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ABSTRACT

investigated by using a shear and normal deformation theory and the Symmetric Smoothe
method. A simply supported conventional FGB problem is studied to validate the developed
performed along with the analytical solutions and the results from previous studies. Th

gradation exponents, aspect ratios (L/h) and sets of boundary conditions. The effects
and the robustness of the SSPH method are also investigated for the two dwec@na

clamped-free boundary condition..

Keywords: Meshless method, Functionally graded beam, SSPH method,

Dort Bilinmeyenli Kayma

Teorisi Kullanilarak,
Derecelendirilmis

hesaplamalar yapildi. Ankas

derecelerinin, SSPH yontgmini
Anahtar Kelimeler:
teorisi.

applications such as aerospace,
and civil engineering due to

for analysis’of the structural behaviour of the composite
beams during the last decade, the review of these
theories is given in [1]. The Euler-Bernoulli beam
theory (EBT) is widely used to solve the bending
behaviour of the thin beams. When the beam is thick or
short, the effect of the transverse shear deformation
cannot be neglected and refined shear deformation
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nts on the accuracy
ed beams which are having

Deformasyon
Fonksiyonel

iyonel derecelendirilmis kiris, SSPH yiintemi, Kayma ve normal deformasyon

theories are needed. One of the theories which have
been developed to eleminate the assumption which is
Functionally Graded Materials (FGMs) are composite
materials which can be classified as advanced materials.
The FGMs are inhomogeneous and made up of two (or
more) different materials combined in solid states with
varying properties as the dimension changes. There is a
rapid increase in the use of these materials especially in
the following areas; the aerospace, biomedical, defense,
energy, optoelectronics, automotive, turbine blade,
reactor components and etc. Since the FGMs have lower
transverse shear stresses, high resistance to temperature
shocks and no interface problems through the layer
interfaces, they have advantages over the conventional
and classical composite materials.

Due to the significant shear deformation -effects
especially for the thick FGBs, three main theories that
are first-order shear deformation theory, higher-order



shear deformation theory and shear and normal
deformation theory have been employed by the
researchers to predict and to understand the static,
vibration and buckling responses of these structures
during the last decade [1-24]. On the other hand, the
conventional FGMs (or 1D-FGM) with material
properties which vary in one direction used in practical
engineering applications are not efficient to fulfill the
technical requirements such as the temperature and
stress distributions in two or three direction for
aerospace craft and shuttles [25].

A new type FGM with material properties varying in
two or three directions is needed to overcome this
deficiency of the conventional FGM. To eliminate the
drawback of the conventional FGM, the mechanical and
thermal behaviours of two-directional FG structures
have been investigated so far. 2D steady-state free and
forced vibrations of two-directional FGBs by using the
Element Free Galerkin Method are analyzed in [26].
The state-space based differential quadrature method is
employed to obtain the semi-analytical elasticity
solutions for bending and thermal deformations of
FGBs with various end conditions [27]. A symplectic
elasticity solution for static and free vibration analyses
of two-directional FGBs with the material properties
varying exponentially in both axial and thickne
direction is presented in [28]. The buckling@o
Timoshenko beams composed of two directional FGI
is studied in [29]. The static behavior of th
directional FGBs by using various beam th

sandwich beams is analyzed in [31].
As it is seen from above discussj

which includes both shear def
stretchmg effects related to stai

theory should

problem witpaggti ions, aspect ratios and
gradation @ ay easily show that the
numer g h7as finite element methods
(FE SQethods, GDQM, etc. can be used to
0 m which have complex governing
equati

Meshless ods are the most promising and have
attracted considerable attention for the analysis of
engineering problems with intrinsic complexity.
Meshless methods are widely used in static and dynamic
analyses of the isotropic, laminated composite and FGM
beam problems [32-38]. However, the studies are very
limited regarding to the analysis of two directional FG
structures by employing a meshless method [26, 30, 39-
41].

