′′ +

2𝑌𝑠
′𝑤𝑧

′ + 𝑌𝑠
′′𝑤𝑧 + 𝐴𝑠(𝑤𝑠

′′ + 𝑤𝑧
′′) + 𝐴𝑠

′(𝑤𝑠
′ + 𝑤𝑧

′) −

𝑞 = 0                                      (24c) 

−𝑋𝑢′ + 𝑌𝑤𝑏
′′ + 𝑌𝑠𝑤𝑠

′′ + 𝐴𝑠(𝑤𝑠
′′ +𝑤𝑧

′′) + 𝐴𝑠
′(𝑤𝑠

′ +

𝑤𝑧
′) − 𝑍𝑤𝑧 = 0                                               (24d) 

The natural boundary conditions are given as follows: 

𝛿𝑢: 𝑁𝑥                                                                    (25a) 

𝛿𝑤𝑏: 𝑀𝑥
𝑏′                                                                  (25b) 

𝛿𝑤𝑏
′ ∶ 𝑀𝑥

𝑏                                                      (25c) 

𝛿𝑤𝑠: 𝑀𝑥
𝑠′ + 𝑄𝑥𝑧                                                       (25d) 

𝛿𝑤𝑠
′ ∶ 𝑀𝑥

𝑠                                                      (25e) 

𝛿𝑤𝑧: 𝑄𝑥𝑧                                                       (25f) 

 

5. NUMERICAL RESULTS 

The static behaviour of the two directional FGBs is 

investigated by using a quasi-3D shear deformation 

theory. The numerical results are obtained by using the 

SSPH method for various gradation exponents in both 

direction, x and z respectively, different aspect ratios 

and boundary conditions. Since there is no available 

previous results based on a higher order shear 

deformation theory and a shear and normal deformation 

theory for the bending analysis of two-directional FGBs 

with power law rule, as the first, the developed code is 

verified by solving a simply supported conventional 

FGB problem subjected to uniformly distributed load. 

The numerical solutions are compared with the 

solutions from previous studies [16-17] along with the 

analytical solutions. The dimensionless maximum 

transverse deflections, axial and shear stresses are 

calculated to make the comparisons on a fair ground. 

For each problem studied here, the physical parameters 

of the beam are L=2m and b=0.1m. Two different two 

aspect ratios (L/h), 5 and 20 are considered for the 

boundary conditions defined as SS, CS and CC. The 

numerical solutions could not be obtained for the aspect 

ratio (L/h) which is greater than 5 for the boundary 

condition defined as CF. The possible reasons behind 

this case are discussed in section 5.2.4. The distributed 

load 𝑞0 is set to 10000 N/m. The material properties of 

the two constitutes are given  

𝐶𝑒𝑟𝑎𝑚𝑖𝑐 (𝐴𝑙2𝑂3)       ∶ 𝐸1 = 380𝐺𝑃𝑎 𝑎𝑛𝑑 𝜈1 = 0.3 

𝑀𝑒𝑡𝑎𝑙 (𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚)  ∶ 𝐸2 = 70𝐺𝑃𝑎 𝑎𝑛𝑑  𝜈2 = 0.3 

The following non-dimensional quantities are used for 

the representation of the results; 

Non-dimensional maximum transverse deflection of the 

beam: 

 �̅� =
100𝐸2𝑏ℎ

3

𝑞0𝐿
4 𝑊(𝑥,0) 𝑓𝑜𝑟 𝑆𝑆,𝐶𝑆 𝑎𝑛𝑑 𝐶𝐶 𝑏𝑒𝑎𝑚𝑠     �̅� =

100𝐸2𝑏ℎ
3

𝑞0𝐿
4 𝑊(𝐿, 0) 𝑓𝑜𝑟 𝐶𝐹 𝑏𝑒𝑎𝑚                         (26) 

Non-dimensional axial and shear stresses of the beam: 

𝜎𝑥 =
𝑏ℎ

𝑞0𝐿
𝜎𝑥(

𝐿

2
, 𝑧) 

𝜎𝑧 =
𝑏ℎ

𝑞0𝐿
𝜎𝑧(
𝐿

2
, 𝑧) 

