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Abstract

This study aims to provide an efficient framework for predicting
the total dissipated energy level of flexure-dominated
reinforced concrete columns via a commonly used machine
learning method, extreme gradient boosting. A database
including 177 reinforced concrete columns is compiled using
open-access databases. The proposed framework predicts the
target total dissipated energy depending on seven fundamental
features: concrete compressive strength, longitudinal rebar
yield strength, shear span-to-depth ratio, longitudinal rebar
ratio, transverse rebar volumetric ratio, peak drift ratio, and
equivalent damping ratio. Results of a correlation-based
quantitative analysis reveal that peak drift ratio, yield strength
of longitudinal rebars, and concrete compressive strength are
the most effective parameters on a target parameter among the
other features. K-Fold cross-validation is implemented for the
classification process. Validation results show that three
fundamental performance indicators such as the means of
correlation of determination, normalized root mean square
error, and mean absolute percentage error are evaluated as
0.75, 0.38, and 0.33, respectively. Moreover, the accuracy level
of the algorithm is tested by comparing with the results
obtained based on support vector machine, multilayer
perceptron, and random forest techniques. Among these, the
implemented extreme gradient boosting is the most successful
model for predicting the energy levels that represent the highest
correlation of determination. The sensitivity of predicted targets
to algorithm-based hyperparameters is also investigated for the
implemented algorithm. The results of this study are expected
to contribute to energy-based design applications in the scope
of predicting the dissipated energy capacity of flexure-
dominated reinforced concrete column members.

Keywords: Energy-based design; Total dissipated energy,; XGBoost;
Reinforced concrete columns.

1. Introduction

The energy dissipation capacity of a reinforced concrete
member is usually considered to indicate the cyclic
behavior with two more critical parameters: strength and

Oz

Bu calisma, betonarme kolonlarda tiiketilen toplam enerji
seviyesinin uygulamalarda yaygin olarak kullanilan asiri gradian
artirma yaklasimi ile tahminine yonelik etkin bir algoritma
onerilmesini amaglamaktadir. Bu kapsamda, agik erisimli veri
tabanlari kullanilarak 177 adet betonarme kolona ait 6zellikleri
iceren bir veri tabani derlenmistir. One siiriilen gerceve, hedef
toplam tiiketilen enerji seviyesini 7 temel 6zellige bagh olarak
tahmine olanak saglamaktadir: beton basing dayanimi, boyuna
donati akma dayanimi, kesme acikligi-derinlik orani, boyuna
donati orani, enine donati hacimsel orani, maksimum otelenme
orani ve esdeger soniim orani. Gergeklestirilen korelasyon esasli
sayisal analizler sonucunda, segilen 6zellikler arasinda toplam
tiketilen enerji Uzerinde en etkin olan parametrelerin
maksimum otelenme orani, boyuna donati akma dayanimi ve
beton dayanimi oldugu belirlenmistir. Verilerin siniflandiriimasi
surecinde K-kath c¢apraz gegerlilik yaklasimi uygulanmistir.
Gegerlilik sonuglari, ¢ temel performans gostergesine
(belirleme katsayisi, normalize edilmis kdk ortalama kare hatasi
ve ortalama mutlak ylzde hatasi) ait ortalama degerlerin
sirastyla 0.75, 0.38 ve 0.33 olarak belirlendigini gostermistir.
ilave olarak, calismada kullanilan model ile tahmin edilen
sonuglarin hassasiyeti, destek vektér makinesi, ¢oklu katman
algilayici ve rastgele orman modelleri esasli sonuglar ile test
edilmistir. Sonug olarak enerji seviyesinin tahmininde en basaril
modelin asiri gradian artirma yaklasimi oldugu, belirleme
katsayisina dikkate alinarak belirlenmistir. Calisma kapsaminda,
tahmin edilen enerji seviyelerinin kullanilan algoritma bazl
parametrelere bagh hassasiyet seviyeleri de arastiriimistir.
Galisma sonuglarinin, 6zellikle son yillarda artan enerji esash
tasarim uygulamalarina, egilme etkisi altindaki betonarme kolon
elemanlarda tiiketilen toplam enerji seviyesinin tahmini
kapsaminda katki saglayacagi disiintiimektedir.

