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Öz

Bu makalede, kesit analizinden elde edilen yerdeğiştirme modları aracılığıyla ince cidarlı kirişlerin 3 boyutlu doğrusal statik analizini 
gerçekleştiren etkin bir sonlu elemanlar (SE) formülasyonu sunulmaktadır. Bu formülasyon, homojen izotropik ve/veya ince tabakalı 
kompozit malzemelerden yapılmış, gelişigüzel şekilli kesitlerin analizi için uygundur. Önerilen formülasyonda, kiriş elemanında yüksek 
dereceli etkiler oluşturan, düzensiz burulma ve kesme/eğilme kaynaklı tüm çarpılma ve şekil bozulma etkilerini dikkate alınmaktadır. 
Benzer yaklaşımlardan farklı olarak, bu yöntemde rijit modların belirlenmesi ya da bütün mod matrisinin kullanılmasına gerek 
bulunmamaktadır. İkinci dereceden özdeğer problemi çözümünden elde edilen kesit yer değiştirme modlarının genellikle karmaşık sayı 
olması rağmen, bu formülasyonda karmaşık sayılarla hesaplama yapılmasına da gerek yoktur. Birkaç durum için karşılaştırmalı olarak 
sunulan sayısal sonuçlar, sunulan kiriş elemanı formülasyonunun katı ve kabuk formülasyonlarına kıyasla doğruluğunu ve hesaplama 
verimliliğini göstermektedir.

Anahtar Kelimeler: İnce cidarlı kirişler, katmanlı kompozit kirişler, çarpılma etkileri, kesitsel bozulma, en kesit yerdeğiştirme modları.

Abstract

This paper presents an efficient finite element (FE) formulation for the 3D linear static analysis of thin-walled beams through 
displacement modes obtained from cross-sectional analysis. The formulation is suitable for the analysis of cross-sections made of 
homogeneous isotropic and/or laminated composite materials with arbitrary shapes. The FE formulation concerns all the warping and 
the distortional effects arise from the non-uniform torsion and the shear/bending, which leads to a higher order beam element. Unlike 
similar approaches, the method does not require the determination of rigid modes and the utilization of a full modal matrix. Although 
the cross-section displacement modes obtained from the solution of a quadratic eigenvalue problem are generally complex, the 
formulation itself does not have to deal with calculations involving complex numbers. The numerical results presented comparatively 
for several cases, demonstrate the accuracy and the computational efficiency of the presented beam element formulation compared to 
solid and shell formulations.

Keywords: Cross-section displacement modes, cross-section distortion, laminated composite beams, thin-walled beams, warping 
effects.
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1. Introduction
As it is well known, the role of beam elements is crucial 
in the analysis of structural systems encountered in many 
engineering fields such as civil, mechanical and aerospace 
engineering. Due to their computational efficiency, beam 
elements are commonly used in the design and analysis of 
complex structural and mechanical systems. Recently, with 
the developments of advanced and composite materials, the 
applications of high strength thin-walled elements in the 
engineering fields have substantially increased. However, 
the distinctive behavior of thin-walled sections due to the 
warping and the distortional effects does not enable the 
application of the classical Bernoulli and the Timoshenko 
beam theories in the deformation analysis. Hence, signifi-
cant effort has been spent to improve the accuracy and the 
efficiency of the 1D beam elements to accurately predict the 
3D stress and the deformation fields.

Since the Vlasov’s theory (Vlasov 1961), which considers the 
additional stresses due to warping in the beam element for-
mulation, many researches focused on including the warp-
ing effects in finite element (FE) formulations (Giavotto et 
al. 1983, Bauld and Tzeng 1984, Borri and Merlini 1986). 
However, the distortion of the cross-section was ignored 
in many formulations. With the evolution of the finite ele-
ment method, displacement-based finite element formula-
tions which takes into account the lateral-torsional stabili-
ty problems of the thin-walled beams were formulated by 
Krajcinovic (1969), Barsoum and Gallagher (1970), Bažant 
and El Nimeri (1973). Erkmen and Mohareb (2006) devel-
oped a theory for the torsional analysis of open thin-walled 
beams. A shear-locking-free beam element for the analy-
sis of coupled flexural and torsional effects of thin-walled 
closed sections beams was proposed by Wang et al. (2014). 
Stoykov et al. (2016) derived a 3D beam model based on 
Timoshenko theory considering that the cross-section ro-
tates as a rigid body, yet, deforms longitudinally. Pavazza et 
al. (2022) introduced a novel theory for the torsion of bars 
based on Vlasov’s theory and Timoshenko’s beam theory for 
beams with open thin-walled sections. Although warping 
displacements are much smaller than 1D beam deforma-
tions, it is crucial to model warping accurately. This is be-
cause the stress field depends on the derivatives of warping, 
which can be large (Hodges 2006). Addessi et al. (2021) 
proposed three FE formulations, based on the enriched ki-
nematics to account for the warpings and coupling between 
axial/bending and shear/torsion. A numerical procedure was 
followed to numerically calculate the warping functions. 

