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Abstract 

This study aims to provide an efficient framework for predicting 
the total dissipated energy level of flexure-dominated 
reinforced concrete columns via a commonly used machine 
learning method, extreme gradient boosting. A database 
including 177 reinforced concrete columns is compiled using 
open-access databases. The proposed framework predicts the 
target total dissipated energy depending on seven fundamental 
features: concrete compressive strength, longitudinal rebar 
yield strength, shear span-to-depth ratio, longitudinal rebar 
ratio, transverse rebar volumetric ratio, peak drift ratio, and 
equivalent damping ratio. Results of a correlation-based 
quantitative analysis reveal that peak drift ratio, yield strength 
of longitudinal rebars, and concrete compressive strength are 
the most effective parameters on a target parameter among the 
other features. K-Fold cross-validation is implemented for the 
classification process. Validation results show that three 
fundamental performance indicators such as the means of 
correlation of determination, normalized root mean square 
error, and mean absolute percentage error are evaluated as 
0.75, 0.38, and 0.33, respectively. Moreover, the accuracy level 
of the algorithm is tested by comparing with the results 
obtained based on support vector machine, multilayer 
perceptron, and random forest techniques. Among these, the 
implemented extreme gradient boosting is the most successful 
model for predicting the energy levels that represent the highest 
correlation of determination. The sensitivity of predicted targets 
to algorithm-based hyperparameters is also investigated for the 
implemented algorithm. The results of this study are expected 
to contribute to energy-based design applications in the scope 
of predicting the dissipated energy capacity of flexure-
dominated reinforced concrete column members. 
 
 
Keywords: Energy-based design; Total dissipated energy; XGBoost; 
Reinforced concrete columns.

Öz 
Bu çalışma, betonarme kolonlarda tüketilen toplam enerji 
seviyesinin uygulamalarda yaygın olarak kullanılan aşırı gradian 
artırma yaklaşımı ile tahminine yönelik etkin bir algoritma 
önerilmesini amaçlamaktadır. Bu kapsamda, açık erişimli veri 
tabanları kullanılarak 177 adet betonarme kolona ait özellikleri 
içeren bir veri tabanı derlenmiştir. Öne sürülen çerçeve, hedef 
toplam tüketilen enerji seviyesini 7 temel özelliğe bağlı olarak 
tahmine olanak sağlamaktadır: beton basınç dayanımı, boyuna 
donatı akma dayanımı, kesme açıklığı-derinlik oranı, boyuna 
donatı oranı, enine donatı hacimsel oranı, maksimum ötelenme 
oranı ve eşdeğer sönüm oranı. Gerçekleştirilen korelasyon esaslı 
sayısal analizler sonucunda, seçilen özellikler arasında toplam 
tüketilen enerji üzerinde en etkin olan parametrelerin 
maksimum ötelenme oranı, boyuna donatı akma dayanımı ve 
beton dayanımı olduğu belirlenmiştir. Verilerin sınıflandırılması 
sürecinde K-katlı çapraz geçerlilik yaklaşımı uygulanmıştır. 
Geçerlilik sonuçları, üç temel performans göstergesine 
(belirleme katsayısı, normalize edilmiş kök ortalama kare hatası 
ve ortalama mutlak yüzde hatası) ait ortalama değerlerin 
sırasıyla 0.75, 0.38 ve 0.33 olarak belirlendiğini göstermiştir. 
İlave olarak, çalışmada kullanılan model ile tahmin edilen 
sonuçların hassasiyeti, destek vektör makinesi, çoklu katman 
algılayıcı ve rastgele orman modelleri esaslı sonuçlar ile test 
edilmiştir. Sonuç olarak enerji seviyesinin tahmininde en başarılı 
modelin aşırı gradian artırma yaklaşımı olduğu, belirleme 
katsayısına dikkate alınarak belirlenmiştir. Çalışma kapsamında, 
tahmin edilen enerji seviyelerinin kullanılan algoritma bazlı 
parametrelere bağlı hassasiyet seviyeleri de araştırılmıştır. 
Çalışma sonuçlarının, özellikle son yıllarda artan enerji esaslı 
tasarım uygulamalarına, eğilme etkisi altındaki betonarme kolon 
elemanlarda tüketilen toplam enerji seviyesinin tahmini 
kapsamında katkı sağlayacağı düşünülmektedir. 
 