The main novelty of this paper is that the flexure
behavior of the two directional FGBs is analyzed based

on a quasi-3D theory by using the SSPH method with
four different end conditions. Moreover, the weight
(kernel) functions used for the numerical computations
by employing the SSPH method given in [30, 42-45]
cannot provide satisfactory results for the solution of
these complex engineering problems. To overcome this
deficiency, a weight function [46] which is used for the
interpolation by employing the compactly supported
radial basis function is introduced. And finally, the
thickness stretching effect is important and should be
considered especially for the thick beams.

In section 2, the formulation of the basis

of material propertles of the t is
presented. The formulatigf® rmal
deformation theory is giv@ i ction 5,
numerical results are gi with four

different boundary
supported (SS),
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where f(§)is the value of the function at € located in
near of x. If the seventh and higher order terms are
neglected, the Eq. (1) can be expressed as

f(§) =P x)Qx) 2
where

2f(x 6F(x T
Q) = [fe0, L2 22 5P ®3)
P(E! x) - [1, (E - x): (f - x)Z' ey (E - x)G] (4)

The order of the governing equations play an important
role to define the number of terms assigned in the
Taylor series expansion. If the number of terms in the
TSE is increased, there will be an increment in the CPU
time and one may expect that the accuracy will increase.
However, in some cases it may not be true and
determination of the number of terms depends on the
researcher’s experience. To determine the unknown
variables given in the Q(x), both sides of Eq. (2) are
multiplied with W(E,x)P(E,x)T and evaluated for every
node in the CSD. In the global numbering system, let
the particle number of the j™ particle in the compact
support of W(E,x) be r (j ). The following equation is
obtained



N(x)

Z FED)W (D, x)P(e7D, x)T
j=1

=y [P(ff(f),x)TW(fr(f),x)P(frU).x)] Q) (5
where N(x) is the number nodes in the compact support
domain (CSD) of the W(E, x) as shown in Figure 1.
Then, Eq. (5) can be given by

€ 0)Q() = D(§,x)FX(,x) (6)
Where C(§x) = P(E,x)TW(E X)P(E x) and D(Ex) =
P(§,x)" W(E x).

The solution of Eq. (6) is given by

Q(x) = K(§,x)F($) (7
where K®(§,x) = C(E,x)"'D(§ x).
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Figure 1. Compact support of the weight fupction x) for
the node located at x = (x;
Eq. (7) can be also written as fg[lo
Q;(x) = 21]\4:1 KyF (8)

where M is the numb
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Details of the SSPH method can be found in [30, 42-
45].

3. HOMOGENIZATION OF MATERIAL
PROPERTIES
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Figurg2. Geometry and coordinate of a two-directional FGB.

The stress-strain relationship of a ki orthotropic lamina
in the material coordinate axes is given by:

E(x,z) = E\Vi(x,z) + E;V5(x, 2)

G(x,z) = GV (x,z) + G,V,(x,z) (10)
where E,, E,, G, and G, are the material properties of
two constituents, V; and V,are volume fractions of the
constituents. The relation of the volume fractions can be
expressed as follows;

Vilx,z) + Vo(x,z) =1 (11)
According to the power law form, the volume fraction
of the constitute 1 can be given

DPx z Pz

N =(1-2)"(3+%) (12)
where p, and p, are the gradation exponents (power-
law index) which determine the material properties
through the thickness (h) and length of the beam (L),
respectively. When the p, and p, are set to zero then the
beam becomes homogeneous. The effective material
properties can be found by using the Egs. (10), (11) and
(12) as follows

x\Px /1 z\P?
) =E-E)(1-5) (3+3) +E

GOx,2) = (6.~ 6Gy) (1- i)px (3+ %)p +G,

2L 2

(13)



Fig.3 illustrates the variation of the dimensionless
modulus of elasticity through the depth of the beam for
various values of the gradation exponent (p,) in the z
direction. The variation of the dimensionless modulus of
elasticity through the length of the beam for different
gradation exponent (p,) in the x direction is presented
in Fig. 4.

© o o o o
U o N ® © e
7 7 T

o
kN
T

Dimensionless Modulus of Elasticity - E/Ec

o o o
= N W

Ofl 0.r2 0.r3 0f4 0.r5 0.r6 0f7 0f8 0.r9 1
Dimensionless Length - x/L
Figure 3. Variation of the dimensionless modulus of elasticity
through the depth of the beam for various values of the
gradation exponent (p,) in z direction
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[17] including bot
stretching e

(14a)

(14b)

where u,wy,wsand w, are four variables to be
determined.