𝜎𝑥𝑧 =
𝑏ℎ

𝑞0𝐿
𝜎𝑥𝑧(0, 𝑧)                                                     (27) 

5.1 Verification and Comparison Studies 

To verify the developed code, a simply supported FGB 

under uniformly distributed load is considered. For 

numerical calculations to be performed by the SSPH 

method uniformly distributed 201 nodes for the SS, CS 

and CC beams and 247 nodes for the CF beam are used 

in the problem domain 𝑥 ∈ [0, 2]. As a weight function, 

the following function proposed in [46] is used, 

𝑊(𝑥, 𝜉) = {(1 −
𝑑

𝜌
)
7
35(

𝑑

𝜌
)
6
+ 245(

𝑑

𝜌
)
5
+ 720(

𝑑

𝜌
)
4
+

0
        

1120 (
𝑑

𝜌
)
3

+ 928 (
𝑑

𝜌
)
2

+ 336 (
𝑑

𝜌
) + 48     

0

0 ≤ 𝑑 ≤ 𝜌

𝑑 > 𝜌
}   (28) 

where 𝑑 = |𝑥 − 𝜉|/ℎ, ℎ is the smoothing length and 𝜌 

is the scaling factor that determines the size of the 

support domain. The numerical calculations are 

performed according to the following meshless 

parameters; the radius of the support domain (𝜌) is 

chosen as 8 and the smoothing length (h) equals to 1.1∆ 

where ∆ is the minimum distance between two adjacent 

nodes for SS, CS and CC beams. For CF beam, the 

radius of the support domain (𝜌) is chosen as 5.302 and 

the smoothing length (h) equals to 1.2∆. All the 

meshless parameters are found by using the trial and 

error method. The maximum non-dimensional 

transverse deflections, axial, normal and shear stresses 

obtained based on the present shear and normal 

deformation theory, various aspect ratios and various 

gradation exponents in the z direction are given in Table 

1-4 along with the results from previous studies and the 

analytical solution of the problem. It is clear that the 

results obtained by using the SSPH method agree 

completely with those of previous papers [16-17]. Table 

1-4 show that the results obtained by the SSPH method 

are in excellent agreement with the results given in [16-

17]. And finally, because of stretching effect, the 

transverse deflections computed based on the shear and 

normal deformation theory are slightly smaller than 

those obtained from TBT. Due to this agreement, the 

verification of the developed code is established. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Verification studies of the developed meshless code for SS FGB, dimensionless maximum transverse 

deflections for various gradation exponents. 

Method Theory εz p = 0 p = 1 p = 2 p = 5 p = 10 

L/h=5  

Li et al. [16] TBT = 0 3.1657 6.2599 8.0602 9.7802 10.8979 

Vo et al. [17] Navier 
TBT = 0 3.1654 6.2594 8.0677 9.8281 10.9381 

Present ≠ 0 3.1397 6.1338 7.8606 9.6037 10.7578 

Vo et al. [17] FEM 
TBT = 0 3.1654 6.2590 8.0668 9.8271 10.9375 

Present ≠ 0 3.1397 6.1334 7.8598 9.6030 10.7572 

SSPH Present ≠ 0 3.1402 6.1343 7.8602 9.6041 10.7571 

L/h=20  

Li et al. [16] TBT = 0 2.8962 5.8049 7.4415 8.8151 9.6879 

Vo et al. [17] Navier 
TBT = 0 2.8962 5.8049 7.4421 8.8182 9.6905 

Present ≠ 0 2.8947 5.7201 7.2805 8.6479 9.5749 

Vo et al. [17] FEM 
TBT = 0 2.8963 5.8045 7.4412 8.8173 9.6899 

Present ≠ 0 2.8947 5.7197 7.2797 8.6471 9.5743 

SSPH Present ≠ 0 2.8952 5.7215 7.2826 8.6485 9.5745 

 
Table 2. Verification studies of the developed meshless code for SS FGB, dimensionless axial stress �̅�𝑥(

𝐿

2
,
ℎ

2
) for 

various gradation exponents. 