Anahtar Kelimeler: Enerji-esaslı tasarım; Toplam tüketilen enerji 
seviyesi; Aşırı gradyan artırma yaklaşımı; Betonarme kolonlar.  

1. Introduction 

The energy dissipation capacity of a reinforced concrete 

member is usually considered to indicate the cyclic 

behavior with two more critical parameters: strength and 

deformability (Park and Eom 2006). The accurate 

prediction of dissipated energy capacity and the 

identification of factors that affect the capacity play 

critical roles in both conventional and recently popular 
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energy-based seismic design approaches (Yalçın et al. 

2021). Consequently, several studies based on the 

investigation of the energy dissipation capacity of 

reinforced concrete members have been performed in 

the past. Park and Eom (2006) developed a simplified 

method to predict the dissipated energy level for flexure-

dominated RC members via nonlinear finite element 

analysis.  

The accuracy of the proposed method was verified by 

comparing the results with existing experiments. Results 

indicated that the method showed good performance in 

predicting the dissipated energy level based on various 

design variables. Poljanšek et al. (2009) proposed a non-

parametric empirical approach to predict the energy 

dissipation and the deterioration of deformation capacity 

using the axial load index, index related to confinement, 

shear span index, concrete compressive strength, and 

longitudinal reinforcement index. Moreover, the effects 

of these parameters on the predicted capacity levels were 

also discussed in detail. Acun and Sucuoğlu (2012) 

developed an analytical model to predict the cyclic 

dissipated energy capacity of reinforced concrete (RC) 

columns under constant and variable inelastic 

displacement cycles.  

Additionally, the effect of failure modes, material 

characteristics, and ductility level on the dissipated 

energy was also investigated in the scope of a related 

study. Liu et al. (2018) proposed a two-parameter 

analytical model for rectangular members under flexure 

to represent the variation of the dissipated energy with 

the cumulative hysteretic energy in each displacement 

cycle. The impact of corrosion levels of rebar to the 

energy dissipation of reinforced concrete columns was 

reported by Yang et al. (2016) via experimental way. 

Comparisons based on different levels of maximum 

amounts of corrosion showed that the dissipated energy 

level decreases with increasing amount of corrosion in 

rebars. The effects of axial load level to the energy 

dissipation capacities of reinforced concrete type short 

columns were investigated by Vu et al. (2022).  

The study stated that the dissipated energy level is highly 

affected by the intensity and the fluctuation of applied 

axial load level. Muderrisoglu et al. (2023) proposed a 

quantitative framework that reveals a relationship 

between the structural member and loading features and 

the total energy dissipated by reinforced concrete 

columns. It was observed that maximum drift ratio, the 

amount of transverse rebar, and yield strength of rebars 

are the most effective ones among selected features in 

terms of correlation-based analysis. Yıldızel et al. (2023) 

investigated the effects of additional materials (i.e., 

recycled waste steel wires from tyres) on the stiffness, 

ductility, and energy dissipation characteristics of RC 

beams, experimentally.  

Based on the experimental results, an equation was 

proposed to predict the capacity of investigated hybrid 

beams. Depending on the advances in using machine 

learning (ML) techniques in structural engineering (Thai 

2022, Tapeh and Naser 2023), practices based on 

predicting the cyclic behavior characteristics of reinforced 

concrete members via ML-based frameworks have also 

been performed. Abdalla and Hawileh (2021) considered 

the Artificial Neural Networks technique to predict the 

dissipated energy level in steel rebars in a reinforced 

concrete member. It was concluded that the accuracy of 

the model in predicting the dissipated energy is 

considerably higher under low-cycle fatigue loads.  

An ML-based model was developed by Topaloglu et al. 

(2022) to predict the energy dissipation capacity of shear 

walls. Specifically, the Gaussian Process Regression 

technique was implemented to develop a function 

depending on fundamental wall design parameters. 

