
ABSTRACT: In this work, the modeling for the capacitance of a vertical parallel silicon solar cell has been carried 
out with an analytical approach. A theory on the determination of the diffusion coefficient of the excess minority 
carriers of a silicon solar cell is presented.  Based on the continuity equation, excess minority carrier’s density, 
photocurrent density and photovoltage have been determined. Also, this study allows us to determine the influences 
of incidence angles on the photocurrent density, the photovoltage and the diffusion capacitance (open and short 
circuit). The objective of this work is to show the effects of incidence angles on the solar cell capacitance with these 
electrical parameters. 
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ÖZET: Bu çalışmada, analitik yaklaşımla dikey paralel silisyum güneş pili kapasitansı için modelleme yapıldı. 
Silisyum güneş Pilinin aşırı azınlık taşıyıcıları difüzyon katsayısının belirlenmesi ile ilgili bir teori sunuldu. 
Süreklilik denklemine bağlı olarak aşırı azınlık taşıyıcıların yoğunluğu, foto akım yoğunluğu ve foto gerilim 
belirlendi. Ayrıca, bu çalışma foto akım yoğunluğu, foto gerilim ve difüzyon kapasitansına (açık ve kısa devre) 
geliş açısının etkilerini belirlememize olanak sağlar. Bu çalışmanın amacı, bu elektriksel parametreler ile  güneş 
pili kapasitansına geliş açısının etkisini göstermektir. 

Anahtar Kelimeler: Difüzyon kapasitansı, dikey paralel silisyum güneş pili, geliş açısı
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INTRODUCTION 

The improvement of the performances and the 
quality of solar cells is one concern major to which 
the current research turns. Thus, the basic material 
for manufacturing solar cells benefit ceaselessly 
technological progress as well on the mode of the 
manufacturing and the increase substrates as on the final 
structure of the solar cell elaborated. For that purpose, 
many researches are done on conventional solar cells, 
solar cells with back field or B.S.F (Back Surface 
Field) (Grove, 1967; Ricoud, 1997), monocrystalline 
and polycrystalline monofocal silicon solar cells, 
polycrystalline and monocrystalline bifacial silicon 
solar cell (Kocyigit, 2012, Topkaya,  2016) vertical 
junctions solar cells, solar cells with concentration... 
The purpose of this article is to do a study on a parallel 
vertical junction silicon solar cell under multispectral 
illumination in static regime. A theoretical study of the 
excess minority carriers in the base of the solar cell 
is produced through continuity equation. With help 
of the boundary conditions at the junction and at the 
middle of the base, excess minority carrier’s density 
are studied and lead to the expression of photocurrent 

density and photovoltage. From, the well-known I-V 
characteristic of the solar cell under illumination, 
electrical equivalent model is established for low and 
high junction recombination values giving respectively 
ideal generator source of tension and current. 

So many studies have been conducted in order to 
minimize this recombination and raise the conversion 
efficiency. Related to the operating conditions, solar 
cell characterization methods lead to the electrical and 
recombination parameters (bulk and surfaces) (Ghitani 
et al, 1989; Nam et al, 1992). Then solar cell is either 
under steady state condition (Ly et al, 2013) or under 
dynamic state (Mbodji et al, 2010) (i.e. transient decay 
and frequency)

Space charge region capacitance is expressed 
depending on incidence angle and junction 
recombination velocity. 

MATERIAL AND METHOD

Figure 1 represents parallel vertical junction solar 
cells under monochromatic light, in one dimensional 
model (Ox), where the studied p-base1 interacts with 
the two adjacent emitters 

Figure 1: ¶vertical parallel junction silicon solar cells   ¶ 

¶Given that the contribution of the base to the 
photocurrent is larger than that of the emitter (Samb 
et al, 2009; Lemrabott et al, 2012) our analysis will 
only be developed in the base region.  Taking into 
account the generation, recombination and diffusion 

phenomena in the base, the equation governing the 
variation of the minority carriers density δ(x,y,z,t) 
under modulation frequency  ¶is (Noriaki et al, 
1987; Noriaki et al, 1988; Mandelis, 1989; Diallo 
et al, 2012):  
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x is the base depth along x axis, ω is the angular 
frequency, θ is the incidence angle, z  the base depth 
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recombination velocity and λ the illumination 
wavelength. If we replace equation (2) into equation 
(1), the temporary part is eliminated and we obtain:  
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Sf is the excess minority carrier’s recombination velocity at each junction (Avraham et al, 77 