= w, (%) + ws(x) + g(@2)w,(x)

The only nonzero strains associated with the

displacement field given in Eq. (14) can be written by:
U ’ " "

& = = U — 2wy — f(@wy (15a)
ow ,

& = 6_2 =g (Z)Wz (15b)

_ow | 8

U ! !
Yxz = ax + Pz g(Z)( wg + wy) (15¢)

The following linear elastic constitutive equation can be
written by using the related stresses and strains:

Oy 1 v 0 Ex

E(x,2)
"Z]=ﬁv T IS] (16)
Oxz 0 0 T Yxz

To obtain the governing equations, the virtual strain
energy of the beam can be written as:

L !
SU = [ [, (0x8ex + 0x; 8Y¥xz + 0,9' S,

The stress resultants N,, M2, M3
written respectively as f0||.O.SZ

+h/2

N, = f—h/z bo,dz (18a)

MP = f_*f/j bo,zdz (18b)
MS = (18c)
(18d)
(18e)

can rewrite the Eq. (17) as:

MESwW] — MESw! + Qyp (SwW] +
(19a)

8V = — [ q(8w, + Swy)dx (20)

Since the total virtual work done equals zero and the
coefficients of du, dwy, Sw, and dw, are zero in 0 <

x <L, one can obtain the following governing
equations,
dNy _
o 0 (213.)
azmb

oz Ta(x) =0 (21b)
A2ME | dQxz _

) + dx + Q(X) =0 (21C)
dQxz —
- —R:= 0 (21d)

Using Eq. (16), the stress resultants given in Eq. (18)
can be expressed as,

(Nxy 14 B B X 07 u

M} [B D Ds Y 0] wy
MSr=|B; Dy H Y OH w! } (22)
Qus X Y Y. Z 0 w,

gJ) lo o o o allw+w)

where

(A,B,Bg,D,Ds,H,Z) =
+h/2 E(x,z)b

nj2 1z Lz f.z% fz,f? g')dz (23a)
_ th/2E(x,2)b

As = —h/2 2(1+v) (23b)

X,Y,Y,) = [TMPECE 0y 2 F)dz (23¢)

-h/2  1-v2



The governing equations of the quasi-3D theory can be
obtained by substituting Eq. (22) into Eqg. (21) as:

Au” + A’ — (Bw)" + B'w)) — (B;w." + By'w!) +
Xw, +X'w, =0 (24a)
Bu" + 2B'u" + B"u' — (Dw" + 2D'w} +

wy) — (DSWS(IV) +2D'w)" + Dg"'wy') + Ywy +
2Y'w, +Y"w,—q=0 (24b)
Bou"" + 2B,'u” + By"u’ — (Dsw"" + 2D5'w;!" +
Dy"wy) — (HWSY + 2H'W)" + H'w!") + Y,w.
2Ys'wy + Ys"w, + Ag(wg' + wy') + A (wg + Wz) -
q=0 (24c)

—Xu' +Yw] +Yow! + A, (W] +w)) + A (w] +

w,) —Zw, =0 (24d)
The natural boundary conditions are given as follows:
du: N, (25)
Swy: ML (25h)
Swy, : M2 (25¢)
Swg: ME' + Q,, (25d)
Swq : M (25e)
W, Qyz

25
( 'ﬁ

5. NUMERICAL RESULTS

The static behaviour of the two directional
investigated by using a quasi-3D shear d
theory. The numerical results are obtained by
SSPH method for various gradation
direction, x and z respectively, differe
and boundary conditions. Since
previous results based on

with power law rule,
verified by solvi

compared with the
ies [16-17] along with the
dimensionless maximum
axial and shear stresses are
e comparisons on a fair ground.