Anahtar Kelimeler: Enerji-esasl tasarim; Toplam tiiketilen enerji
seviyesi; Asiri gradyan artirma yaklasimi; Betonarme kolonlar.

deformability (Park and Eom 2006). The accurate
prediction of dissipated energy capacity and the
identification of factors that affect the capacity play

critical roles in both conventional and recently popular
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energy-based seismic design approaches (Yalgin et al.
2021). Consequently, several studies based on the
investigation of the energy dissipation capacity of
reinforced concrete members have been performed in
the past. Park and Eom (2006) developed a simplified
method to predict the dissipated energy level for flexure-
dominated RC members via nonlinear finite element
analysis.

The accuracy of the proposed method was verified by
comparing the results with existing experiments. Results
indicated that the method showed good performance in
predicting the dissipated energy level based on various
design variables. Poljansek et al. (2009) proposed a non-
parametric empirical approach to predict the energy
dissipation and the deterioration of deformation capacity
using the axial load index, index related to confinement,
shear span index, concrete compressive strength, and
longitudinal reinforcement index. Moreover, the effects
of these parameters on the predicted capacity levels were
also discussed in detail. Acun and Sucuoglu (2012)
developed an analytical model to predict the cyclic
dissipated energy capacity of reinforced concrete (RC)

columns under constant and variable inelastic
displacement cycles.
Additionally, the effect of failure modes, material

characteristics, and ductility level on the dissipated
energy was also investigated in the scope of a related
study. Liu et al. (2018) proposed a two-parameter
analytical model for rectangular members under flexure
to represent the variation of the dissipated energy with
the cumulative hysteretic energy in each displacement
cycle. The impact of corrosion levels of rebar to the
energy dissipation of reinforced concrete columns was
reported by Yang et al. (2016) via experimental way.
Comparisons based on different levels of maximum
amounts of corrosion showed that the dissipated energy
level decreases with increasing amount of corrosion in
rebars. The effects of axial load level to the energy
dissipation capacities of reinforced concrete type short
columns were investigated by Vu et al. (2022).

The study stated that the dissipated energy level is highly
affected by the intensity and the fluctuation of applied
axial load level. Muderrisoglu et al. (2023) proposed a
guantitative framework that reveals a relationship
between the structural member and loading features and
the total energy dissipated by reinforced concrete
columns. It was observed that maximum drift ratio, the
amount of transverse rebar, and yield strength of rebars
are the most effective ones among selected features in

terms of correlation-based analysis. Yildizel et al. (2023)

investigated the effects of additional materials (i.e.,
recycled waste steel wires from tyres) on the stiffness,
ductility, and energy dissipation characteristics of RC
beams, experimentally.

Based on the experimental results, an equation was
proposed to predict the capacity of investigated hybrid
beams. Depending on the advances in using machine
learning (ML) techniques in structural engineering (Thai
2022, Tapeh and Naser 2023), practices based on
predicting the cyclic behavior characteristics of reinforced
concrete members via ML-based frameworks have also
been performed. Abdalla and Hawileh (2021) considered
the Artificial Neural Networks technique to predict the
dissipated energy level in steel rebars in a reinforced
concrete member. It was concluded that the accuracy of
the model in predicting the dissipated energy is
considerably higher under low-cycle fatigue loads.

An ML-based model was developed by Topaloglu et al.
(2022) to predict the energy dissipation capacity of shear
walls. Specifically, the Gaussian Process Regression
technique was implemented to develop a function
depending on fundamental wall design parameters.
Deger et al. (2023) proposed empirical equations to
predict the energy dissipation capacity of RC shear walls
using meta-modeling methodologies. The proposed
framework resulted in a high coefficient of determination
value (i.e., R?=0.93) representing the level of accuracy in
prediction. Yaghoubi et al. (2023) developed a Gaussian
process regression-based algorithm that predicts the
ratio of RC
displacements captured at 1.0% lateral drift ratio. For this

equivalent damping shear walls at
purpose, a test database including 161 rectangular shear
wall features was compiled using the existing test results
available in the literature. It was concluded that the
selected ML technique is accurate in the prediction of a
selected target. Hamidia et al. (2024) proposed machine
learning-based frameworks to predict seismic energy
dissipation levels of RC beam-column connections.
Specifically, 934 images of RC joint were utilized to predict
the target parameter.