1974). 78 
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The excess minority carriers in the base will flow to the two junctions by diffusion; the 81 

photocurrent density is given by the following expression: 82 
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The excess minority carriers in the base will flow 
to the two junctions by diffusion; the photocurrent 

density is given by the following expression:  
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Coefficients A and B are determined through the following boundary conditions (Diallo et al, 73 
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Sf is the excess minority carrier’s recombination velocity at each junction (Avraham et al, 77 

1974). 78 
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The excess minority carriers in the base will flow to the two junctions by diffusion; the 81 

photocurrent density is given by the following expression: 82 
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were q is the elementary charge. 84 

 85 

	 (9)
¶

were q is the elementary charge.  

The expression of the density of minority carriers 
in excess δ (x) is thus a dependent function of the depth 
x in the base of the θ angle, recombination velocities at 
the junction Sf rear , diffusion length L and the diffusi-
on coefficient D of the minority carriers.

RESULTS AND DISCUSSIONS

Figure 3, by cons, the curves have a positive gradient 
in the immediate vicinity of the junction, which means 
that the minority carriers located á this level through 
the junction to participate á producing a photocurrent. 
In both cases the charge density of minority carriers 
increases when the incidence angle decreases.  

Sf = 3.103cm/s.

H = 0.03 cm;   Lo = 0.02 cm, Do = 26 cm2/s, z = 0,0001 cm,     l = 0.68 µm, ω꞊103rad/s.

Figure 2. Module of minority carrier’s density versus depth x in the base for various incidence angles  

Photovoltage: This part is devoted to the study of 
the influences of the angle of incidence and rate of re-
combination at the junction of the photovoltage.

The photovoltage is given, at the emitter / 
base, according to the Boltzmann relationship by 
expression (10): 
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Figure 3 shows the voltage profile of the image as a 
function of the recombination rate for different values of 

the angle of incidence. The curves show that the impact of 
the angle of incidence on the photo-voltage is low. 

w = 103 rad/s, H = 0.03cm, Lo=0.02cm, Do = 26cm²/s, z = 0.0001cm, l = 0.52µm

Figure 3.  Module of the photo voltage versus the junction recombination velocity for various incidence angles.  
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The photo voltage generally decreases with angle 
of incidence, but this reduction is not very significant 
as that of the photocurrent with the angle of incidence. 
With tilt, power forward will change and with it the car-
rier density; but as the dependence of the photovoltage 
to the carrier density is rather logarithmic, the influence 

of the angle of incidence is less noticeable on the pho-
tovoltage on the photocurrent density.

Open Circuit Photovoltage: In Figure 4, we 
represent the profile of the open circuit photovoltage as 
a function of logarithm of the modulation frequency ω 
for different angles of incidence:  

Sf = 3.103cm/s; H = 0,03cm; Lo = 0,02cm; Do = 26cm²/s; z = 0,0001cm;  l = 0.52µm

Figure 4. Open circuit photovoltage versus the logarithm of angular frequency for various incidence angles 

This module remains substantially the same for 
angles 0 ≤ q ≤ 10o and decreases for angles q >10o. We 
also note that for the values 0 ≤ q ≤ 10°, the amplitude 
of the open circuit photovoltage hardly varies. The 
open circuit photovoltage is obtained when the junction 
recombination velocity Sf is very low; for an ideal cell, 
Sf should be zero (Sf=0) and in a real case, it would be 
the intrinsic junction recombination (Sf0 =0)

Capacitance

When the photocell is illuminated, there is 
generation, diffusion and recombination of carrier’s 
minority within the solar cell. The conduction of 

carriers across the junction is accompanied by a -Q 
charge storage in the base and + Q in the transmitter 
and possibly a recombination of the minority carriers. 
The presence of charge opposite signs with respect to 
either side of the junction leads to the establishment 
of a variable capacitance capacitor according to the 
operating conditions of the solar cell. Considered as a 
result of the variation in load during the diffusion process 
within of the solar cell (Coligne, 2002; Neamen, 2003; 
Wenham et al, 2007; Mathieu et al, 2009;  Hu, 2010; 
Boer, 2010; Zeghbreeck, 2011; Sane et al, 2014; Sahin 
et al, 2015), the solar cell capacity can put in the form: 
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The first term in equation (16) is the intrinsic capacity C0; she depends essentially the nature 145 