Recently, Gabbianelli (2021) adopted a relatively new nu-
merical method called the applied element method to sim-
ulate warping effects in typical steel rack members. One of 
the first attempts at the inclusion of in-plane distortions of 
thin-walled sections was made by Jönsson (1999). The study 
shows the differences in the governing torsional and dis-
tortional parameters between the open and closed sections. 
Recently, generalized beam theory (Davies and Leach 1994, 
Bianco et al. 2018) and refined beam theories (Carrera et al. 
2011) have become popular since they enable all warping 
and distortional effects to be taken into consideration. These 
methods are basically based on finding warping modes by 
cross-sectional analysis. Vieira et al. (2014) presented a 
higher-order model for linear prismatic thin-walled beams, 
which includes out-of-plane and transversal section defor-
mations. The displacement field was approximated by glob-
ally defined basis functions over the cross-section, and the 
uncoupled displacement modes were found by solving a 
nonlinear eigenvalue problem. A novel cross-section mode 
determination procedure, which leads to the 3D beam dis-
placements mode was introduced by Hansen and Jönsson 
(2019a). Similarly, in Jönsson and Andreassen (2011) and 
Hansen and Jönsson (2019b), the walls of the beam sec-
tions were modeled by beam elements, and the nodal de-
grees of freedom were interpolated by standard beam shape 
functions. The calculated full complex displacement mode 
matrix was directly used in the FE formulation. However, 
their formulation requires the determination of rigid dis-
placement modes, which is a rather complicated procedure. 
Ferradi and Cespedes (2014) used enriched kinematics to 
describe transversal deformations and warping by sectional 
analysis discretized by 1D and triangular elements. Jang et 
al. (2012) presented a study that investigates the static and 
eigenvalue analysis of thin-walled straight beams consider-
ing warpings and distortional deformations in addition to 
the standard Timoshenko displacement field. A more recent 
3D finite element model with low computational cost for 
coupled bending and torsional-warping analysis of thin-
walled beams was introduced by Lezgy-Nazargah et al. 
(2021).   Liang et al. (2024) proposed a novel reduced-order 
method for geometrically nonlinear analysis of thin-walled 
structures with large deflections, developing mixed nonlin-
ear kinematics using co-rotational and updated von Kármán 
formulations.

Meanwhile, the development of advanced composite ma-
terials has paved the way for the use of high strength thin-
walled structural beams. Thus, many researchers developed 
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techniques to deal with the coupling deformations in addi-
tion to the warping and distortional effects in thin-walled 
laminated beams. The first attempts include the studies 
related to the application of shear deformable theories to 
account for the flexural-torsional response of thin-walled 
laminated composite beam analysis (Lee and Lee 2004, 
Lee 2005, Sheikh and Thomsen 2008, Vo and Lee 2008, 
Vo and Lee 2009, Vukasović et al. 2017). Afterwards, sev-
eral attempts have been made to develop techniques for the 
analysis of thin-walled beams with arbitrary cross by sep-
arating 3D problems into 2D and 1D problems. Hence, 
2D cross-section analyses have been used to obtain the 
cross-section stiffness matrix to be used in 1D beam ele-
ment formulations. Although this approach dates back to 
the paper of Berdichevskii (1979), variational asymptotic 
beam sectional analysis (VABS) proposed in Cesnik and 
Hodges (1997), has been paid a lot of attention. The recent 
updates of this technique were discussed in Yu et al. (2012). 
A multifield variational sectional analysis method was in-
troduced by Dhadwal and Jung (2019). They treated stresses 
and warping deformations as unknowns in their formula-
tions. By introducing an analytical function for both primary 
and secondary warping, a kinematically exact rod model for 
thin-walled open-section members was proposed by Kassab 
et al. (2003). Prokić (1994) conducted an analysis of thin-
walled beams with arbitrary open or closed cross-sections 
subjected to elasto-plastic deformations. The solution strate-
gy was based on the finite-element method and incremental 
techniques, incorporating a novel model for cross-sectional 
warping that considers shear deformation effects. In Prokić 
(1996a) expanded Prokić (1994) by introducing a more gen-
eral warping function, which improved upon the classical 
theory of thin-walled structures, where the cross-section is 
assumed to remain undeformed in its plane. The study uti-
lized the principle of virtual displacements to establish the 
equilibrium condition, and the stresses were directly calcu-
lated from the corresponding strains. Additionally, Prokić 
(1996b) provided further details on the implementation of 
the proposed method. A new model has been developed 
by Vojnić-Purčar et al. (2019) to describe the shear lag in 
laminated composite thin-walled beams with openings, 
where warping of open-closed cross-sections is defined by 
displacement parameters at selected nodes based on the 
warping functions introduced by Prokić (1996a and 1996b). 
The finite element method is used for the solution, with a 
linear stiffness matrix derived from the principle of virtual 
displacements, and stresses are calculated directly from the 
strains without relying on Vlasov’s assumption. Deo and 

