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Solution of a Nonlinear Schrodinger Equation with Galerkin’s
Method

Nigar YILDIRIM AKSOY'

ABSTRACT: In this paper, we consider an initial boundary value problem for a two-dimensional nonlinear
Schrédinger equation. We prove by using Galerkin’s method that the solution of the initial boundary value problem
exists and it has a unique solution. Also, we get an estimation for the solution of the initial boundary value problem.

Keywords: Galerkin method, initial boundary value problem, Schrodinger equation

Igdir Universitesi Fen Bilimleri Enstitiisii Dergisi

Igdir University Journal of the Institute of Science and Technology

Lineer Olmayan bir Schrodinger Denkleminin Galerkin
Metoduyla Coziimii
OZET: Bu galismada iki boyutlu lineer olmayan bir Schrédinger denklemi igin bir baslangig simir deger problemi

g0z oniine aliriz. Galerkin metodunu kullanarak baslangi¢ sinir deger probleminin ¢dziimiiniin var ve tek oldugunu
ispatlariz. Ayrica, baslangi¢ sinir deger probleminin ¢6ziimi i¢in bir degerlendirme elde ederiz.
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INTRODUCTION

The nonlinear Schrodinger equation is a nonlinear
mathematical equation that describes the evolution over
time of a physical system. It arises in nonlinear optics
(Kelley, 1965; Talanov, 1965), the evolution of water
waves (Hashimoto and Ono, 1972), hydromagnetic
and plasma waves (Schimizu and Ichikawa, 1972),
nonlinear instability problems (Stewartson and Stuart,
1971).

In the present paper, we study a nonlinear
Schrodinger equation that usually arises in the
dispersion of light beams (waves) in a nonlinear
medium. We investigate the existence and uniqueness
of the solutions of nonlinear Schrédinger equation. For
purpose, we use Galerkin’s method and constitute the
approximate solutions of the initial boundary value
problem. By means of the approximate solutions, we
prove that the solution of initial the boundary value

problem exists and it has a unique solution.

The nonlinear Schrodinger equation and boundary
value problems for
previously studied in (Tsutsumi, 1991; Bu, 1994;

Schrodinger equation  were

Iskenderov and Yagubov, 2007; Mahmudov, 2007;
Kaikina, 2013; Yildirim Aksoy et al., 2016). The
Schrodinger equation considered in the literature is
usually one-dimensional. But, in the paper (Iskenderov
and Yagubov, 2007), an initial boundary value problem
for a multi-dimensional (except for two-dimensional)

Schrodinger equation is examined.

MATERIAL AND METHODS

The basic of Galerkin’s Method is based on finding
an approximate solution in a finite-dimensional space
spanned by a set of basis functions. To obtain the
approximate solution, we project the partial differential
equation onto a finite-dimensional subspace. This
gives a system of ordinary differential equations for
the approximate solutions, which has a solution with
standart ordinary differential equations theory. Each
approximate solution satisfies an estimation called as a
priori estimation for solutions of the partial differential
equation. These estimations allow to obtain a solution
of the partial differential equation.

We formulate the initial boundary value problem

Strauss and Bu, 2001; Bu et al., 2005; Holmer, 2005;  as follows:
Oy 2
15+aOAt//—a(x)t//—v(x)t//+a1 | w=rxn, (x,neQ (1)
P (X, O) = ([()C), xeD (2)
w (E:t)|s =09 (Eat)ES’ (3)

where, D C R’ isabounded domain, " is the sufficiently smooth boundary of domain D, T, a, > 0 are given

number, X = (x,,X,)ED is an arbitrary point, Q =D X(O,T),Qt= Dx(O,l‘),Os t<T,S=T (O,T)isthe

lateral surface of cylinder Q, A is the Laplace operator such that Ay = >+

oy vy

o ov)

and A =( ,
ox, 0x,

ox;  0x;

v indicates the unit outward normal vector to I, a, is a complex number such that
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, 4)

Ima, >0, Req <0, Ima=2[Req,

a(x) and v(x) are the measurable functions satisfying the conditions

0<a(x)<uy,, for almost all xe D, u,=const.>0 (5)
v(x) e L, (D), |v(x)| <b, for almost all x € D, b, =const.>0, , (6)
respectively.