aspect ratig® (L/h), 5 and 20 are considered for the
boundary conditions defined as SS, CS and CC. The
numerical solutions could not be obtained for the aspect
ratio (L/h) which is greater than 5 for the boundary
condition defined as CF. The possible reasons behind
this case are discussed in section 5.2.4. The distributed
load q, is set to 10000 N/m. The material properties of
the two constitutes are given

Ceramic (Al,0;) :E; =380GPaandv,; =0.3
Metal (Aluminium) : E, = 70GPa and v, = 0.3

The following non-dimensional quantities are used for
the representation of the results;

Non-dimensional maximum transverse deflection of the
beam:

w = w =

- 100521”‘ W (x,0) for SS,CS and CC beams
qo

IOOEth

W(L,0) for CF beam (26)

Non-dimensional axial and shear stresses of the beam:

bh L
v =G 7)
_ _bh L °
n=o %G
— bh
UXZ qolL JXZ(O’ Z) (27)

5.1 Verification and CoMpar Stuglies

a simply supported FGB
d is considered. For
be performed by the SSPH

under ugi
numerica
method

0

)3+928(§?)2+336(§)+48 Oiiip

where d = |x — &|/h, h is the smoothing length and p
is the scaling factor that determines the size of the
support domain. The numerical calculations are
performed according to the following meshless
parameters; the radius of the support domain (p) is
chosen as 8 and the smoothing length (h) equals to 1.1A
where A is the minimum distance between two adjacent
nodes for SS, CS and CC beams. For CF beam, the
radius of the support domain (p) is chosen as 5.302 and
the smoothing length (h) equals to 1.2A. All the
meshless parameters are found by using the trial and
error method. The maximum non-dimensional
transverse deflections, axial, normal and shear stresses
obtained based on the present shear and normal
deformation theory, various aspect ratios and various
gradation exponents in the z direction are given in Table
1-4 along with the results from previous studies and the
analytical solution of the problem. It is clear that the
results obtained by using the SSPH method agree
completely with those of previous papers [16-17]. Table
1-4 show that the results obtained by the SSPH method
are in excellent agreement with the results given in [16-
17]. And finally, because of stretching effect, the
transverse deflections computed based on the shear and
normal deformation theory are slightly smaller than
those obtained from TBT. Due to this agreement, the
verification of the developed code is established.

(28)



Table 1. Verification studies of the developed meshless code for SS FGB, dimensionless maximum transverse
deflections for various gradation exponents.

Method Theory €, p=0 p=1 p=2 p=5 p=10
L/h=5
Li et al. [16] TBT = 3.1657 6.2599 8.0602 9.7802 10.8979
. TBT =0 3.1654 6.2594 8.0677 9.8281 10.9381
Vo et al. [17] Navier
Present #0 3.1397 6.1338 7.8606 9.6037 10.7578
TBT = 3.1654 6.2590 8.0668 9.8271 10.9375
Voetal. [17] FEM
Present #0 3.1397 6.1334 7.8598 9.6030 10.7572
SSPH Present *#0 3.1402 6.1343 7.8602 9.6041 10.7571
L/h=20
Li et al. [16] TBT =0 2.8962 5.8049 7.4415 8.8151 9.6879
. TBT =0 2.8962 5.8049 7.4421 8.8182 9.6905
Vo et al. [17] Navier
Present #0 2.8947 5.7201 7.2805 8.6479 9.5749
TBT =0 2.8963 5.8045 7.4412 8.8173 9.6899
Voetal. [17] FEM
Present #0 2.8947 5.7197 7.2797 8.6471 9.5743
SSPH Present #0 2.8952 5.7215 7.2826 8.6485 9.5745

Table 2. Verification studies of the developed meshless code for SS FGB, dimensionless axial stress &x(g,g) for
various gradation exponents.