Method Theory εz p = 0 p = 1 p = 2 p = 5 p = 10 

L/h=5  

Li et al. [16] TBT = 0 3.8020 5.8837 6.8812 8.1030 9.7063 

Vo et al. [17] Navier 
TBT = 0 3.8020 5.8836 6.8826 8.1106 9.7122 

Present ≠ 0 3.8005 5.8812 6.8818 8.1140 9.7164 

Vo et al. [17] FEM 
TBT = 0 3.8040 5.8870 6.8860 8.1150 9.7170 

Present ≠ 0 3.8020 5.8840 6.8860 8.1190 9.7220 

SSPH Present ≠ 0 3.8005 5.8815 6.8821 8.1145 9.7170 

L/h=20  

Li et al. [16] TBT = 0 15.0130 23.2054 27.0989 31.8112 38.1372 

Vo et al. [17] Navier 
TBT = 0 15.0129 23.2053 27.0991 31.8130 38.1385 

Present ≠ 0 15.0125 23.2046 27.0988 31.8137 38.1395 

Vo et al. [17] FEM 
TBT = 0 15.0200 23.2200 27.1100 31.8300 38.1600 

Present ≠ 0 15.0200 23.2200 27.1100 31.8300 38.1600 

SSPH Present ≠ 0 15.0147 23.2099 27.1122 31.8070 38.1252 

 
Table 3. Verification studies of the developed meshless code for SS FGB, dimensionless transverse shear stress 

�̅�𝑥𝑧(0,0) for various gradation exponents. 

Method Theory εz p = 0 p = 1 p = 2 p = 5 p = 10 

L/h=5  

Li et al. [16] TBT = 0 0.7500 0.7500 0.6787 0.5790 0.6436 

Vo et al. [17] Navier 
TBT = 0 0.7332 0.7332 0.6706 0.5905 0.6467 

Present ≠ 0 0.7233 0.7233 0.6622 0.5840 0.6396 

Vo et al. [17] FEM 
TBT = 0 0.7335 0.7335 0.6700 0.5907 0.6477 

Present ≠ 0 0.7291 0.7291 0.6661 0.5873 0.6439 

SSPH Present ≠ 0 0.7246 0.7234 0.6618 0.5840 0.6396 

L/h=20  

Li et al. [16] TBT = 0 0.7500 0.7500 0.6787 0.5790 0.6436 

Vo et al. [17] Navier 
TBT = 0 0.7451 0.7451 0.6824 0.6023 0.6596 

Present ≠ 0 0.7432 0.7432 0.6809 0.6010 0.6583 

Vo et al. [17] FEM 
TBT = 0 0.7470 0.7470 0.6777 0.6039 0.6682 

Present ≠ 0 0.7466 0.7466 0.6776 0.6036 0.6675 

SSPH Present ≠ 0 0.7425 0.7432 0.6789 0.6037 0.6606 
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Table 4. Verification studies of the developed meshless code for SS FGB, dimensionless normal stress �̅�𝑧 (
𝐿

2
,
ℎ

2
) 

for various gradation exponents. 

Method Theory εz p = 0 p = 1 p = 2 p = 5 p = 10 

L/h=5  

Vo et al. [17] Navier Present ≠ 0 0.1352 0.0670 0.0925 0.0180 -0.0181 

Vo et al. [17] FEM Present ≠ 0 0.1352 0.0672 0.0927 0.0183 -0.0179 

SSPH Present ≠ 0 0.1352 0.0671 0.0925 0.0182 -0.0180 

L/h=20  

Vo et al. [17] Navier Present ≠ 0 0.0337 -0.5880 -0.6269 -1.1698 -1.5572 

Vo et al. [17] FEM Present ≠ 0 0.0338 -0.5874 -0.6261 -1.1690 -1.5560 

SSPH Present ≠ 0 0.0338 -0.5880 -0.6266 -1.1706 -1.5589 

 
Table 5. Boundary conditions used for the numerical computations. 