0
Definition 1: The function y(x,t) =w(x,t;v) in the space B, = o ([O,T] ,sz (D)j NC' ([O,T] ,Lz(D))
is called as a generalized solution of the problem (1)-(3), if it satisfies the equation (1) for almost all (é‘ ,t) eSS,

and t € [O,T] , the condition (2) for almost all x € D and the condition (3) for almost all (f,t) e .S, where

the space B, is a Banach space defined as in (Yildirim Aksoy et al., 2016).

RESULTS AND DISCUSSION

In this section, under given conditions, we prove the following theorem which shows the existence and

uniqueness of the solutions of the problem (1)-(3).
Theorem 1: Assume that a,, a(x), v(x) satisfy the conditions (4), (5), (6), respectively and

0
pe W22 (D), f e Wzo’1 (Q) are given functions. Then, the problem (1)-(3) has a unique solution ¥ € B, satisfying

the estimation

2

2 al//(7I) < 2 2 6
”W("t) VlZZ(D) +H ot L, (D) - (”(0 W?ZZ(D) +||f W@ +||(0 W(’)zl(D)
+lo 602 +|r Sv?"(ﬂ) *[o lfl j "
Wy (D) W, (D)

where ¢, > 0 is a constant independent from ¢.

0 0
Here, W2l (D), Wzl (D), WZZ(D), WZZ(D) and WZO’l (€2) are the Sobolev spaces and these spaces are defined
in (Ladyzhenskaya, 1985) widely.

0
Proof: As a fundamental system of functions in the space sz (D) according to Galerkin’s method, the

eigenfunctions u, =u,(x), k=1,2,...corresponding to the eigenvalues A, of the following spectral problem
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are taken:

Lu, (x) =—a, d Zkgx) +a(xX)u, (x)=Au,(x), xeD
x

u, (0| =0, k=12,..
As known, the eigenvalues 4, are real and nonnegative. Also, the eigenfunctions u, =u,(x) are real and

0 0
satisfy the ortogonality condition in the spaces L,(D), W, (D), W, (D) . Assume that the eigenfunctions

u, =u,(x), k=12,... are an-orthonormal basis in the space L,(D) and satisfy the inequality

iz ) < s k=12,...

where d, >0 for k =1,2,... are constants.

The approximate solutions of the problem (1)-(3) with Galerkin’s method are investigated in the form:

y (x.0) =D CY (D, (x)

where the coefficients C/iv ()= (‘// N (.0),u, ) L(D) = (l//N SUy ) are solutions of Cauchy problem:

N
[Mj =(a, V" 0.V, )
L(D)

N
Ot L2<D)+(al// ("t)’u")la(D)Jr ®
2
+(VWN(.,I),uk )LZ(D) —(al ‘,/,N(,,t)‘ w (0., )MD) +(f.u, )zqu k=1,N
C'O=(v"C0um),  =(pu), , =0, k=LN. ©)

Since the coefficients of the system of first- )
[0, T]of the problem (8)-(9), we prove the following

order nonlinear ordinary differential equations (8) is . i
lemma, which show the uniformly boundedness on

continuous, as known from (Pontryagin, 1962), the
problem (8)-(9) has locally at least one solution on [0,T7] of all possible solutions of the problem (8)-(9).

[0,7]. To show the existence of global solution on Lemma 1: The solution of Cauchy problem (8)-(9)
satisfies the estimation
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2

N N 2
Slecof S ooy, ] -
k=1 k=1 L, (D) (10)

sai(lofy, T lly, ol Wl Mol |
2 2 2 2

for any te[O,T] and N =1,2,..., where ¢, > 0 is a constant independent from N and ¢.

Proof: If we multiply the k-th equation in system (8) by C ,ﬁv (¢) and sum the obtained equalities on k from 1

to NV, and later integrate over the region Q, , we get

J[ 2 v -l ol | Janae [ riasts a
Q, &

Subtracting the complex conjugate of (11) from itself and using the inequality

”WN("O)”;D) - é|€:’ (0)|2 = §|C’fv (0)|2 - ”g‘)”;m (12)
we obtain
b o, +2mma [ axde <[ O, 2|l xae
Q,