Deger et al. (2023) proposed empirical equations to 

predict the energy dissipation capacity of RC shear walls 

using meta-modeling methodologies. The proposed 

framework resulted in a high coefficient of determination 

value (i.e., R2=0.93) representing the level of accuracy in 

prediction. Yaghoubi et al. (2023) developed a Gaussian 

process regression-based algorithm that predicts the 

equivalent damping ratio of RC shear walls at 

displacements captured at 1.0% lateral drift ratio. For this 

purpose, a test database including 161 rectangular shear 

wall features was compiled using the existing test results 

available in the literature. It was concluded that the 

selected ML technique is accurate in the prediction of a 

selected target. Hamidia et al. (2024) proposed machine 

learning-based frameworks to predict seismic energy 

dissipation levels of RC beam-column connections. 

Specifically, 934 images of RC joint were utilized to predict 

the target parameter.  

Results indicated that the prediction accuracy obtained 

using Cat Boost technique shows higher levels compared 

to those predictions evaluated via other techniques. A 

review of existing literature shows that a research gap 

based on a prediction of energy dissipation capacity of RC 

column type members practically that would be a good 

base for future studies and practices in energy design-

based structural design and/or performance assessment 

applications is available. Therefore, a machine learning 

implemented analytical framework is proposed for 
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predicting the total energy dissipation capacity of RC 

columns. Following a compilation of a comprehensive 

dataset, the effects of essential structural member 

characteristics on the total dissipated energy level were 

investigated quantitatively. A commonly-used extreme 

gradient boosting -XGBoost- (Chen and Guestrin 2016) 

algorithm was selected as a machine learning technique 

among the investigated techniques. Finally, the sensitivity 

of predicted results to the ML technique-based 

hyperparameters was discussed in detail. 

 

2. Proposed Machine Learning-Assisted Framework for 

Predicting the Total Dissipated Energy Level 

Details of the proposed machine learning-assisted 

framework that contributes to the energy-based design 

concept in terms of predicting the total dissipated energy 

capacity of flexure-dominated RC columns are presented 

in this section. For structural members subjected to cyclic 

loading, the total dissipated energy capacity is evaluated 

using an area under the force-displacement hysteresis 

captured during the loading (Figure 1). In practice, this is 

achieved by constructing analytical models to simulate 

the response of a member, performing experiments, or 

considering both processes. In this study, the capability of 

a machine learning technique is taken into account for a 

prediction-based analytical framework to evaluate the 

total dissipated energy level. Specifically, the XGBoost 

technique is selected to teach the computer how to 

predict the target of interest using the available dataset. 

 

2.1. Extreme gradient boosting technique 

Extreme gradient boosting, XGBoost (Chen and Guestrin 

2016) is a scalable tree-boosting technique proposed to 

increase the speed and the efficiency of the existing 

gradient boosting (Friedman 2001) method. Three 

fundamental tools are implemented in the improved 

technique such as (1) compressed column format (i.e., to 

store data for reducing the time consumed during the 

process depending on the cost of sorting), (2) 

randomization technique to increase the speed of training 

process and decreasing the level of overfitting, and (3) 

parallel and distributed computing for split finding 

procedure (Thai 2022). In an extreme gradient boosting 

model, the objective function needs to be minimized at 

iteration t is expressed as follows: 

ℒ̃ (𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)𝑘
𝑖=1  (1) 

where ft represents the added function to iteration to 

improve the speed of a model for optimization and Ω(𝑓𝑡) 

is considered to penalize the model-based complexity. 