Method Theory €, p=0 p=1 p=2 p=5 p=10
L/h=5
Li et al. [16] TBT =0 38020 5.8837 6.8812 8.1030 9.7063
_ TBT = 3.8020 5.8836 6.8826 8.1106 9.7122
Vo et al. [17] Navier
Present  *0  3.8005 5.8812 6.8818 8.1140 9.7164
TBT = 3.8040 5.8870 6.8860 8.1150 9.7170
Vo et al. [17] FEM
Present *0 38020 5.8840 6.8860 8.1190 9.7220
SSPH Present  #0  3.8005 5.8815 6.8821 8.1145 9.7170
L/h=20
Li et al. [16] TBT =0 150130  23.2054  27.0989  31.8112 38.1372
. TBT =0 150129 232053  27.0991  31.8130 381385
Vo et al. [17] Navier
Present ~#0 150125  23.2046  27.0988  31.8137 38.1395
TBT =0 150200 232200  27.1100  31.8300 38.1600
Voetal. [17] FEM
Present  #0 150200  23.2200  27.1100  31.8300 38.1600
SSPH present  #0 150147 232099  27.1122  31.8070 38.1252

Table 3. Verification studies of the developed meshless code for SS FGB, dimensionless transverse shear stress
0,,(0,0) for various gradation exponents.

Method Theory € p=0 p=1 p=2 p=5 p =10
Lh=5

Li et al. [16] TBT —0 07500 07500 06787 05790 0.6436

Voetal, [17] Navier —TBT —0 07332 07332 06706 05905 0.6467

Present =0 07233 0.7233 06622 05840 0.6396

TBT = 07335 07335 06700 05907 0.6477

Voetal [I7]FEM  —5 et 20 0.7291 0.7291 0.6661 05873 0.6439

SSPH Present =0 07246 07234 06618 05840 0.6396
L/h=20

Li et al. [16] TBT —0 07500 07500 06787 05790 0.6436

Voetal, [17] Navier —1BT —0 07451 07451 06824 _ 06023 0.6596

Present =0 07432 07432 06809 _ 0.6010 0.6583

TBT —0 07470 07470 06777 06039 0.6682

Voetal [I7TJFEM  — ot 20 07466 07466 0.6776 _ 0.6036 0.6675

SSPH Present *0 0.7425 0.7432 0.6789 0.6037 0.6606




Table 4. Verification studies of the developed meshless code for SS FGB, dimensionless normal stress &, (gg)

for various gradation exponents.

Method Theory g, p=0 p=1 p=2 p=5 p=10
L/h=5
Vo et al. [17] Navier Present *#0 0.1352 0.0670 0.0925 0.0180 -0.0181
Voetal. [17] FEM Present #0 0.1352 0.0672 0.0927 0.0183 -0.0179
SSPH Present #0 0.1352 0.0671 0.0925 0.0182 -0.0180
L/h=20
Vo et al. [17] Navier Present #0 0.0337 -0.5880 -0.6269 -1.1698 -1.5572
Voetal. [17] FEM Present #0 0.0338 -0.5874 -0.6261 -1.1690 -1.5560
SSPH Present *0 0.0338 -0.5880 -0.6266 -1.1706 -1.5589

Table 5. Boundary conditions used for the numerical computations.

BC x=0 x=L

SS u=0,w,=0,w,=0w,=0,M:=0M= u=00rN,=0,w, =0,ws =0,w,=0,M2 =0,M =
CS u=0w,=0w,=0w,=0,w," =0,w,’ =0 u=00rN,=0,w,=0,w,=0,w,=0,M2=0,M{=0
CcC u=0,w,=0,w,=0,w,=0,w," =0,w," =0 u=0,w,=0,w,=0,w,=0,w," =0,w," =0

CF u=0,w,=0,w,=0,w,=0,w,’ =0,w;/ =0 N,=0,M:=0,MS=0,M"=0,M'+Qy, =0,0,, =0

Table 6. Dimensionless maximum transverse deflections of the SS two-directional FGB for various gradation
exponents in both directions and aspect ratios.

Aspect Ratio Px
(L/h) P 0 1 2 5 10

0 31402 39791 49566 82264 122258

6.1343 72342 83430 112500  14.0759

5 2 78602 88636 98333 123067  14.6466
96041 104721 113126 134239 153073

10 107571 116165 124207 142924 158037

0 28052 36662 45679  7.6257 114111

57215 67299 77469 104640  13.1101

20 2 72826 81853 90653 113622  13.5589
86485 94307 102153 122531  14.0626

10 95745 103974 111716  12.9851  14.4938

Table 7. Dimensionless axial stress 5x(§,§) of the SS two-directional FGB for various gradation exponents in

both directions.