BC x=0 x=L 

SS 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑀𝑥
𝑏 = 0,𝑀𝑥

𝑠 = 0 𝑢 = 0 𝑜𝑟 𝑁𝑥 = 0 ,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑀𝑥
𝑏 = 0,𝑀𝑥

𝑠 = 0 

CS 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑤𝑏
′ = 0,𝑤𝑠

′ = 0 𝑢 = 0 𝑜𝑟 𝑁𝑥 = 0 ,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑀𝑥
𝑏 = 0,𝑀𝑥

𝑠 = 0 

CC 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑤𝑏
′ = 0,𝑤𝑠

′ = 0 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑤𝑏
′ = 0,𝑤𝑠

′ = 0 

CF 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑤𝑏
′ = 0,𝑤𝑠

′ = 0  𝑁𝑥 = 0,𝑀𝑥
𝑏 = 0,𝑀𝑥

𝑠 = 0,𝑀𝑥
𝑏′ = 0,𝑀𝑥

𝑠′ +𝑄𝑥𝑧 = 0, 𝑄𝑥𝑧 = 0 

 
Table 6. Dimensionless maximum transverse deflections of the SS two-directional FGB for various gradation 

exponents in both directions and aspect ratios. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 3.1402 3.9791 4.9566 8.2264 12.2258 

1 6.1343 7.2342 8.3430 11.2590 14.0759 

2 7.8602 8.8636 9.8333 12.3067 14.6466 

5 9.6041 10.4721 11.3126 13.4239 15.3073 

10 10.7571 11.6165 12.4207 14.2924 15.8037 

20 

0 2.8952 3.6662 4.5679 7.6257 11.4111 

1 5.7215 6.7299 7.7469 10.4640 13.1101 

2 7.2826 8.1853 9.0653 11.3622 13.5589 

5 8.6485 9.4397 10.2153 12.2531 14.0626 

10 9.5745 10.3974 11.1716 12.9851 14.4938 

 

Table 7. Dimensionless axial stress �̅�𝑥(
𝐿

2
,
ℎ

2
) of the SS two-directional FGB for various gradation exponents in 

both directions. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 3.8005 3.7945 3.7703 3.6740 3.6146 

1 5.8815 5.6196 5.3454 4.6207 3.9726 

2 6.8821 6.4155 5.9789 4.9475 4.0813 

5 8.1145 7.4802 6.8933 5.4784 4.2515 

10 9.7170 8.8501 8.0301 6.0444 4.4015 

20 

0 15.0147 14.9895 14.8909 14.5014 14.2517 

1 23.2099 22.1731 21.0861 18.2136 15.6904 

2 27.1122 25.2728 23.5505 19.4770 16.1494 

5 31.8070 29.3394 27.0385 21.5344 16.7800 

10 38.1252 34.7636 31.5736 23.9702 17.3768 

 



 

 

5.2 Elastostatic Analysis of Two-Directional FGBs 

Four different boundary conditions, SS, CS, CC and CF 

are considered respectively for the bending analysis of 

two directional FGBs subjected to uniformly distributed 

load. The transverse deflections, axial, normal and shear 

stresses are computed based on the present quasi-3D 

theory for different gradation exponents in both 

directions and aspect ratios. The details of the boundary 

conditions (BCs) used for the numerical analysis are 

given in Table 5. 

5.2.1 SS Two-Directional FGB 

A simply supported two directional FGB under 

uniformly distributed load is analyzed. The 

dimensionless transverse deflections and stresses are 

computed for various gradation exponents in both 

directions and different aspect ratios. 

As it is seen from Table 6, the computed transverse 

deflection value decreases as the aspect ratio increases. 

With the increasing of the gradation exponents in both 

directions, the deflection values are increasing. In Table 

7, the dimensionless axial stress values are presented. It 

is clear that the stress decreases as the gradation 

exponents in both directions increases. The maximum 

dimensionless shear stress value is obtained when pz is 

set to zero and px is set to 5 as shown in Table 8. It is 

found in Table 9 that the dimensionless normal stress 

almost vanishes when the aspect ratio is 20 and the 

gradation exponent in the z direction is set to zero. 

Figs. 5 and 6 are plotted for different aspect ratios to 

show the variation of the dimensionless axial and 

normal stresses through the thickness for different 

values of the gradation exponent in the x direction, 

when the gradation exponent in the z direction is 

determined as 2. The maximum axial stress value is 

observed at the top surface of the beam. The axial stress 

increases as the gradation exponent in the x direction 

decreases. The beam with pz=2 and px=0 yields the 

maximum normal stress as seen in Figs. 5 and 6. In 

Figs. 5 and 6, it is also clear that the computed shear 

stress values are zero on the top and the bottom surfaces 

of the beam, as it is expected. The minimum shear stress 

value is obtained when the pz is set to 10. 

