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Proteogenomic profiling of lung adenocarcinoma reveals therapeutic targets for 

precision medicine 

Akciğer adenokarsinomunun proteogenomik analizi: hassas tıp için terapötik 

hedeflerin belirlenmesi 
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Abstract  Öz 
Lung cancer is the top cause of cancer-related fatalities 
worldwide, impacting both men and women. A major 
challenge is its frequent diagnosis at advanced stages, which 
limits treatment options. While genomic and transcriptomic 
analyses have traditionally been used to identify potential 
drug targets, there remains an unexplored potential in 
targeting protein-level anomalies. This study systematically 
investigates the proteomic landscape of 109 primary lung 
adenocarcinoma (LUAD) tumors using comprehensive 
mass-spectrometry (MS) proteomics data. By focusing on 
kinases, the key actors in oncogenic signaling pathways, we 
aim to find new therapeutic targets for LUAD. Through 
intricate analyses encompassing tumor-normal differentials 
and inter-tumor variations, our study identifies notable 
overexpressed targets, including PLAU, MET, ERBB2, 
EGFR, PDK1 kinases, and THBS2, CRABP2, INPP4B 
proteins, many of which present no evidence of 
transcriptomic alteration. Several targets we identified 
through proposed approaches have corresponding inhibitor 
drugs, including ERBB2 kinase (Afatinib) and VEGF-A 
protein (Bevacizumab). Our findings validate known 
therapeutic markers in lung cancer and reveal candidate 
protein targets specific to LUAD, underscoring the efficacy 
of proteomic methodologies in advancing precision 
medicine for cancer. 
 

 Akciğer kanseri, dünya genelinde kanserle ilişkili ölümlerin 

başlıca nedeni olup, hem erkekleri hem de kadınları 

etkilemektedir. En büyük zorluklardan biri, genellikle 

hastalığın ileri evrelerinde teşhis edilmesidir; bu da tedavi 

seçeneklerini kısıtlamaktadır. Genomik ve transkriptomik 

analizler geleneksel olarak potansiyel ilaç hedeflerini 

belirlemede kullanılmıştır; ancak protein düzeyindeki 

anormallikleri hedeflemekte henüz keşfedilmemiş bir 

potansiyel bulunmaktadır. Bu çalışma, 109 birincil akciğer 

adenokarsinomu (LUAD) tümörünün proteomik profilini 

kapsamlı kütle spektrometrisi (MS) verileri kullanarak 

sistematik bir şekilde incelemektedir. Onkogenik sinyal 

yolarında kritik rol oynayan kinazlara odaklanarak, LUAD 

için yeni terapötik hedefler bulmayı amaçlıyoruz. Tümör-

normal farklılıkları ve tümörler arası varyasyonları içeren 

ayrıntılı analizler sonucunda, PLAU, MET, ERBB2, EGFR, 

PDK1 kinazları ve THBS2, CRABP2, INPP4B proteinleri 

gibi önemli aşırı ekspres edilen hedefler belirlenmiştir. Bu 

hedeflerin çoğunda transkriptomik değişim kanıtı 

bulunmamaktadır. Önerilen yaklaşımlar aracılığıyla 

belirlediğimiz bazı hedefler için mevcut inhibitör ilaçlar 

geliştirilmiştir, ERBB2 kinazı (Afatinib) ve VEGF-A 

proteini (Bevacizumab) gibi. Bulgularımız, akciğer 

kanserindeki bilinen terapötik belirteçleri doğrulamakta ve 

LUAD’e özgü aday protein hedeflerini ortaya koyarak, 

proteomik yöntemlerin kanser tedavisinde kişiselleştirilmiş 

tıbbın ilerletilmesindeki etkinliğini vurgulamaktadır. 