Moreover, gi and hi indicate the first and the second order 

gradient statistics on the loss function (i.e., 𝑙(�̂�𝑖 , 𝑟𝑖)) 

depending on the difference between the predicted, �̂�𝑖 

and the target, ri parameters: 

𝑔𝑖 = 𝜕�̂�(𝑡−1)𝑙(𝑟𝑖 , �̂�(𝑡−1)) (2) 

ℎ𝑖 = 𝜕2
�̂�(𝑡−1)𝑙(𝑟𝑖 , �̂�(𝑡−1)) (3) 

Here, Equation 1 is rewritten to consider the contribution 

of each leaf j (i.e., in a tree structure) during the iteration 

process as follows: 

ℒ̃′(𝑡) = ∑ [(∑ 𝑔𝑖𝑖∈𝐼𝑗
)𝑤𝑗 +

1

2
(∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

)𝑤𝑗
2] + γT 𝑇

𝑗=1 (4) 

where T is the total number of leaves in a tree, and Ij is the 

instance set of leaf during the iteration process. 

Accordingly, the optimal weight of leaf j, wj,opt and the 

corresponding optimal value for a fixed tree structure, q 

are evaluated via solving the quadratic function given in 

Equation 4 on wj as follows (i.e., Equations 5 and 6, 

respectively): 

𝑤𝑗,𝑜𝑝𝑡 = −
∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑗

 (5) 

ℒ̃′(𝑡)(𝑞) = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑗

+ γT 𝑇
𝑗=1  (6) 

Then, the split candidates in a tree learning process are 

evaluated using the loss reduction after the split as 

follows: 

ℒ𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑ 𝑔𝑖𝑖∈𝐼𝐿
)2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝐿

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑅

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖+𝜆𝑖∈𝐼
] − γ (7) 

Here, IL and IR indicate the left and right node’s instance 

sets considered after the split, respectively. Finally, the 

best split is found by maximizing the difference between 

the objective functions considered before and after the 

split node (i.e., using the Exact Greedy algorithm to 

minimize Equation 4). In this study, a Python-based (van 

Rossum and Drake 1995) framework supported by the 

advanced machine learning tools (Pedregosa et al. 2011) 

is considered to predict the target parameter. 

Additionally, assessing the performance of implemented 

technique in machine learning-based studies is also 

crucial to provide more accurate results. For this purpose, 

the K-Fold cross-validation procedure is considered 

during the analysis.   

 

2.2. K-Fold cross-validation 

The K-Fold cross-validation is a widely used technique in 

statistical analysis to assess the level of accuracy of a 

selected model and to predict the classifiers’ errors 

(Anguita et al. 2012).     
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Figure 1. Experiment-based evaluation of total dissipated energy for a specimen tested by Tanaka (1990): (a) loading protocol, (b) 

force-displacement hysteresis 

 

Here, the parameter, K basically refers to the number of 

folds that a selected dataset would be split into. Following 

the random split process, a cross-validation-based 

training is applied by considering the training (e.g., K-1 

folds) and a test set. Accordingly, a machine learning 

technique of interest (e.g., as XGBoost in this study) is 

implemented to predict the target parameter using the 

folds including training and test data. Finally, means of 

performance indicators are evaluated to assess the 

accuracy of the trained model. Specifically, commonly 

used statistical performance indicators such as (1) the 

normalized root mean square error -NRMSE-, (2) mean 

absolute percentage error -MAPE-, and (3) coefficient of 

determination -R2- are selected to assess the trained data 

in this study. These indicators are evaluated as follows: 

𝑁𝑅𝑀𝑆𝐸 =
√

1

𝑛
∑ (𝑦𝑖−𝑦𝑖

′)2𝑛
𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛

 (8) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦𝑖
′

𝑦𝑖
|𝑖=1

𝑛  (9) 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖

′)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

 (10) 

where n refers to the number of samples, y is the actual 

and y’ is the predicted value. In this study, the coefficient 

of determination, R2 (Equation 10) is selected as a 

performance indicator. A general overview of a proposed 

framework is represented in Figure 2. 

 

3. Dataset Properties 

The database considered in this study was compiled by 

taking into account two fundamental open-access studies 

(Ghannoum et al. 2015a, 2015b). Specifically, the selected 

dataset includes RC column information focused on 

rectangular and circular sections subjected to flexural 

actions. The study was based on 177 column specimens 

(i.e., 113 rectangular and 64 circular RC columns). In the 

scope of machine learning-based research, quantifiable 

features available in a database are considered as input 

data to predict the target parameter. 