Results indicated that the prediction accuracy obtained
using Cat Boost technique shows higher levels compared
to those predictions evaluated via other techniques. A
review of existing literature shows that a research gap
based on a prediction of energy dissipation capacity of RC
column type members practically that would be a good
base for future studies and practices in energy design-
based structural design and/or performance assessment
applications is available. Therefore, a machine learning
implemented analytical framework is proposed for
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predicting the total energy dissipation capacity of RC
columns. Following a compilation of a comprehensive
dataset, the effects of essential structural member
characteristics on the total dissipated energy level were
investigated quantitatively. A commonly-used extreme
gradient boosting -XGBoost- (Chen and Guestrin 2016)
algorithm was selected as a machine learning technique
among the investigated techniques. Finally, the sensitivity
of predicted results to the ML technique-based

hyperparameters was discussed in detail.

2. Proposed Machine Learning-Assisted Framework for
Predicting the Total Dissipated Energy Level

Details of the proposed machine learning-assisted
framework that contributes to the energy-based design
concept in terms of predicting the total dissipated energy
capacity of flexure-dominated RC columns are presented
in this section. For structural members subjected to cyclic
loading, the total dissipated energy capacity is evaluated
using an area under the force-displacement hysteresis
captured during the loading (Figure 1). In practice, this is
achieved by constructing analytical models to simulate
the response of a member, performing experiments, or
considering both processes. In this study, the capability of
a machine learning technique is taken into account for a
prediction-based analytical framework to evaluate the
total dissipated energy level. Specifically, the XGBoost
technique is selected to teach the computer how to
predict the target of interest using the available dataset.

2.1. Extreme gradient boosting technique

Extreme gradient boosting, XGBoost (Chen and Guestrin
2016) is a scalable tree-boosting technique proposed to
increase the speed and the efficiency of the existing
method. Three
fundamental tools are implemented in the improved

gradient boosting (Friedman 2001)

technique such as (1) compressed column format (i.e., to
store data for reducing the time consumed during the
process depending on the cost of sorting), (2)
randomization technique to increase the speed of training
process and decreasing the level of overfitting, and (3)
parallel and distributed computing for split finding
procedure (Thai 2022). In an extreme gradient boosting
model, the objective function needs to be minimized at

iteration t is expressed as follows:
LO = ¥, [9:£: () + S hifEG)] + Q(F) (1)

where f: represents the added function to iteration to
improve the speed of a model for optimization and Q(f;)
is considered to penalize the model-based complexity.

Moreover, giand h;indicate the first and the second order
gradient statistics on the loss function (i.e., l(#;,1;))
depending on the difference between the predicted, 7;
and the target, ri parameters:

gi = Ope-nl(r, 7EV) (2)

h = 02 ,e-vl(r, #E7V) (3)

Here, Equation 1 is rewritten to consider the contribution
of each leaf j (i.e., in a tree structure) during the iteration
process as follows:

=, 1
L'O = ZJT'=1[(Zie1j 9W; + 5 Qe hi + Dw?] +yT (4)

where Tis the total number of leaves in a tree, and J;is the
instance set of leaf during the iteration process.
Accordingly, the optimal weight of leaf j, wjopt and the
corresponding optimal value for a fixed tree structure, g
are evaluated via solving the quadratic function given in
Equation 4 on w; as follows (i.e., Equations 5 and 6,
respectively):
W __ Zieljgi
J.opt Tier;hi+d

(5)

< 1 Cier; 90)*
L'Oq) =-2X7 L— + T (6)

j=1 Zierjhitd
Then, the split candidates in a tree learning process are
evaluated using the loss reduction after the split as
follows:

L _1 (ZieILgi)z
SPUE = 5 | Sier, hita

Cierg 902 i1 902
Zi:;Rhifl B (Zzizlhifl] -y 7)
Here, Ir and Iz indicate the left and right node’s instance
sets considered after the split, respectively. Finally, the
best split is found by maximizing the difference between
the objective functions considered before and after the
split node (i.e., using the Exact Greedy algorithm to
minimize Equation 4). In this study, a Python-based (van
Rossum and Drake 1995) framework supported by the
advanced machine learning tools (Pedregosa et al. 2011)
is considered to predict the target parameter.
Additionally, assessing the performance of implemented
technique in machine learning-based studies is also
crucial to provide more accurate results. For this purpose,
the K-Fold cross-validation procedure is considered

during the analysis.