Keywords: Weighted k-nearest neighbor (KNN) algorithm, 

Lung adenocarcinoma (LUAD), Proteomics, Targeted 

therapy, Precision oncology 

 Anahtar kelimeler: Ağırlıklı k-en yakın komşu (KNN) 

algoritması, akciğer kanseri, proteomik metodolojiler, 

hedefe yönelik tedavi, hassas onkoloji 

1 Introduction 

Lung cancer remains the foremost cause of cancer-related 

mortality globally, affecting both men and alike [1]. The high 

mortality rate is largely attributable to the disease's tendency 

to be diagnosed at an advanced stage, often limiting the 

efficacy of conventional treatment options. Recent advances 

in cancer research emphasize the need for novel therapeutic 

strategies that can address this challenge by targeting 

molecular aberrations specific to the tumor [2]. Historically, 

treatment strategies for lung adenocarcinoma (LUAD) have 

predominantly focused on identifying potential drug targets 

through genomic and transcriptomic analyses [3]. However, 

these methods may overlook important therapeutic 

opportunities present at the protein level. Proteomic analysis, 

which focuses on the expression and functional alterations of 

proteins, offers a complementary approach that can reveal 
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critical therapeutic targets that are not apparent through 

transcriptomic data alone [4-6].  

Recent progress in mass spectrometry (MS) technology 

have significantly expanded global proteomic datasets, 

allowing for the quantification of nearly all proteins 

expressed in primary tumor cohorts [7,8]. This offers 

valuable opportunities to explore protein-level abnormalities, 

which may serve as prognostic biomarkers or therapeutic 

targets. Despite the extensive characterization of genomic 

aberrations, protein aberrations have historically been less 

well-defined, highlighting the urgent need for systematic 

analyses to identify potential targets [9]. 

In this work, we explore the proteogenomic landscape of 

LUAD by leveraging comprehensive mass-spectrometry 

(MS) proteomics data derived from 109 primary LUAD 

tumors and 102 matched normal samples [10]. Through the 

integration of these proteomic insights with genomic data and 

established drug-target relationships from the Drug-Gene 

Interaction database (DGIdb) [11], we aim to uncover novel 

protein targets that could be harnessed as effective 

therapeutic candidates. Our approach includes a detailed 

analysis of differentially expressed proteins (DEPs) to 

pinpoint those with significant alterations in tumor versus 

normal tissue. We also focus on kinases, which are often key 

players in oncogenic signaling pathways and are established 

therapeutic targets in various cancers [12]. Through this 

comprehensive analysis, we seek to uncover proteins that are 

overexpressed in LUAD and may serve as actionable targets 

for new or repurposed therapies. By comparing our 

proteomic findings with transcriptomic data, we also explore 

the relationship between protein-level overexpression and 

underlying genetic alterations, investigating whether protein 

overexpression is a result of genomic changes such as copy-

number amplifications or post-transcriptional modifications, 

which can be missed in RNA-based analyses. This study 

seeks to advance precision medicine by focusing on protein-

level abnormalities in LUAD and identifying potential 

druggable targets that could lead to improved patient 

outcomes. The findings have the potential to guide future 

therapeutic strategies and contribute to more personalized 

treatment approaches for lung cancer. 

2 Materials and methods 

2.1 Data sources, download, and standardized 

normalization 

The proteomic and transcriptomic datasets for the LUAD 

cohort samples were obtained from The National Cancer 

Institute’s Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) [10]. The study involved 109 tumor specimens and 

102 corresponding normal controls, obtained from 111 

patients (34.6% female) with average onset age of 62.7 years. 

The dataset consisted of 11,029 quantified distinct proteins, 

including 507 kinases. The RNA-seq analysis generated 

gene expression profiles for the LUAD study group, using 

the tophat-cufflinks pipeline, identifying 35,220 protein-

coding genes that showed FPKM > 1 in multiple samples, 

including 640 kinase-encoding genes. Quantile and log2 

normalization were applied to the RNA-seq counts (FPKM-

normalized), and genes not expressed in 20% or more of the 

samples were filtered out.  The data distribution for the 

proteomics group was assessed, followed by the application 

of a uniform normalization method. The samples in this 

group were adjusted using their Median Absolute Deviation 

(MAD), standardizing them so that all samples across the 

different datasets shared a consistent (unit) MAD value. 

Additionally, protein markers with a significant amount of 

missing data (20% or more) were omitted from the analysis. 

2.2. Identification of differentially-expressed proteins 

A paired analysis was performed on the LUAD cohort to 

pinpoint proteins with differential expression by evaluating 

tumor samples against their corresponding normal tissues 

using the R package “limma” (version 3.42.2) [13]. 

Corrections were made for potential confounding variables, 

including batch effects (such as sequencing 

center/operator/date, TMT batch) and demographic factors 

(gender, age). The Benjamini-Hochberg (BH) procedure was 

utilized to correct p-values for multiple comparisons, aiming 

to manage the false discovery rate (FDR). Generally, no 

significant confounding influences were detected between 

protein expression levels and clinical variables like gender 

and age. 