 

 
Figure 2. A general overview of a proposed framework 

 

Accordingly, a wide range of feature sets including the 

compressive strength of concrete, fc, longitudinal rebar 

yield strength, fyl, shear span-to-depth ratio, a/d, 

longitudinal rebar ratio, ρl, transverse rebar volumetric 

ratio, ρt, peak drift ratio, Δmax, and equivalent damping 

ratio, ξeqv (Kwan and Billington 2003) is considered during 

the analysis. Relative frequencies of selected features and 

target parameter (i.e., total dissipated energy, Ecd) are 

given in Figure 3. The total dissipated energy capacities of 

specimens in a selected dataset vary between 51.5kNm 

and 635.7kNm. Fundamental factors including sectional, 

material, loading, and mechanical properties have a 

significant effect on the total dissipated energy level of 

column members (Poljanšek et al. 2009, Muderrisoglu et 

al. 2023). Following the identification of features and the 

target parameter, correlations between these quantities 

are investigated via Pearson’s correlation coefficient 

(Pearson 1920) as follows:  
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𝜌𝐹𝑇 =
𝜎𝐹𝑇

𝜎𝐹𝜎𝑇
 (11) 

where σFT indicates the covariance between the feature 

and the target, σF is the standard deviation of feature and 

σT is the standard deviation of target data. The correlation 

coefficient, ρFT takes values between -1 and +1 where 

these boundary levels correspond to complete negative 

and positive cases, respectively. Correlation levels 

between selected features and the total dissipated 

energy level are given as a matrix in Figure 4. 

 

 

 
Figure 3. Relative frequency distributions of selected features and the target parameter: (a) fc, (b) fyl, (c) a/d, (d) ρl, (e) ρt, (f) Δmax, (g) 
ξeqv, (h) Ecd 

 

Preliminary results indicate that the total dissipated 

energy level captured in flexure-dominated RC column 

specimens under cyclic loading is mostly influenced by 

peak drift ratio (i.e., ρΔmax,Ecd=0.43). This result shows a 

good agreement with observations available in the study 

by Muderrisoglu et al. (2023). Moreover, an opposite 

trend (i.e., negative correlation) is observed for a 

relationship between the concrete compressive strength 

and the total dissipated energy level. Actually, the 

correlation level for this case is considerably low (i.e. 

ρfc,Ecd=-0.2). Comprehensive research (Poljanšek et al. 

2009) based on considering the normal (e.g., between 20 

MPa and 40 MPa) and high-strength concrete features in 

detail reported that the energy capacity of a specimen 

with normal concrete is higher than that capacity of a high 

strength concrete specimen due to the inverse 

relationship between the ductility and the strength of 

material. 

 

Figure 4. A heatmap representing the correlation levels 
between selected features and target parameter 



 Predicting the Total Dissipated Energy for Flexure-Dominated Reinforced Concrete Columns via XGBoost, MÜDERRİSOĞLU. 

609 

4. Proposed Predictive Model Results  

In this section, results obtained via the proposed 

framework are given. For this purpose, means of 

performance indicators calculated using the K-Fold cross-

validation analysis are presented. Additionally, sensitivity 

analyses are performed to investigate the effect of 

fundamental hyperparameters considered in the XGBoost 

technique on the predicted results. 

  

4.1. Accuracy of predictions 

Following the compilation of a dataset and selecting the 

features and a target parameter, training of a proposed 

model including the XGBoost technique is implemented 

by evaluating the optimum ML technique-based 

hyperparameters using the random search technique. 

Specifically, the hyperparameters are searched as: an 

objective for a loss function, [reg:logistic,binary:logistic] 

supported for XGBoost, number of estimators, nest in a 

range of [50,1000], max tree depth, maxd of [1,20], 

boosting learning rate, rl of [0.001,1.0]. Finally, the 

optimum parameters are determined to evaluate for the 

best mean performance indicator. Moreover, other 

model-based parameters such as degree of polynomial 

for fitting used to generate the train and test sets is 

selected as 2, and the booster type is considered as gbtree 

during the process. In this study, a K-Fold cross-validation 

technique is utilized instead of a standard train-test split 

methodology to evaluate the performance of 

implemented ML-based model in a more robust way. 