2.2. K-Fold cross-validation

The K-Fold cross-validation is a widely used technique in
statistical analysis to assess the level of accuracy of a
selected model and to predict the classifiers’ errors
(Anguita et al. 2012).
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Figure 1. Experiment-based evaluation of total dissipated energy for a specimen tested by Tanaka (1990): (a) loading protocol, (b)

force-displacement hysteresis

Here, the parameter, K basically refers to the number of
folds that a selected dataset would be split into. Following
the random split process, a cross-validation-based
training is applied by considering the training (e.g., K-1
folds) and a test set. Accordingly, a machine learning
technique of interest (e.g., as XGBoost in this study) is
implemented to predict the target parameter using the
folds including training and test data. Finally, means of
performance indicators are evaluated to assess the
accuracy of the trained model. Specifically, commonly
used statistical performance indicators such as (1) the
normalized root mean square error -NRMSE-, (2) mean
absolute percentage error -MAPE-, and (3) coefficient of
determination -R?- are selected to assess the trained data
in this study. These indicators are evaluated as follows:

1
T Oi-y)?

0
Zi=1ylj
n

NRMSE = (8)

MAPE = 23t 2% (9)

Vi

IR iv)?

2
k=1 L i—)?

(10)
where n refers to the number of samples, y is the actual
and y’ is the predicted value. In this study, the coefficient
of determination, R? (Equation 10) is selected as a
performance indicator. A general overview of a proposed
framework is represented in Figure 2.

3. Dataset Properties

The database considered in this study was compiled by
taking into account two fundamental open-access studies
(Ghannoum et al. 2015a, 2015b). Specifically, the selected
dataset includes RC column information focused on
rectangular and circular sections subjected to flexural
actions. The study was based on 177 column specimens
(i.e., 113 rectangular and 64 circular RC columns). In the
scope of machine learning-based research, quantifiable

features available in a database are considered as input
data to predict the target parameter.

Dataset

Select features
and target
parameters

Train&validate modelto
predict target parameter
via XGBoost

!

Assessthe accuracy of
selected modelin
prediction using
performance indicators

Figure 2. A general overview of a proposed framework

Accordingly, a wide range of feature sets including the
compressive strength of concrete, f;, longitudinal rebar
yield strength, f, shear span-to-depth ratio, a/d,
longitudinal rebar ratio, pi, transverse rebar volumetric
ratio, pt, peak drift ratio, Amax, and equivalent damping
ratio, €eqv (Kwan and Billington 2003) is considered during
the analysis. Relative frequencies of selected features and
target parameter (i.e., total dissipated energy, E.) are
given in Figure 3. The total dissipated energy capacities of
specimens in a selected dataset vary between 51.5kNm
and 635.7kNm. Fundamental factors including sectional,
material, loading, and mechanical properties have a
significant effect on the total dissipated energy level of
column members (Poljansek et al. 2009, Muderrisoglu et
al. 2023). Following the identification of features and the
target parameter, correlations between these quantities
are investigated via Pearson’s correlation coefficient

(Pearson 1920) as follows:
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OFT

p— (11)
where orr indicates the covariance between the feature

Prr =

and the target, or is the standard deviation of feature and
oris the standard deviation of target data. The correlation
coefficient, prr takes values between -1 and +1 where

these boundary levels correspond to complete negative

and positive cases, respectively. Correlation levels
between selected features and the total dissipated

energy level are given as a matrix in Figure 4.
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Figure 3. Relative frequency distributions of selected features and the target parameter: (a) f, (b) fy, (c) a/d, (d) p;, (€) pt, (f) Amax, (8)
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Preliminary results indicate that the total dissipated
energy level captured in flexure-dominated RC column
specimens under cyclic loading is mostly influenced by
peak drift ratio (i.e., pamax£ecd=0.43). This result shows a
good agreement with observations available in the study
by Muderrisoglu et al. (2023). Moreover, an opposite
trend (i.e., negative correlation) is observed for a
relationship between the concrete compressive strength
and the total dissipated energy level. Actually, the
correlation level for this case is considerably low (i.e.
preecd=-0.2). Comprehensive research (Poljansek et al.
2009) based on considering the normal (e.g., between 20
MPa and 40 MPa) and high-strength concrete features in
detail reported that the energy capacity of a specimen
with normal concrete is higher than that capacity of a high
due to the
relationship between the ductility and the strength of

strength concrete specimen inverse

material.

o

e
n

levels with £,
8 8

Correlation

1.0 e o :
fe fyl a/d p; p: Loy 'fequ

10

08

02
a

pi

¥ 3
wr w

x

2

o
<

a/d

Figure 4. A heatmap representing the correlation levels
between selected features and target parameter
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4. Proposed Predictive Model Results

In this section, results obtained via the proposed
framework are given. For this purpose, means of
performance indicators calculated using the K-Fold cross-
validation analysis are presented. Additionally, sensitivity
analyses are performed to investigate the effect of
fundamental hyperparameters considered in the XGBoost

technique on the predicted results.