2.3. Detection of overexpressed proteins/genes 

The OPPTI method [9] was employed to identify 

overexpressed markers. The method involves comparing 

marker expression levels to a predicted value for each tumor 

sample, which is derived using a k-nearest neighbor (KNN) 

algorithm. This algorithm calculates the predicted value 

based on the expression levels of other (nearest) co-

expressed markers. The OPPTI method employs a 

permutation test to assess the statistical significance of a 

marker's calculated overexpression (dysregulation). Within 

the dataset, scores of dysregulation are shuffled among 

proteins in each sample, and baseline overexpression 

occurrences are estimated from these shuffles. This shuffling 

procedure is repeated several times, and the overall baseline 

overexpression occurrences from these repetitions are used 

to generate the permutation distribution. 

3. Results and discussion 

3.1. LUAD proteomics cohort 

We curated genomic and comprehensive mass-

spectrometry (MS) proteomics data from 111 lung 

adenocarcinoma patients [10], consisting of 109 tumor cases 

and 102 matched normal samples (Figure 1a). A 

standardized normalization process was applied, and 

stringent quality-control measures were followed (Methods), 

leading to the quantification of 11,029 proteins for our 

analyses. We also compiled a list of drug compound-

associated genes from the Drug-Gene Interaction database 

(DGIdb) [11]. By aligning the measured proteins with the 

DGIdb list of druggable genes, we found that 1,834 proteins 

in our dataset are currently targetable by existing drugs. 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1545-1552 

A. Elmas 

 

 

1547 

 

 

Figure 1. Overview of the study and differential protein expression in LUAD cohort. (a) Summary of the proteogenomic 

datasets from the human lung cancer cohort examined in this research. (b)  Volcano plot illustrating the differential expression 

of kinase proteins between tumor versus normal samples, with the most significant kinases from oncogenic signaling pathways 

highlighted with labels. (c) The same analysis results in panel b for non-kinase proteins 

Additionally, we selected kinase proteins for further 

examination, specifically concentrating on those known to 

be effective therapeutic targets across various cancer types. 

From a previously compiled set of 683 human kinase 

proteins [12], 507 were well-quantified within the LUAD 

dataset. Furthermore, these proteins were annotated by 

referencing ten oncogenic signaling pathways compiled by 

the TCGA PanCanAtlas, including PI3K, NOTCH, MYC, 

HIPPO, TGFβ, RTK/RAS/MAP-Kinase, β-catenin/WNT, 

Cell Cycle, oxidative stress response/NRF2, and TP53 

signaling pathways [12]. 

3.2. Differentially expressed proteins 

We conducted a paired analysis comparing tumor and 

normal tissues to identify proteins with differential 

expression (tumor-DEPs), while controlling for potential 

confounding factors such as age, gender, and ethnicity, 

utilizing the limma package [13] in R (version 3.42.2) 

(Methods). Our analysis revealed 405 significant kinase 

DEPs through differential expression testing, applying 

empirical Bayes moderation to the t-statistics [13] and 

enforcing a stringent false discovery rate (FDR) threshold of 

< 0.05. Of these DEPs, 42 were associated with oncogenic 

signaling pathways, and 6 kinases demonstrated more than 

2-fold up-regulation in tumor samples, i.e., CHEK2 (log2-

fold-change [FC] = 2.9, FDR = 6e-24), ERBB2 (FC = 2.5, 

FDR = 6e-19), PDK1 (FC = 1.8, FDR = 4e-13), MET (FC = 

2.2, FDR = 3e-09), CSNK1D (FC = 1.1, FDR = 2e-15), and 

KSR1 (FC = 1.1, FDR = 1.7e-05) (Figure 1b). 

Among the non-kinase proteins, a total of 8,219 

differentially expressed proteins (DEPs) were identified 

(FDR < 0.05). Among these, 144 were associated with 

oncogenic signaling pathways, with 38 showing more than 

2-fold up-regulation in tumor samples. Notable markers 

include THBS2 (FC = 6.6, FDR = 2e-28), DTX2 (FC = 3.4, 

FDR = 2e-24), SFRP4 (FC = 3.7, FDR = 8e-18), DTX3L (FC 

= 2.3, FDR = 3e-26), TLE3 (FC = 1.8, FDR = 2e-28), and 

SFRP2 (FC = 3.4, FDR = 4e-15) (Figure 1c). This 

differential expression analysis highlights a broad array of 

proteins that are elevated in tumor samples relative to normal 

tissues, necessitating further investigations to accurately 

identify and validate therapeutic targets among these DEPs. 