Specifically, the number of folds, nfold is considered as 6 to 

partition the existing dataset into multiple parts such as 

nfold-1 (i.e., 5 folds) for training and the remaining for 

testing data. Specifically in each part, 83% of total data 

(i.e., 148 members) are considered for training while 29 

samples (i.e., 17%) are taken into account to train the 

relevant model. Here, it should be noted that an L2 

regularization method is utilized to prevent overfitting 

when training the model. Performance indicators 

evaluated in each fold are provided in Table 1. As 

expected, different values of performance indicators are 

obtained for folds including randomly generated training 

and test data depending on the level of variabilities in 

predicted and actual energy levels in each fold. Results 

show that the maximum and the minimum values of 

selected performance indicator (i.e., coefficient of 

determination, R2) are evaluated as 0.82 and 0.58 for a 

selected set of hyperparameters, respectively (Figure 5). 

Accordingly, the accuracy level of the proposed model is 

tested by taking into account the mean of performance 

indicator, R2 calculated for generated folds (Figure 6). As 

the mean of performance indicators is calculated as 0.75 

and considering the high variabilities in features of a 

selected dataset, the proposed model is assumed to be 

considerably accurate in predicting the total dissipated  

Table 1. Performance indicators evaluated in each fold in K-Fold 

cross validation process 

Fold #/ 
Performance 

indicator 
R2 NRMSE MAPE 

1 0.58 0.46 0.28 
2 0.74 0.35 0.35 
3 0.82 0.33 0.29 
4 0.82 0.34 0.36 
5 0.75 0.47 0.46 
6 0.77 0.33 0.26 

 

 
Figure 5. Variabilities in performance indicators evaluated via K-

Fold cross-validation process 

 

energy level of flexure-dominated RC columns subjected 

to cyclic loadings (Chicco et al. 2021, Moore et al. 2013). 

   

 
Figure 6. Means of performance indicators evaluated via K-Fold 

cross-validation process 

 

In addition to the implemented ML technique-wise 

performance evaluation (Figure 6), the accuracy level of 

the implemented algorithm in predicting the energy 

levels is also tested by comparing with the results 

obtained based on commonly used machine learning 

models in structural engineering such as support vector 

machine (SVM), multilayer perceptron (MLP), and 

random forest (RF) (Table 2). Here, the means of selected 

performance indicators evaluated using the optimum 

hyperparameters (i.e., using a random search algorithm) 

are presented. Preliminary results show that the 

implemented extreme gradient boosting is concluded as 

the most successful model among the selected 

techniques to predict the energy levels as representing 

the highest correlation of determination (i.e., R2=0.75). 
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Table 2. Comparison of the performance of different algorithms   

ID Hyperparameter R2 NRMSE MAPE 

XGB 

nest=150; 
objective=reg:logistic 
maxd=1; rl=0.6 

0.75 0.38 0.33 

SVM 

kernel=rbf; C=10;  
epsilon=0.05;  
gamma=0.3 

0.43 0.57 0.52 

MLP 

solver=adam; alpha=0.0001; 
hidden layer sizes=400,400 
max. iterations=500; 

0.63 0.46 0.46 

RF nest=10 0.66 0.49 0.44 

 
The capability of the validated model is investigated by 

evaluating the correlation level between the predicted, 

μEcd,p and actual, μEcd,a total dissipated energy capacities 

corresponding to the mean coefficient of determination 

case of 0.75. In Figure 7, a strong correlation between the 

predicted and actual total dissipated energy capacities 

(i.e., ρa,p=0.94) that indicates a high-level prediction case,  

is observed.  
 

 
Figure 7. Correlation between actual and predicted total 

dissipated energy levels  
 

The preliminary results indicate that the proposed model 

shows high accuracy in predicting the total dissipated 

energy level for selected hyperparameters.  

 

4.2. Sensitivity of the performance indicator to the 

fundamental hyperparameters 

Effects of fundamental parameters on the selected 

performance indicator, R2 (i.e., hence on the prediction 

results) are investigated in this section.  
 