5.2.2 CS Two-Directional FGB 

The dimensionless maximum transverse deflections and 

the axial, normal and shear stresses of the clamped-

simply supported FGBs are investigated. The computed 

results are given in Table 10 and Figs. 7-8. It is clear in 

Table 10 that the transverse deflections increase as the 

gradation exponent increases. Lower aspect ratio has the 

larger dimensionless transverse deflections than the 

higher one. 

In Figs. 7-8, the axial, normal and shear stresses are 

presented for various gradation exponents and aspect 

ratios. It is found that the maximum axial stress 

increases as the gradation exponent in the x direction 

increases. The maximum normal stress is obtained at the 

bottom surface of the beam. The normal stress values 

are decreasing as the gradation exponent in the x 

direction is decreasing at the bottom surface of the 

beam. The maximum shear stress is observed for pz=1 

when the px is set to 2. 

5.2.3 CC Two-Directional FGB 

The dimensionless maximum transverse deflections and 

the axial, normal and shear stresses of the clamped-

clamped FGBs are considered. The results are given in 

Table 11 and Fig. 9 for different gradation exponents 

and aspect ratios. It is clear from Table 11 that, as the 

gradation exponents increase, the transverse deflections 

increase. The computed results are in very well 

agreement along with the previous study. 

The axial and normal stresses are plotted in Fig.9 for 

various gradation exponents in the x direction as the 

aspect ratio is set 5 and pz=0. As the gradation exponent 

set to zero in the z direction, the maximum axial stresses 

obtained for px=0 and px=1 are almost 

indistinguishable. The maximum normal stress values 

are seen on the top surface of the beam and they are also 

indistinguishable. The maximum normal stress is found 

for px=10. As it is expected, the shear stress values are 

zero at the bottom and top surface of the beam. The 

maximum shear stress is observed for pz=1. 

5.2.4 CF Two-Directional FGB 

Finally, the results of elastostatic analysis of the CF 

FGBs under uniformly distributed load are given for 

various gradation exponents and aspect ratios. For this 

example, accurate and agreed results cannot be obtained 

when the aspect ratio is greater than 5 and the gradation 

exponent is x direction greater than 2. However, the 

results found by using the aspect ratio lower than 6 are 

acceptable and agreed along with the analytical 

solutions. This point is important to determine future 

studies based on the present shear and normal shear 

deformation theory and the SSPH method. It is not clear 

that increasing the gradation exponent in the x direction 

deteriorates the accuracy of the present shear and 

normal deformation theory with higher aspect ratios. 

The robustness and accuracy of the SSPH method could 

be lost by using the gradation exponent in the x 

direction greater than 5 with CF boundary conditions as 

well.  

As it is seen from Table 12, the transverse deflections 

increase as the gradation exponents increase. Three 

different aspect ratios are employed to investigate the 

inefficiency of the theory and the numerical method. It 

is not found a concrete reason that may explain the loss 

of accuracy when the aspect ratio is set to above 5. 

However, the computed results agree very well along 

with the analytical solutions based on the TBT. 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Dimensionless transverse shear stress �̅�𝑥𝑧(0,0) of the SS two-directional FGB for various gradation 

exponents in both directions. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 0.7246 0.7923 0.8484 0.9278 0.9195 

1 0.7234 0.7780 0.8186 0.8662 0.8560 

2 0.6618 0.7017 0.7290 0.7582 0.7523 

5 0.5840 0.6001 0.6099 0.6203 0.6200 

10 0.6396 0.6457 0.6494 0.6542 0.6557 

20 

0 0.7425 0.8125 0.8718 0.9580 0.9467 

1 0.7432 0.7993 0.8415 0.8901 0.8778 

2 0.6789 0.7199 0.7486 0.7792 0.7740 

5 0.6037 0.6223 0.6364 0.6385 0.6414 

10 0.6606 0.6686 0.6749 0.6738 0.6791 

 

Table 9. Dimensionless normal stress �̅�𝑧 (
𝐿

2
,
ℎ

2
) of the SS two-directional FGB for various gradation exponents in 

both directions. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 0.1352 0.1350 0.1346 0.1331 0.1328 