3.3. Overexpression of currently-druggable proteins 

To pinpoint potential therapeutic targets among 

overexpressed proteins in lung adenocarcinoma (LUAD), we 

employed OPPTI algorithm [9], a tool specifically designed 

for the detection of overexpressed proteins in global mass 

spectrometry (MS) proteomic datasets with varying 

quantitative distributions. This approach allows us to 

identify proteins that may exhibit efficacy upon inhibition 

and are not restricted by technical platform differences. We 

found 62 kinases with notable overexpression enrichment 

(permutation test by OPPTI for elevated markers, FDR < 

0.05), of which 35 are DGIdb-listed druggable genes, 

including PLAU (Protein overexpression rate [PRO] = 

27.5%, FDR = 2.3e-05), WNK2 (PRO = 27.4%, FDR = 3.2e-

05), BMX (PRO = 26.2%, FDR = 8.5e-05), and CKM (PRO 

= 24.8%, FDR = 0.00021) (Figure 2a, 2b). We also identified 
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Figure 2. Overexpressed kinases in human LUAD tumors. (a) Druggable kinases exhibiting significant overexpression in 

LUAD cohort, detected by OPPTI. (b)  Kinase overexpression at the sample level for the markers indicated in panel a, showing 

the observed expressions’ (y-axis) deviation from their expected background values (x-axis), with the threshold value of 

overexpression not depicted 

significant overexpression of 1,714 non-kinase proteins 

(OPPTI permutation test, FDR < 0.05), of which 379 are 

DGIdb-listed druggable genes, offering potential therapeutic 

targets in lung adenocarcinoma (LUAD), including CRP 

(PRO = 34.9%, FDR = < 1e-100), MMP12 (PRO = 34.9%, 

FDR = < 1e-100), MPO (PRO = 25.7%, FDR = 1e-4), and 

FCGR3B (PRO = 25.3%, FDR = 2e-4) (Figure S1a, S1b). 

To enhance the confidence in identifying therapeutic 

targets based on expression, we compared differentially 

expressed proteins (DEPs) with overexpressed markers. 313 

kinases were identified from DGIdb druggable genes, with 

100 exhibiting elevated levels in both protein overexpression 

and differential expression (Table S1). Of these, 9 kinases 

demonstrated both notable differential expression (as 

assessed by the limma test with empirical Bayes moderation 

of t-statistics [13], FC ≥ 1, and FDR < 0.05) and significant 

overexpression (determined by the OPPTI permutation test 

with FDR < 0.05), including PLAU (FC = 3.5; PRO = 

27.5%), MET (FC = 2.2; PRO = 29.4%), WNK2 (FC = 2.6; 

PRO = 27.4%), and STK17A (FC = 3.5; PRO = 25.7%). 

(Figure 3). The RAS pathway, represented by MET, ERBB2 

and EGFR kinases, displayed the highest levels of 

dysregulation, while other prominent kinases included 

CHEK2 from the TP53 pathway (FC = 2.9; PRO = 17.4%) 

and STK3 from the HIPPO pathway (FC = 1; PRO = 18.3%).  

Within the non-kinase proteins, we identified 1512 

druggable proteins (DGIdb) quantified in this cohort, with 

570 of them exhibiting elevated levels in both protein 

overexpression and differential expression (Figure S2) 

(Table S2). Notably, 122 (non-kinase) proteins were 

significantly differentially-expressed (FC ≥ 1, FDR < 0.05) 

and overexpressed (FDR < 0.05), including THBS2 (FC = 

6.6; PRO = 33%), CRABP2 (FC = 5.8; PRO = 41.3%), and 

COL11A1 (FC = 4.4; PRO = 33.3%). CRABP2 has been 

identified as a promising target because its inhibition not 

only reduces metastasis and invasion in lung cancer but also 

enhances the effectiveness of chemotherapy [14]. 