4.1. Accuracy of predictions

Following the compilation of a dataset and selecting the
features and a target parameter, training of a proposed
model including the XGBoost technique is implemented
by evaluating the optimum ML technique-based
hyperparameters using the random search technique.
Specifically, the hyperparameters are searched as: an
objective for a loss function, [reg:logistic,binary:logistic]
supported for XGBoost, number of estimators, nest in a
range of [50,1000], max tree depth, maxs of [1,20],
boosting learning rate, r of [0.001,1.0]. Finally, the
optimum parameters are determined to evaluate for the
best mean performance indicator. Moreover, other
model-based parameters such as degree of polynomial
for fitting used to generate the train and test sets is
selected as 2, and the booster type is considered as gbtree
during the process. In this study, a K-Fold cross-validation
technique is utilized instead of a standard train-test split
methodology to evaluate the performance of
implemented ML-based model in a more robust way.
Specifically, the number of folds, nfiais considered as 6 to
partition the existing dataset into multiple parts such as
nsig-1 (i.e., 5 folds) for training and the remaining for
testing data. Specifically in each part, 83% of total data
(i.e., 148 members) are considered for training while 29
samples (i.e., 17%) are taken into account to train the
relevant model. Here, it should be noted that an L2
regularization method is utilized to prevent overfitting
when training the model. Performance indicators
evaluated in each fold are provided in Table 1. As
expected, different values of performance indicators are
obtained for folds including randomly generated training
and test data depending on the level of variabilities in
predicted and actual energy levels in each fold. Results
show that the maximum and the minimum values of
selected performance indicator (i.e., coefficient of
determination, R?) are evaluated as 0.82 and 0.58 for a
selected set of hyperparameters, respectively (Figure 5).
Accordingly, the accuracy level of the proposed model is
tested by taking into account the mean of performance
indicator, R? calculated for generated folds (Figure 6). As

the mean of performance indicators is calculated as 0.75

and considering the high variabilities in features of a
selected dataset, the proposed model is assumed to be
considerably accurate in predicting the total dissipated

Table 1. Performance indicators evaluated in each fold in K-Fold
cross validation process

Fold #/
Performance R2 NRMSE MAPE
indicator
1 0.58 0.46 0.28
2 0.74 0.35 0.35
3 0.82 0.33 0.29
4 0.82 0.34 0.36
5 0.75 0.47 0.46
6 0.77 0.33 0.26
1.0
0.8 -
o 06 )
o
& 04 [] EB
0.2
0.0
R? NRMSE MAPE

Figure 5. Variabilities in performance indicators evaluated via K-
Fold cross-validation process

energy level of flexure-dominated RC columns subjected
to cyclic loadings (Chicco et al. 2021, Moore et al. 2013).

151 BN NRMSE

B MAPE

101

Mk - Fold

0.5

0.0

Figure 6. Means of performance indicators evaluated via K-Fold
cross-validation process

In addition to the implemented ML technique-wise
performance evaluation (Figure 6), the accuracy level of
the implemented algorithm in predicting the energy
levels is also tested by comparing with the results
obtained based on commonly used machine learning
models in structural engineering such as support vector
machine (SVM), multilayer perceptron (MLP), and
random forest (RF) (Table 2). Here, the means of selected
performance indicators evaluated using the optimum
hyperparameters (i.e., using a random search algorithm)
are presented. Preliminary results show that the
implemented extreme gradient boosting is concluded as
the most successful model among the selected
techniques to predict the energy levels as representing
the highest correlation of determination (i.e., R?=0.75).
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Table 2. Comparison of the performance of different algorithms

ID Hyperparameter R? NRMSE MAPE
Nest=150;
XGB  objective=reg:logistic 0.75 0.38 0.33
maxa=1; r=0.6
kernel=rbf; C=10;
SVM  epsilon=0.05; 0.43 0.57 0.52
gamma=0.3
solver=adam; alpha=0.0001;
MLP  hidden layer sizes=400,400 0.63 0.46 0.46
max. iterations=500;
RF Nest=10 0.66 0.49 0.44

The capability of the validated model is investigated by
evaluating the correlation level between the predicted,
Uecd,p and actual, pecdq total dissipated energy capacities
corresponding to the mean coefficient of determination
case of 0.75. In Figure 7, a strong correlation between the
predicted and actual total dissipated energy capacities
(i.e., pa,p=0.94) that indicates a high-level prediction case,
is observed.