1 0.0671 0.0553 0.0498 0.0636 0.1085 

2 0.0925 0.0583 0.0422 0.0577 0.1110 

5 0.0182 0.0108 0.0205 0.0772 0.1253 

10 -0.0180 0.0157 0.0498 0.1176 0.1396 

20 

0 0.0338 0.0338 0.0337 0.0333 0.0331 

1 -0.5880 -0.6015 -0.5864 -0.4229 -0.1163 

2 -0.6266 -0.7108 -0.7197 -0.5044 -0.1138 

5 -1.1706 -1.1012 -0.9656 -0.5067 -0.0843 

10 -1.5589 -1.2682 -0.9862 -0.3459 -0.0493 
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Figure 5. Dimensionless axial �̅�𝑥(
𝐿

2
, 𝑧), normal �̅�𝑧(

𝐿

2
, 𝑧) and shear  stress �̅�𝑥𝑧(0, 𝑧)  

through the thickness of the SS FGB for pz=2 and px=2, L/h=5 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10. Dimensionless maximum transverse deflections of the CS two-directional FGB for various gradation 

exponents in both directions. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 1.4497 1.7984 2.1844 3.3256 4.4754 

1 2.7943 3.2536 3.7003 4.7672 5.6600 

2 3.6053 4.0375 4.4382 5.3676 6.1134 

5 4.5443 4.9024 5.2356 5.9811 6.5451 

10 5.1527 5.4762 5.7665 6.3852 6.8235 

20 

0 1.2572 1.5297 1.8335 2.7508 3.6922 

1 2.2574 2.6612 3.0403 3.8831 4.7242 

2 2.8623 3.2657 3.6266 4.3313 4.9949 

5 3.2451 3.6310 3.8925 4.5933 5.2977 

10 3.8213 4.1552 4.3400 4,9688 5.6261 
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Figure 6. Dimensionless axial �̅�𝑥(
𝐿

2
, 𝑧), normal �̅�𝑧(

𝐿

2
, 𝑧) and shear  stress �̅�𝑥𝑧(0, 𝑧)  

through the thickness of the SS FGB for pz=2 and px=2, L/h=20 
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Figure 7. Dimensionless axial �̅�𝑥(
𝐿

2
, 𝑧), normal �̅�𝑧(

𝐿

2
, 𝑧) and shear  stress �̅�𝑥𝑧(0, 𝑧)  

through the thickness of the CS FGB for pz=2 and px=2, L/h=5 
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Figure 8. Dimensionless axial �̅�𝑥(
𝐿

2
, 𝑧), normal �̅�𝑧(

𝐿

2
, 𝑧) and shear  stress �̅�𝑥𝑧(0, 𝑧)  

through the thickness of the CS FGB for pz=2 and px=2, L/h=20 

Table 11. Dimensionless maximum transverse deflections of the C-C two-directional FGB for various gradation 

exponents in both directions. 

Aspect Ratio 

(L/h) 
pz 

Vo et al. [17] px 

px = 0 0 1 2 5 10 

5 

0 0.8327 0.8349 1.0660 1.3187 2.0188 2.6766 

1 1.5722 1.5868 1.8836 2.1655 2.8106 3.3063 

2 2.0489 2.0810 2.3585 2.6100 3.1762 3.5770 

5 2.6929 2.7180 2.9393 3.1597 3.5873 3.8630 

10 3.1058 3.1104 3.3217 3.4988 3.8290 4.0292 

20 

0 0.5894 0.5898 0.7532 0.9315 1.4187 1.8575 

1 1.1613 1.1630 1.3754 1.5737 2.0112 2.3388 

2 1.4811 1.4906 1.6764 1.8510 2.2307 2.5065 

5 1.7731 1.7762 1.9474 2.1065 2.4409 2.6534 

10 1.9694 1.9734 2.1479 2.2997 2.5867 2.7617 
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Figure 9. Dimensionless axial �̅�𝑥(
𝐿