Furthermore, several targets we identified through both 

differential expression (DEP) and overexpression (OPPTI) 

approaches have approved corresponding inhibitor drugs, 

including ERBB2 kinase (FC = 2.5; PRO = 16.5%) (Afatinib 

[15]) and VEGF-A protein (FC = 3.3; PRO = 26.6%) 

(Bevacizumab/Endostatin [16]). The effectiveness of 

treatment strategies involving the inhibition of other targets 

we identified remains to be validated.  

3.4. Comparison between transcriptomic and protein-level 

aberrations 

Elevated protein levels can arise due to genomic changes 

like copy-number amplifications, but they can also occur 

through post-transcriptional mechanisms, making it 

undetectable at RNA level. To explore this possibility, we 

systematically compared the prevalence of protein 

overexpression in patients with the occurrence of 

transcriptomic abnormalities. To compare protein 

overexpression with mRNA overexpression, we applied 

OPPTI to the RNA-seq data obtained from the same LUAD 

samples (Methods). This analysis revealed 24 proteins, 

exhibiting substantial overexpression (>10%) at both the 

mRNA and protein levels, including SFRP4 (RNA = 22.6%; 

PRO = 29.4%), TP53 (RNA = 19.1%; PRO = 29.2%), 

CDKN2A (RNA = 10.4%; PRO = 29.7%), IRS2 (RNA = 

20.9%; PRO = 25.7%) (Figure 4a) (Table S3). 

Furthermore, we identified 11 proteins that exhibited 

substantial up-regulation (≥10%) and had overexpression 

rates more than double those of their transcriptomic changes, 

including INPP4B (RNA = 13%; PRO = 33%) and THBS2 

(RNA = 7%; PRO = 33%), and SFRP2 (RNA = 1.7%; PRO 

= 32%) (Figure 4b). 
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Figure 3. Potential LUAD kinase targets demonstrating protein overexpression and differential expression. Druggable kinases 

from DGIdb that exhibited substantially higher expression in tumors compared to normal tissues, as well as protein 

overexpression in the LUAD cohort 

 

 

Figure 4.  (a) Proportions of LUAD cases exhibiting protein and mRNA overexpression for genes involved in oncogenic 

signaling pathways. (b) Proteins from panel (a) that demonstrate significant enrichment for protein overexpression (FDR < 

0.05) generally exhibit lower proportions of mRNA alterations 

 

SFRP2 is a promising target for lung cancer because its 

overexpression inhibits the proliferation and metastasis of 

non-small cell lung cancer (NSCLC) cells by activating 

mitochondrial fission through the WNT signaling pathway, 

leading to reduced cell survival and increased apoptosis 

[17,18]. INPP4B (inositol polyphosphate 4-phosphatase type 

B) is also a potential therapeutic marker playing a dual role 

in both preventing tumor development by maintaining 

genome stability and inhibiting the PI3K-Akt-mTOR 

signaling pathway [19], and THBS2 is another prognostic 

marker in non-small cell lung cancer [20]. These findings 

underscore the limited presence of targets showing 

transcriptomic alterations in LUAD and illustrate that a 

proteomic approach could uniquely identify many 

overexpressed targets that show significant alterations at the 

protein level but are not easily detected at the mRNA level.  

4. Conclusions 

In this study, we conducted a comprehensive 

proteogenomic investigation of lung adenocarcinoma 

(LUAD) utilizing mass spectrometry (MS) data from 109 

primary LUAD tumors and 102 corresponding normal 

samples. Our objective was to identify potential therapeutic 

targets that might not be evident through transcriptomic 

analyses alone (Figure 1). We highlighted multiple proteins 

with differential expression between tumor and normal 

tissues (Figure 1), including several that exhibited significant 

overexpression in tumors, such as ERBB2, EGFR, PDK1, 

PLAU, CRABP2 (Figure 2, 3, S2). Integration of mRNA and 

protein expressions allowed us to pinpoint numerous 
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proteins in key signaling pathways with no corresponding 

alterations at the transcriptomic level, such as INPP4B, 

THBS2, SFRP2 (Figure 4). This array of proteogenomic 

analyses has uncovered a list of important targets in LUAD 

(Table S1, S2, S3). 