Aspect Ratio Px
(Lh) P 0 1 2 5 10

0 3.8005 3.7945 3.7703 3.6740 3.6146

5.8815 5.6196 5.3454 4.6207 3.9726

5 2 6.8821 6.4155 5.9789 4.9475 4.0813
8.1145 7.4802 6.8933 5.4784 4.2515

10 9.7170 8.8501 8.0301 6.0444 4.4015

0 15.0147 14.9895 14.8909 14.5014 14.2517

23.2099 22,1731 21.0861 18.2136 15.6904

20 2 27.1122 25.2728 23.5505 19.4770 16.1494

31.8070 29.3394 27.0385 21.5344 16.7800
10 38.1252 34.7636 31.5736 23.9702 17.3768




5.2 Elastostatic Analysis of Two-Directional FGBs

Four different boundary conditions, SS, CS, CC and CF
are considered respectively for the bending analysis of
two directional FGBs subjected to uniformly distributed
load. The transverse deflections, axial, normal and shear
stresses are computed based on the present quasi-3D
theory for different gradation exponents in both
directions and aspect ratios. The details of the boundary
conditions (BCs) used for the numerical analysis are
given in Table 5.

5.2.1 SS Two-Directional FGB

A simply supported two directional FGB under
uniformly  distributed load is analyzed. The
dimensionless transverse deflections and stresses are
computed for various gradation exponents in both
directions and different aspect ratios.

As it is seen from Table 6, the computed transverse
deflection value decreases as the aspect ratio increases.
With the increasing of the gradation exponents in both
directions, the deflection values are increasing. In Table
7, the dimensionless axial stress values are presented. It
is clear that the stress decreases as the gradation
exponents in both directions increases. The maximum
dimensionless shear stress value is obtained when p; is
set to zero and px is set to 5 as shown in Table 8. |t ®
found in Table 9 that the dimensionless normal stresg
almost vanishes when the aspect ratio is 20 and thg
gradation exponent in the z direction is set to zer

Figs. 5 and 6 are plotted for different aspecf ratios,
show the variation of the dimensionless i
normal stresses through the thicknggs for
values of the gradation exponent in
when the gradation exponent j
determined as 2. The maxi
observed at the top surface

decreases. The bea
maximum normal g
Figs. 5 and 6, it“15g
stress values 3

of the beag d, The minimum shear stress
value i e/ is set to 10.

5.

The di s’maximum transverse deflections and
the axial al and shear stresses of the clamped-

rted FGBs are investigated. The computed
results are given in Table 10 and Figs. 7-8. It is clear in
Table 10 that the transverse deflections increase as the
gradation exponent increases. Lower aspect ratio has the
larger dimensionless transverse deflections than the
higher one.

In Figs. 7-8, the axial, normal and shear stresses are
presented for various gradation exponents and aspect
ratios. It is found that the maximum axial stress

increases as the gradation exponent in the x direction
increases. The maximum normal stress is obtained at the
bottom surface of the beam. The normal stress values
are decreasing as the gradation exponent in the X
direction is decreasing at the bottom surface of the
beam. The maximum shear stress is observed for p,=1
when the px is set to 2.

5.2.3 CC Two-Directional FGB

The dimensionless maximum transverse deflections and
the axial, normal and shear stresses of the clamped-
clamped FGBs are considered. The resu i i

and aspect ratios. It is clear fro
gradation exponents incread®,
increase. The computec’
agreement along with the

aximum axial stresses
d px=1 are almost
imum normal stress values

set to zer@in
obtained

@F Two-Directional FGB

ly, the results of elastostatic analysis of the CF
FGBs under uniformly distributed load are given for
various gradation exponents and aspect ratios. For this
example, accurate and agreed results cannot be obtained
when the aspect ratio is greater than 5 and the gradation
exponent is x direction greater than 2. However, the
results found by using the aspect ratio lower than 6 are
acceptable and agreed along with the analytical
solutions. This point is important to determine future
studies based on the present shear and normal shear
deformation theory and the SSPH method. It is not clear
that increasing the gradation exponent in the x direction
deteriorates the accuracy of the present shear and
normal deformation theory with higher aspect ratios.
The robustness and accuracy of the SSPH method could
be lost by using the gradation exponent in the x
direction greater than 5 with CF boundary conditions as
well.