Q/

<lol} ., +2 Il sz
Q

and then by Young’s inequality it is written that

HV/N ("I)HZ(D) +2Ima, HV/N

t

4 2

L(Q) = ”(DHZ(M +"f”i(9> +J‘HWN(.’T)HLQ(D)dT '
0

Thus, in inequality above, using Gronwall’s lemma, we get

2 4

H'//N(-J) L,(n) dr=c, (”¢||iz<0> +”f”i<9)) (%

Lo +2ImaJHt/"(.,r)
0

forany ! € [O,T]~.
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As similar to obtaining the equality (11), if we take the derivative of the system (8) in variable ¢ and multiply

dC,' (1)

the obtained system with ~
t

, we get

oy o o, oy [ oy [
—(V
.[ ( o ot az( ")) e ot V)
ra L Uw\ ) ]dd . ?GW dxd.
Let’s  subtract the complex conjugate of (14) from  itself.  Thus,

oy
ot

0 0 2 oy" 0 2 _y\ow"
dxd1+jllma —( N N)—+—( N N)— d
.[ [ar ] 1[& b o ot Ak a [

—N N
—IReal {%(‘V/Nr V/N)%—g(‘l//lvr WN)%}JXCZT
Q

—N
+2iIIm aiaL dxdr.
s ot ot

It is clear that

0 A oyt
alb T )l o ) o=l

o™
ot

R

since

oy"

—N
g(‘WN‘ZWN)aLzz‘WNr v

ot ot

L) (%] .

Using above two equalities in equation (15), we obtain

230
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N 2 2 X 5
i) +21ma1J. W dvdr+Ima, (g\wfj dxdt <
2 S 5 t 3 ot
e N2 N N 2
<2[Rea [y %‘ ae-2 |2 ]2 dxdﬂ‘aw (,0)
o o Q arl] or ot L(D)

1

Here, if we take into account the condition (4) and apply Young’s inequality, we get

2
avf < ol o Jevieol e
L,(D) ot L,(D) ot L (@)
t N 2
+I ov (1) dr
0 ot L, (D)

Jor any t €[0.T'], where G =2(Ima, —|[Req,|) 2 2[Rea,|>0.

v G ) in (16), let’s write the system (8) in the form:

L,(D)

To evaluate the term H

. 8!//N(.,t) . N N
Z(T,uk LJ(D)——(aOAl// ,uk)lq(D)+(aw (.,t),uk)LZ(D)

+(v(//N(,,t),uk )LQ(D) —(al ‘,//N(,,t)‘z l//N("t)’uk)

L, (D)

=N
Let’s multiply the k -th equation by @
t

equality (11) we obtain

oy (x,0)[
ot

i

D

dx = j[—aOA " (x,0)+a(x)p" (x,0) +v(x)p™ (x,0)

D

2 o™ (x,0
+a, |y 0y (x,0)+ f(x,O)}%dx
and by Young’s inequality and the condition (6)

Cilt/ Volume: 7, Say1/ Issue: 2,2017
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2

2Ol g, af bl ol
L,(D) P
walaf [y Of de+af|f o0 dx
| J (18)

< 4HL‘/’N(-’0)HZ<D> +4b02 Hl//N("O)HZ(m
Si +4|a1|2 H’//N("O) ‘1(1)) +4]760) |2(D)'
mce
HWN(-J) Z(D) <F (HVWN("I) Z(D) HWN("t) Z(D)) for any ¢ E[O’T] "

according to the known inequality in (Ladyzhenskaya, 1985 p.34), where p= 3% >0 is a constant, we write
the inequality

6 4 2 6
0

.0 J<eilv .0

<p([ve .0

In inequality (18), if we use the estimation (13), the inequalities (20),

" (.0)

6
‘ ‘ ‘ ‘ sc

519l o 20
Ls(D) Ly(D) L,(D) Wi (D) ” Wl (D) (20)

| .0y

2 2
L(D) =G ”(p”vggw) ’

I/ .0y

we obtain

i(D) <c ||f||v2V£_l(Q) for anyte[O,T], 21

2

oy (.,0)
ot

<aloll, 1l o, | @
L (D) (D) Wi (D)

where ¢; >0, j = 3,8 are constants. Thus, if we use the inequality (22) in (16)

2

HaWN(-,l‘)

N 2
v dxdr
ot ot

+aﬂl//N‘2 d
QI
’ ‘aw(.,r) ’

< Cy [“(0”‘}22@) + “f”li/z‘”(Q) + ||¢||f321(1))j+-[ ot
0

L, (D)
(23)

dr

L, (D)
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and then apply Gronwall’s lemma, we get

8(//]\’(.,t)2 < ( 2 2 6 J
H ot Lz(D)_CIO ”(p”vvozzw)+||f||Wz""(Q)+||¢||u(;;<D> @4)

for any # €[0,T] .. If we apply the estimation (24) to (23), we get

2 2
oy (1) W 2 2 6
HT wa [l (o axtrseal ol +lipa ol 25)
LD) D) )
for any #[][0,77], where ¢, ¢,,,c;, > 0 are the constants.
dc; (1)