Among the differentially expressed proteins, we 

identified several kinases and non-kinase proteins involved 

in various oncogenic signaling pathways that exhibit 

significant up-regulation in LUAD tumors, including MET 

and EGFR kinases, which are already established targets for 

non-small-cell lung cancer [21]. Numerous proteins with 

significant overexpression did not exhibit corresponding 

changes at the mRNA level (ex. INPP4B), suggesting that 

post-transcriptional mechanisms, such as protein 

stabilization or altered protein degradation, may contribute 

to the observed protein-level abnormalities. Thus, 

integrating proteomics and transcriptomics data could be 

critical for understanding tumor biology and developing 

effective therapies, such as INPP4B protein [19]. 

Additionally, we discovered several kinases and non-kinase 

proteins with notable overexpression that are not currently 

targeted by existing therapies, suggesting opportunities for 

developing new drugs or repurposing existing ones to 

address these novel protein markers. For example, functional 

evidence highlights PLAU as a promising target in lung 

squamous cell carcinoma, given its crucial role in metastasis, 

and suggests its potential for early diagnosis and therapeutic 

intervention to inhibit disease progression [22]. PDK1 is 

another promising target because its upregulation in NSCLC 

promotes tumor growth and metastasis, making it a potential 

prognostic marker and therapeutic target for NSCLC 

treatment [23]. We also identified WNK2 overexpression as 

an important biomarker for combination therapy in lung 

cancer, as its suppression by CBX8 promotes invasion and 

migration, suggesting that restoring WNK2 activity may 

inhibit these processes and potentially limit metastasis. 

Nonetheless, the efficacy of such approaches will need to be 

validated through preclinical and clinical studies to establish 

their therapeutic potential. 

In summary, our study offers an in-depth analysis of the 

proteogenomic landscape in LUAD, revealing numerous 

potential therapeutic targets that enhance the insights gained 

from existing genomic and transcriptomic data. By 

concentrating on protein-level alterations, we have identified 

targets that might be overlooked by conventional methods, 

setting the stage for future research into innovative 

therapeutic strategies. Subsequent studies should focus on 

validating the therapeutic potential of these identified targets 

and investigating their roles in LUAD pathogenesis. We plan 

to integrate in vitro screenings of anticancer compounds on 

human LUAD cell lines (or employ other functional data, 

e.g., CCLE [24]), and examine the relationship between 

targeted protein levels and the survival of cells following 

treatment, enabling the identification of "expression-driven" 

dependencies [25]. Additionally, integrating proteomic data 

with other omics approaches, such as metabolomics and 

epigenomics, could provide further insights into the complex 

molecular mechanisms underlying LUAD and lead to more 

effective and personalized treatment options. 

Data and software availability 

Data for LUAD cohort [10] can be found on The National 

Cancer Institute’s Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) resources: 

https://proteomic.datacommons.cancer.gov/pdc/study/PDC

000153, and https://pdc.cancer.gov/pdc/. 

The marker overexpression tool OPPTI can be accessed 

via https://github.com/Huang-lab/oppti. The analyses 

performed were scripted in R programming language 

(v3.6.2). 
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Supplementary Tables  

Table S1. DGIdb druggable (kinase) proteins exhibiting elevated levels in both protein overexpression and differential 

expression 

https://www.columbia.edu/~ae2321/workspace/LUAD/TableS1.xlsx 

Table S2. DGIdb druggable (non-kinase) proteins quantified in this cohort, with 570 demonstrating elevated levels in both 

protein overexpression and differential expression 

https://www.columbia.edu/~ae2321/workspace/LUAD/TableS2.xlsx 

Table S3. Proteins exhibiting substantial overexpression (>10%) at either mRNA or protein levels (or both levels) 

https://www.columbia.edu/~ae2321/workspace/LUAD/TableS3.xlsx 

Supplementary Figures 

 

 

Figure S1. Non-kinase proteins overexpressed in human LUAD tumors. (a) The top ten druggable non-

kinase proteins with the most pronounced overexpression in the LUAD tumors. (b) Marker 

overexpressions listed in panel a displayed at sample level. 

 

 

Figure S2. Non-kinase proteins that can be targeted by drugs, along with their associated compounds, 

demonstrated significantly elevated expression in tumor samples compared to normal tissues and 

exhibited protein overexpression within the LUAD cohort. 

 

https://www.columbia.edu/~ae2321/workspace/LUAD/TableS1.xlsx
https://www.columbia.edu/~ae2321/workspace/LUAD/TableS2.xlsx
https://www.columbia.edu/~ae2321/workspace/LUAD/TableS3.xlsx
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