2
, 𝑧), normal �̅�𝑧(

𝐿

2
, 𝑧) and shear  stress �̅�𝑥𝑧(0, 𝑧)  

through the thickness of the CC FGB for pz=0 and px=1, L/h=5 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is observed in Fig. 10 that the dimensionless axial 

stress values computed by using the shear and normal 

deformation theory formulation increases as the  

gradation exponent in the x direction decreases. It is 

clear that the maximum normal stress values are found 

at the top surface of the beam. As the gradation 

exponent in the x direction decreases, the maximum 

normal stress increases. The dimensionless shear stress 

values are shown in Fig. 10. As it is seen, the minimum 

shear stress value is obtained when the gradation 

exponent in the z direction is set to zero. The shear 

stress values are zero at the bottom and top surfaces of 

the beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSION 

The SSPH basis functions are employed to analyze the 

elastostatic behaviour of the two directional functionally 

graded beams subjected to different sets of boundary 

conditions and uniformly distributed load by using 

strong formulation of the problem. A shear and normal 

deformation theory which includes both shear 

deformation and thickness stretching effect is used to 

evaluate the transverse deflections, axial, normal and 

shear stresses of two directional FGBs. The developed 

code is verified by studying a simply supported FGB 

problem and comparing the results with previous studies 

and the analytical solutions. Four different boundary 

conditions (SS, CS, CC and CF) are considered with 
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Figure 10. Dimensionless axial �̅�𝑥(
𝐿

2
, 𝑧), normal �̅�𝑧(

𝐿

2
, 𝑧) and shear  stress �̅�𝑥𝑧(0, 𝑧)  

through the thickness of the CF FGB for pz=1 and px=2, L/h=5 
 

Table 12. Dimensionless maximum transverse deflections of the C-F two-directional FGB for various gradation 

exponents in both directions. 

Aspect 

Ratio 

(L/h) 
pz 

Li et al. [16] Vo et al. [17] px 

px = 0,  
εz = 0 

px = 0,  
εz ≠ 0 

0 1 2 5 10 

2 

0 38.4079 

- 

35.2697 38.8074 43.3814 58.5072 83.8566 

1 73.6361 67.7056 72.5379 78.1133 94.2687 116.6278 

2 96.4165 87.2699 91.4037 96.5571 109.5350 128.8880 

5 124.3960 109.6762 113.0652 116.5574 126.9298 141.5556 

10 143.2723 124.4861 127.9787 135.0984 137.1212 151.2053 

3 

0 32.4211 

- 

30.8511 33.7188 37.1688 49.7066 70.9790 

1 63.5249 59.6712 63.7506 68.1217 81.3383 100.2031 

2 82.3200 75.7549 80.0420 84.1371 96.7912 111.4601 

5 101.9579 92.9652 96.3159 100.7895 107.7395 122.6167 

10 114.9451 105.4147 109.0172 112.5187 119.6471 131.2405 

5 

0 29.3558 28.5524 27.6636 30.4944 33.6062 44.5715 63.7455 

1 58.3481 56.2002 56.7975 60.2980 64.0033 75.5193 93.3406 

2 75.1027 71.7295 71.6238 75.2135 78.7156 88.8993 103.9447 

5 90.4697 86.1201 86.5866 89.8121 92.9513 102.7237 114.2047 

10 100.3961 95.7582 97.6667 101.0233 104.1912 113.5742 123.2930 

 
 

 



 

 

different gradation exponents in both directions and 

various aspect ratios. The effect of the normal strain is 

investigated and it is found that it is important and 

should be considered in the static behavior of the two 

directional functionally graded beams including 

sandwich structures which may be a subject of the 

future studies.  

Another important point is that for CF beam, the 

computed results for the aspect ratio which is higher 

than 5 are not agree very well with the previous studies 

as the gradation exponent in the x direction is set to 

higher than 2. At least within the scope of this work, it 

may be told that by using the SSPH method and present 

shear and normal deformation theory, it is not 

recommended to use a gradation exponent in the x 

direction greater than 2 as the aspect ratio increases with 

CF boundary condition and this should be investigated 

in future studies. 

It is found that the SSPH method provides satisfactory 

results at least for the problems studied here. Based on 

the results of the four numerical examples, it is 

recommended that the SSPH method can be applied for 

solving linear two directional functionally graded beam 

problems by employing different shear deformation 

theories including shear and normal deformation 

theories.  
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