As it is seen from Table 12, the transverse deflections
increase as the gradation exponents increase. Three
different aspect ratios are employed to investigate the
inefficiency of the theory and the numerical method. It
is not found a concrete reason that may explain the loss
of accuracy when the aspect ratio is set to above 5.
However, the computed results agree very well along
with the analytical solutions based on the TBT.



Table 8. Dimensionless transverse shear stress a,,(0,0) of the SS two-directional FGB for various gradation
exponents in both directions.

Aspect Ratio Px
(Lh) b 0 1 2 5 10
0 0.7246 0.7923 0.8484 0.9278 0.9195
1 0.7234 0.7780 0.8186 0.8662 0.8560
5 2 0.6618 0.7017 0.7290 0.7582 0.7523
5 0.5840 0.6001 0.6099 0.6203 0.6200
10 0.6396 0.6457 0.6494 0.6542 0.6557
0 0.7425 0.8125 0.8718 0.9580 0.9467
1 0.7432 0.7993 0.8415 0.8901 0.8778
20 2 0.6789 0.7199 0.7486 0.7792 0.7740
5 0.6037 0.6223 0.6364 0.6385 0.6414
10 0.6606 0.6686 0.6749 0.6738 0.6791

Table 9. Dimensionless normal stress &, (% ) of the SS two-directional FGB for various gradation exponents in

h
2

both directions.

Aspect Ratio Px
(L) P 0 1 2 5 10
0 0.1352 0.1350 0.1346 0.1331 0.1328
1 0.0671 0.0553 0.0498 0.0636 0.1085
5 2 0.0925 0.0583 0.0422 0.0577 0.1110
5 0.0182 0.0108 0.0205 0.0772 0.1253
10 -0.0180 0.0157 0.0498 0.1176 0.1396
0 0.0338 0.0338 0.0337 0.0333 0.0331
1 -0.5880 -0.6015 -0.5864 -0.4229 -0.1163
20 2 -0.6266 -0.7108 -0.7197 -0.5044 -0.1138
5 -1.1706 -1.1012 -0.9656 -0.5067 -0.0843
10 -1.5589 -1.2682 -0.9862 -0.3459 -0.0493
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Figure 5. Dimensionless axial c'rx(g,z), normal c'rz(g,z) and shear stress (0, z)
through the thickness of the SS FGB for p;=2 and px=2, L/h=5
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Table 10. Dimensionless maximum transverse deflections of the CS two-directional FGB for various gradation
exponents in both directions.

Aspect Ratio P Px
(L) 0 1 2 5 10

0 1.4497 1.7984 2.1844 3.3256 4.4754

1 2.7943 3.2536 3.7003 4.7672 5.6600

> 2 3.6053 4.0375 4.4382 5.3676 6.1134

5 4.5443 4.9024 5.2356 5.9811 6.5451

10 5.1527 5.4762 5.7665 6.3852 6.8235

0 1.2572 1.5297 1.8335 2.7508 3.6922

2.2574 2.6612 3.0403 3.8831 4.7242

20 2 2.8623 3.2657 3.6266 4.3313 4,9949
3.2451 3.6310 3.8925 4.5933 5.2977

10 3.8213 4.1552 4.3400 4,9688 5.6261
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Table 11. Dimensionless maximum transverse deflections of the C-C two-directional FGB for various gradation
exponents in both directions.