To evaluate the term V l,VN , let’s multiply the k-th equation in the system (8) by , sum the obtained

equalities on k from 1 to N and integrate over the region € . Thus, summing the complex conjugate of obtained
equality with itself, we get

aojg‘v WNF dxdrt +J.§(a(x)‘w1v‘2)dxdr = —j%(v(x)‘l//vr)dxdr

Q, Q, Q

t

—N N — N
+j (al [ aaLml [ %jdxdt ) I Re( 7 62’ ]dxdr.
: t t 5 t

1

Since Rea, <0 and

N
L At (A R (A

we obtain the inequality
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R
L, (D) MH ' LAD)SaO V' la(D)+ﬂ0 HWN("O)HZ@
+MH GO, I|v(x)|\wN(x,t)\2 dx + j ol (.0 dx+ j £ (x.0)[ dx
D D D
o
J; I * dvt J' Cderpt] o+ i,
+2Ima, (‘g/t dxdt + u, LD

from the last equality. Here, using the Cauchy-Schwarz inequality, the inequalities (6), (21),

.12
b I,

and the estimation (13), we obtain

R
alvw ol , B rnf Bl copf
(26)
(Il 1l 2ma ﬂvf\ "

In (26), if we use the inequality

o,

6 2
L, (D) 0 D) TCis ||¢||l2(D)

from the known inequality in (Ladyzhenskaya, 1985 p.34), we get

<2Imagq, dxdr

Ly(D)

Realyy .o

a,|

l,//
Loy ot

TCis (“(/)”332,(1)) +||f”§Vz°'l(Q) +”(p”j3;<mj ’

where the constant ¢; >0, j =12 []16 are indepentent from N and ¢. Here, since
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N2
ZIma1 l// a’xdr<1ma1 dT+Ima1 v dxdr
ot ot
2
2 2 oy
=Gy (”40“1413) + ”f“um ) + Imal_[ o ‘ dxdt
Q)‘
from the estimation (13), we have from the above inequality
2
[Rea| vieloy”
o HVI’I/ G )HLZ(D) HV/ G ) L(D) ~ <Img, ot dxds
27)

(quu;m+nfn;;,,@+n«)n:;;(m)-

for any t €[0,T], where ¢4 > 0 is independent from N and ¢. Since a>0and Ima, >0, ysing (25)
in (27), we get

e

aOHVl’//( )H (D) | a1|H ( )HL(D) 19( ‘?VZO"(Q)+||¢)||‘6;,'21(DJ (28)

for any 7 €[0,T],, where ¢, >0 is a constant.

Finally, to evaluate the derivation Aw " , | multiplying the k-th equation in the system (17) by 4, C Y, we

have

oy - _ 2 _ 2 _ _
ﬂl Zt LV =Ly | —vow " " + a |y | V/NL'//N—J‘D//N}JX=O
D

and thus it is written that

Cilt/ Volume: 7, Say1/ Issue: 2, 2017 235



Nigar YILDIRIM AKSOY

o .ol
L ST it ol A o

ot

L, (D)

If we use the inequality

HLV/ (s )H%(D) H 4 e )qu(D)_Ha( )‘// G )H%(D) and the condition (5), the estimations (13),
(24) in the (27), we get

2 6 2
o = ( y Wheo Vs;@,,)}*“'“l . 30
forany 7 €[0,T']. For the term Hl//N(-, L) in the (30), from (19), it is written that
N 6
<
Hl// (.,t)Hlﬁ(D) S° (Hl// (., )W2 )) for any 7 €[0,T]
which implies that
2 6 6 18
L(D) 21( Jr”f Wi (@) 2 D)+||f Wi (@) Oz'(D)j (31)

from the estimations (13) and (28). If we apply the inequality (31) to (30), we obtain

e

T j (32)
2 W, (D)

HA‘// (. t)qu(m - 622( 3Vz‘”@ +“¢“:32‘<D) +”(p”f§22(0> +”f

Thus, combining the estimations (13), (24), (28) and (32), we can easily written that

Jw ..

2
oy (.,t) 2 2

+ <c,, o
ot L,D) W2 (D) 2

0
W, (D)
18
@Dl o
W, (D)

236 Igdir Uni. Fen Bilimleri Enst. Der. / Igdur Univ. J. Inst. Sci. & Tech.
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for any ¢ €[0,7], where c; > 07 =20,23 are constants. Since

2 2

N 2 oy (.,t)
<[ ol +H—a ,

N N N
CN(I)Z ‘dck (1)
2l Ol 2

if we take ¢, = ¢,; in (33), it seem that the functions ¥ Y (x,) satisfy the estimation (10), that is, Cauchy
problem (8)-(9) has one global solution on [0,T].