Number of estimators&Maximum depth 

The means of performance indicator obtained for a set of 

a number of estimators and maximum depth values are 

presented in Figure 8. Here, a constant boosting learning 

rate of 0.6 is considered. Results show that, following the 

increment of coefficient of determination values up to a 

peak level of a number of estimators (i.e., 150 for a set of 

interest), a decrement tendency is observed for low 

values of maximum depth hyperparameter. Moreover, it 

is also concluded that the indicator becomes constant for 

high levels of maximum depth (i.e., maxd≥10). 

 
Figure 8. Effects of number of estimators and maximum depth 

on the performance indicator (rl=0.6) 

 
Maximum depth&boosting learning rate 

The sensitivity of performance indicators to the 

variabilities in maximum depth and boosting learning rate 

is investigated in this sub-section (i.e., for a constant 

number of estimators as 150). In Figure 9, a sudden 

increment in R2 values is observed up to a learning rate of 

0.2 for a selected interval of maximum depth parameter.  

 
 

Figure 9. Effects of maximum depth and boosting learning rate 

on the performance indicator (nest=150) 

 
Number of estimators&Boosting learning rate 

The effect of a number of estimators and boosting 

learning rate on the evaluated R2 values is illustrated in 

Figure 10.  Here, a constant maximum depth parameter 

of 1 is considered during the analysis. It is observed that 

higher R2 values are evaluated for low values of the 

number of estimators. Moreover, the indicator is 

significantly affected for decreasing levels of boosting 

learning rate parameter. 

 

 
Figure 10. Effects of number of estimators and boosting 

learning rate on the performance indicator maxd=1) 
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5. Conclusions  

A machine learning technique implemented analytical 

framework based on predicting the total energy 

dissipated by flexure-dominated reinforced concrete 

columns is presented. The proposed framework takes 

into account the XGBoost technique to train the selected 

data. Data characteristics are detailed using statistical 

approaches. The accuracy level of a proposed model in 

predicting the energy capacity level is illustrated using the 

coefficient of determination as a performance indicator. 

The effects of critical ML technique-based 

hyperparameters on the selected performance indicator 

are investigated by performing sensitivity analyses. 

Following results can be derived based on the outcomes 

of detailed analysis: 

• The dependency of the total dissipated energy 
capacity on the selected parameters is quantified via 
correlation coefficients. The highest positive (i.e., 
ρΔmax,Ecd=0.43) and negative correlations (ρfc,Ecd=-0.2) 
are evaluated for peak drift ratio and concrete 
compressive strength features, respectively.   

• The proposed model yielded considerably accurate 
results in predicting the total dissipated energy 
capacity by taking into account the coefficient of 
determination, R2 as a performance indicator with a 
mean of 0.75. 

• The accuracy level of the implemented algorithm in 
predicting the energy levels is also tested by 
comparing with the results obtained based on 
support vector machine (SVM), multilayer 
perceptron (MLP), and random forest (RF) 
algorithms. Preliminary results show that the 
implemented extreme gradient boosting is 
concluded as the most successful model among the 
selected techniques to predict the energy levels as 
representing the highest correlation of 
determination. 

• A strong correlation level of ρa,p=0.94 is obtained via 
the proposed model based on a comparison 
between the actual and predicted total dissipated 
energy capacities. 

• Sensitivity analysis performed to investigate the 
effects of ML technique-based hyperparameters 
showed the importance of tuning the parameters in 
an optimal way. Preliminary results indicated that 
among the considered hyperparameters, the 
number of estimators has a significant effect on the 
level of performance indicator selected in the scope 
of this study, coefficient of determination. 

Evaluating the total energy dissipated by RC columns 

during cyclic loadings is a crucial issue in the energy-based 

design approach that is widely applied in practice. Hence, 

the outcomes of this study are believed to make an 

important contribution to future studies based on this 

topic. Moreover, the proposed ML assisted framework 

can be also implemented to other structural and 

earthquake engineering applications.  
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