Aspect Ratio b Voetal. [17] Px
(L/h) z px =0 0 1 2 5 10
0.8327 0.8349 1.0660 1.3187 2.0188 2.6766
1.5722 1.5868 1.8836 2.1655 2.8106 3.3063
5 2 2.0489 2.0810 2.3585 2.6100 3.1762 3.5770
2.6929 2.7180 2.9393 3.1597 3.5873 3.8630
10 3.1058 3.1104 3.3217 3.4988 3.8290 4.0292
0.5894 0.5898 0.7532 0.9315 1.4187 1.8575
1.1613 1.1630 1.3754 1.5737 2.0112 2.3388
20 2 14811 1.4906 1.6764 1.8510 2.2307 2.5065
17731 1.7762 1.9474 2.1065 2.4409 2.6534
10 1.9694 1.9734 2.1479 2.2997 2.5867 2.7617
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Figure 9. Dimensionless axial Ex(é, z), normal c_rz(g, z) and shear stress g, (0, z)
through the thickness of the CC FGB for p.=0 and px=1, L/h=5
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Table 12. Dimensionless maximum transverse deflections of the C-F two-directional FGB for various gradation
exponents in both directions.

Aspect Li etal. [16] Voetal. [17] Px
Ratio = =
wny 20 o 0 ! 2 5 10
0 38.4079 35.2697 38.8074 43.3814 58.5072 83.8566
1 73.6361 67.7056 72.5379 78.1133 94.2687 116.6278
2 2 96.4165 - 87.2699 91.4037 96.5571 109.5350 128.8880
5 124.3960 109.6762 113.0652 116.5574 126.9298 141.5556
10 143.2723 124.4861 127.9787 135.0984 137.1212 151.2053
0 324211 30.8511 33.7188 37.1688 49.7066 70.9790
1 63.5249 59.6712 63.7506 68.1217 81.3383 100.2031
3 82.3200 - 75.7549 80.0420 84.1371 96.7912 111.4601
101.9579 92.9652 96.3159 100.7895 107.7395 122.6167
10 114.9451 105.4147 109.0172 112.5187 119.6471 131.2405
0 29.3558 28.5524 27.6636 30.4944 33.6062 445715 63.7455
1 58.3481 56.2002 56.7975 60.2980 64.0033 75.5193 93.3406
5 2 75.1027 71.7295 71.6238 75.2135 78.7156 88.8993 103.9447
90.4697 86.1201 86.5866 89.8121 92.9513 102.7237 114.2047
10 100.3961 95.7582 97.6667 101.0233 104.1912 1135742 123.2930

It . 10 that the dimensionless axial
stress uted by using the shear and normal
deformati eory formulation increases as the
gradation onent in the x direction decreases. It is

clear that the maximum normal stress values are found
at the top surface of the beam. As the gradation
exponent in the x direction decreases, the maximum
normal stress increases. The dimensionless shear stress
values are shown in Fig. 10. As it is seen, the minimum
shear stress value is obtained when the gradation
exponent in the z direction is set to zero. The shear
stress values are zero at the bottom and top surfaces of
the beam.

6. CONCLUSION

The SSPH basis functions are employed to analyze the
elastostatic behaviour of the two directional functionally
graded beams subjected to different sets of boundary
conditions and uniformly distributed load by using
strong formulation of the problem. A shear and normal
deformation theory which includes both shear
deformation and thickness stretching effect is used to
evaluate the transverse deflections, axial, normal and
shear stresses of two directional FGBs. The developed
code is verified by studying a simply supported FGB
problem and comparing the results with previous studies
and the analytical solutions. Four different boundary
conditions (SS, CS, CC and CF) are considered with



different gradation exponents in both directions and
various aspect ratios. The effect of the normal strain is
investigated and it is found that it is important and
should be considered in the static behavior of the two
directional functionally graded beams including
sandwich structures which may be a subject of the
future studies.

Another important point is that for CF beam, the
computed results for the aspect ratio which is higher
than 5 are not agree very well with the previous studies
as the gradation exponent in the x direction is set to
higher than 2. At least within the scope of this work, it
may be told that by using the SSPH method and present
shear and normal deformation theory, it is not
recommended to use a gradation exponent in the x
direction greater than 2 as the aspect ratio increases with
CF boundary condition and this should be investigated
in future studies.

It is found that the SSPH method provides satisfactory
results at least for the problems studied here. Based on
the results of the four numerical examples, it is
recommended that the SSPH method can be applied for
solving linear two directional functionally graded beam
problems by employing different shear deformation

theories including shear and normal deformation
theories.
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