Let’s define a family of functions £, ,(¢) = (l/lN(.,t),uk )Lq(D) , k,N=1,2,... by means of the functions

dt, (1)
dt

w" (X,0). . From (10), it follows that £, (¢) and are uniformly bounded on [0,7]. Also, as similar

dr, (1)
to the paper (Yildirim Aksoy et al., 2016), the equicontinuity of the functions £, ,(z) and d p for fixed k

and N=k,, k,N=1,2,... isshownon [0,7].

In this way, from Ascoli-Arzela’s theorem (Hsieh and Sibuya, 1999), we can extract the subsequences

dar, (1) de, ()
{gzv,,, & (f)}‘ ) {%} , m=1,2,...  from sequences {EN,k (t)} ) {% >, respectively, such that

on [0,7].

( (t) uniformly g (t) dgNm k (t) uniformly N dgk (t)
N,, k k ’ dl

dt

Now, let’s define the function ¥ (x,t)szk(t)uk(x) using the function /,(¢f) which implies that
k=1

oy (x,1)
are

oy (x,t) ~odl (1) {V,Nm (x t)} and {
—_— —u x . . b b
or kE_l d LX) Ttis easily shown that the subsequences ot

Oy (x,t 0
uniformly with respect to ¢/ weakly converge to the functions ¥(x,?) and % in W, (D) and L,(D),

respectively, i.e., limit relations

0 Ny
{I//Nm} weakly l//(x,t) in MZ(D), {al/(;t } weakly )a‘//étx9t) lnl?(D) (34)

is written. Thus, since {‘//N'" } €B,.yeC’ ([O’T]’sz (D))mC' ([0.71,.L,(D)) - .
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As similar to the paper (Yildirim Aksoy et al., 2016), it is shown that W(X,1) satisfies the equation (1)
T
for almost all xe D and  any t € [0’ ] ’, the condition (2) Jor almost all x € D ap( the condition (3)

for almost all (f,t) €S Thus, w(x,t)eB,.

If we take the lower limit of inequality (10) for N = N, and 7 —> % by by using the relations (34), we get

that function ¥(*.1) satisfies the estimation (7.

Finally, let’s prove the uniqueness of the solution of the problem (1)-(3) in B, . For purpose, let’s take two different

solutions of the problem (1)-(3) such as w(x.1) and ¢(x,1) in B, . Then, the function @(x,1) =y (x,1) —P(x,1)
holds the following boundary value problem:

iz—(: +a,Ao—a(x)o—v(x)o+aq, (|l//|2 + |¢|2)a)+ aygn =0, (x,r)eQ 35)

(x,0)=0, xeD, a(&.1)|, =0, (£.1)€S. (36)

To show the uniqueness of the solution, let’s multiply the equation (35) with W(x,#) and integrate over [],.

Thus, we obtain

J|1E20-a vl ~atwlof ~vcoof +a(jf +1)of +ape@? iz ~o. @)

‘t

Subtracting the complex conjugate of (37) from itself and using the condition (36), we obtain

[oC0l; o, +21ma, [ (jwf +1g[" ) @f dxdr =2 [ 1m(app(@)* Jixar

Qr t

which is equivalent to

[0 ) +21ma, [ (juf +[f )il dxdr <2|a [ |vlgl|ef dxar
Q

Q,

t t

<lay| [ (jwf +Iof )| axaz.
Q,

238 Igdir Uni. Fen Bilimleri Enst. Der. / Igdur Univ. J. Inst. Sci. & Tech.
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>

Since |@| <|Req|+|Imq|=|Req|+Ima, and Ima, >2|Rea itis written that |a,| < %Imal.. Thus

1
|0l +5 1ma, | (Wl +1f )| of” dvar <0
Q

T

for any ¢ €[0,T’] >, which implies that ||a)(,t)|| =0 for any r €[0,T1] .. Hence,

2
L(D)

v (x,t) =¢(x,t) for any r €[0,7°], almost all x € D

i.e., the problem (1)-(3) has a unique solution in B, .

CONCLUSION

As a result, we obtained that the solution of the
considered initial boundary value problem exists

and it has a unique solution. Also, we shown that the
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