of the material (that is to say, the semiconductor substrate used) to through the intrinsic 146 

concentration (ni), doping of the final material through the impurity concentration (Nb) and 147 

the operating temperature of the junction to the Thermal photovoltage VT. 148 

As for the second term, it depends mainly on the temperature through (VT), the doping 149 

material and its nature through the coefficient D and the diffusion length L from the point of 150 

operation through the recombination rate at the junction (Sf) and the dimension the solar cell 151 

through its thickness (H). 152 
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The first term in equation (16) is the intrinsic 
capacity C0; she depends essentially the nature of the 
material (that is to say, the semiconductor substrate 
used) to through the intrinsic concentration (ni), doping 
of the final material through the impurity concentration 
(Nb) and the operating temperature of the junction to 
the Thermal photovoltage VT.

As for the second term, it depends mainly on the 
temperature through (VT), the doping material and its 
nature through the coefficient D and the diffusion length 
L from the point of operation through the recombination 
rate at the junction (Sf) and the dimension the solar cell 
through its thickness (H).

The capacity of the solar cell is the sum of the 
transition ability and the ability to diffusion; depending 

on the mode of operation of the solar cell that is to say 
when the latter is direct or reverse bias, one of two 
capacitors predominates.

Under reverse bias, diffusion phenomena are non-
existent. The junction is characterized by two charges 
of opposite signs motionless; there is a capacitor whose 
predominant ability is called transition or capacity Ct 
barrier capacity. This capacity is directly dependent on 
the reverse bias voltage of the solar cell and can 300pF 
reach.

Under illumination (forward bias), the phenomenon 
of diffusion is dominant and it is the diffusing capacity 
becomes the most important.  If we return to equation 
(16), we can rewrite it and we get:  
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We now present the evolution of the solar cell diffusion capacity based the operating point 164 

defined through the junction recombination velocity Sf. Figures (5) present the solar cell 165 

capacitance versus junction recombination velocity. 166 

	 (17)
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We now present the evolution of the solar cell 
diffusion capacity based the operating point defined 
through the junction recombination velocity Sf. Figures 

(5) present the solar cell capacitance versus junction 
recombination velocity. 

w = 103 rad/s, H = 0.03cm, Lo = 0.02cm, Do = 26cm²/s, z = 0.0001cm, l = 0.52µm

Figure 5.  Module of SCR (space charge region) capacitance versus junction recombination velocity for various incident angles 

The open circuit situation when the junction 
recombination velocity Sf is low, the maximum 
capacity is remaining practically constant:  there is little 
mobility of the minority carriers thus substantially all 
of such holders are found stored in the vicinity of the 
junction. For Sf values greater than 2.102 cm.s-1, we note 
a progressive decrease in the ability of the solar cell 
tends to a capacitance value corresponding to the short 
circuit condition since the base vacuum photogenerated 
minority carriers

For high values of Sf diffusion capacity is low 
reflecting a destocking of charge carriers in the 
immediate vicinity of the emitter-base junction. 

Figure 6 shows the profile of the diffusing 
capacitance for low values of Sf (Sf <100 cm s-1) 
corresponding an open circuit condition of the solar cell. 
This figure clearly shows the effect of incidence angle 
on the diffusion capacitance. Although this capability is 
seen decreases as the incidence angle increases.   
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Sf= 10 cms-1

Figure 6. Diffusion capacity characteristics in function of incidence angle  

Figure 7 shows the profile of the diffusing 
capacitance for high values of Sf (Sf = 106 cm s-1) 
corresponding a short-circuit situation of the solar 

cell. Note that this capability is significantly lower 
than the open circuit condition. 

Sf = 106 cms-1

Figure 7.  Diffusion capacitance characteristics in function of incidence angles  
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CONCLUSION

A theoretical study has been made on a silicon 
solar cell under the frequency modulation for various 
incidence illumination angles. Electrical parameters 
such as the photocurrent and the photo voltage are 
studied and the influence of the modulation frequency 
and incidence angle on these parameters is presented. 
Excess minority carrier’s density, photocurrent density, 
photovoltage and open-circuit photovoltage have been 

studied. The diffusion capacitance following two 
operating points (open circuit situation and short-circuit 
situation) versus junction recombination velocity for 
various incidence angles values has been studied. After 
than we can work the capacitance of the space charge 
region using the Bode and Nyquist diagrams while 
the solar cell remained either under open circuit or 
short circuit condition and illuminated with different 
incidence angles. 
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