Model: XGB; pp, 2=0.944

400 ~
T 300 ot
@ -
© $ 2837
s B
= 200 Pl
< o g
100{ o
100 200 300 400

Mg, (predicted)

Figure 7. Correlation between actual and predicted total
dissipated energy levels

The preliminary results indicate that the proposed model
shows high accuracy in predicting the total dissipated
energy level for selected hyperparameters.

4.2. Sensitivity of the performance indicator to the
fundamental hyperparameters

Effects of fundamental parameters on the selected
performance indicator, R? (i.e., hence on the prediction
results) are investigated in this section.

Number of estimators&Maximum depth

The means of performance indicator obtained for a set of
a number of estimators and maximum depth values are
presented in Figure 8. Here, a constant boosting learning
rate of 0.6 is considered. Results show that, following the
increment of coefficient of determination values up to a
peak level of a number of estimators (i.e., 150 for a set of
interest), a decrement tendency is observed for low
values of maximum depth hyperparameter. Moreover, it
is also concluded that the indicator becomes constant for
high levels of maximum depth (i.e., maxs>10).

0.7

0.6

o

20
Bxs

Figure 8. Effects of number of estimators and maximum depth
on the performance indicator (r;=0.6)

% 500
*#1000q

Maximum depth&boosting learning rate

The sensitivity of performance indicators to the
variabilities in maximum depth and boosting learning rate
is investigated in this sub-section (i.e., for a constant
number of estimators as 150). In Figure 9, a sudden
increment in R? values is observed up to a learning rate of
0.2 for a selected interval of maximum depth parameter.

0
%10 :
o 2000 rn

Figure 9. Effects of maximum depth and boosting learning rate
on the performance indicator (nes=150)

Number of estimators&Boosting learning rate

The effect of a number of estimators and boosting
learning rate on the evaluated R? values is illustrated in
Figure 10. Here, a constant maximum depth parameter
of 1 is considered during the analysis. It is observed that
higher R? values are evaluated for low values of the
number of estimators. Moreover, the indicator is
significantly affected for decreasing levels of boosting

learning rate parameter.

® 0.5
% 10090 T

Figure 10. Effects of number of estimators and boosting
learning rate on the performance indicator maxq=1)
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5. Conclusions

A machine learning technique implemented analytical
framework based on predicting the total energy
dissipated by flexure-dominated reinforced concrete
columns is presented. The proposed framework takes
into account the XGBoost technique to train the selected
data. Data characteristics are detailed using statistical
approaches. The accuracy level of a proposed model in
predicting the energy capacity level is illustrated using the
coefficient of determination as a performance indicator.
The effects of critical ML

hyperparameters on the selected performance indicator

technique-based

are investigated by performing sensitivity analyses.
Following results can be derived based on the outcomes
of detailed analysis:

e The dependency of the total dissipated energy
capacity on the selected parameters is quantified via
correlation coefficients. The highest positive (i.e.,
Pamax,eca=0.43) and negative correlations (pf,eca=-0.2)
are evaluated for peak drift ratio and concrete
compressive strength features, respectively.

e  The proposed model yielded considerably accurate
results in predicting the total dissipated energy
capacity by taking into account the coefficient of
determination, R? as a performance indicator with a
mean of 0.75.

e The accuracy level of the implemented algorithm in
predicting the energy levels is also tested by
comparing with the results obtained based on

support vector machine (SVM), multilayer
perceptron (MLP), and random forest (RF)
algorithms. Preliminary results show that the

implemented extreme gradient boosting is
concluded as the most successful model among the
selected techniques to predict the energy levels as
representing  the  highest correlation  of
determination.

° A strong correlation level of p4,,=0.94 is obtained via
the proposed model based on a comparison
between the actual and predicted total dissipated
energy capacities.

. Sensitivity analysis performed to investigate the
effects of ML technique-based hyperparameters
showed the importance of tuning the parameters in
an optimal way. Preliminary results indicated that
among the considered hyperparameters, the
number of estimators has a significant effect on the
level of performance indicator selected in the scope
of this study, coefficient of determination.

Evaluating the total energy dissipated by RC columns
during cyclic loadings is a crucial issue in the energy-based
design approach that is widely applied in practice. Hence,
the outcomes of this study are believed to make an
important contribution to future studies based on this
topic. Moreover, the proposed ML assisted framework

can be also implemented to other structural and
earthquake engineering applications.
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