Yu (2020) used the mechanics of the structure genome ap-
proach to develop an efficient beam cross-sectional model 
with anisotropic materials in the FE framework. Recently, 
the work of Giavotto et al. (1983) was extended by Kashefi 
et al. (2016) and Islam et al. (2021) to develop a method, 
in which the cross-section stiffness matrix is obtained first 
and then utilized in 1D FE beam element formulation for 
global response analysis. Although their formulation seems 
generic, the method was not verified against non-uniform 
torsion. Osman et al. (2024) developed a family of 13 de-
gree-of-freedom elements for analyzing the elastic buckling 
of thin-walled I-beams, incorporating the effects of web 
distortion. Shen (2024) modeled thin-walled beams using 
the absolute nodal coordinate formulation, capturing warp-
ing and distortion with Taylor-like polynomials. In this 
study, Linear Lagrange interpolation and cubic Hermite 
interpolation were used for the off-axis position vectors. 
Alongside the aforementioned methods, other approaches 
such as finite difference (Mottram 1992, Evseev and Moro-
zov 1997, Soltani and Asgarian 2018), finite strip (Van Erp 
and Menken 1990, Yanlin and Shaofan 1991, Ádány and 
Schafer 2014, Naderian and Ronagh 2015, Liu et al. 2023), 
boundary element (Palermo et al. 1992, Zhang et al. 2011, 
Dikaros and Sapountzakis 2014) are also utilized to solve 
thin-walled beams. 

This study presents a higher-order 3D beam FE formula-
tion for the analysis of thin-walled members with arbitrary 
cross-sections made of isotropic or laminated composite 
materials. The 3D beam analysis is divided into 2D sec-
tional analysis with quadrilateral elements and 1D beam 
FE analysis using linear or cubic interpolation functions. 
The section displacement modes are obtained by solving a 
quadratic eigenvalue problem and adopted as the warping 
and distortional displacement modes in the FE formula-
tion. Hence, the in-plane and the out-of-plane distortions 
of the cross-section are efficiently concerned. In addition to 
the section displacements resulting from the rigid transla-
tions and the rotations, the constants of the displacement 
modes are taken as nodal degrees of freedom in the beam 
element formulations.  Fortunately, only several numbers of 
modes were found to be enough for accurate predictions, 
which resulted in an efficient beam element. As distinct 
from its counterparts, the formulation does not require the 
full displacement mode matrix and does not have to deal 
with complex numbers resulting from the solution of the 
quadratic eigenvalue problem. Additionally, there is no need 
for complicated procedures to determine the fundamental 
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The cross-section is discretized in the FE sense, thus the 
distortional displacements can be interpolated over the 
cross-section using 2D quadrilateral elements in terms of 
shape functions and distortional displacements as

u Nd
q=   (3)

where N is the shape function matrix of the 2D elements 
and q q q q q q q q q qx x x

nd
y z y z

nd
y
nd

z
T1 1 1 2 2 3f= 6 @ consists of the nodal 

values of the distortional displacements in X, Y, Z directions 
(Figure 1). The size of q and N depends on the number of 
nodes nd in the FE discretization of cross-section.

The strain vector can be defined in terms of the displace-
ment derivatives with those concerning the in-plane coor-
dinates (x and y, the beam’s sectional coordinates) separated 
from those corresponding to the out-of-plane coordinate (z, 
the beam’s axial direction) as follows
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Substitution of Eqs. (1), (2) and (3) into Eq. (4) yields to

SZY Bq SNq ,zf = + +   (5)

where B Nxy2=  and Y  is the sectional strain vector which 
comprises six strain components (two shear strains, axial 
strain, two curvatures, and torsional strain) assuming no 
distortion 
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In order to constitute the strain-stress relationship, the 
3D linear elastic material matrix can be used for isotropic 
materials. However, the 3D orthotropic material matrix Q  
of a lamina, which includes the six independent constants 
, , , , , , ,,E E E G G vvG1 1 1 12 3 3 23 12 32  and v23  should be adopted for 

modes resulting from rigid body motions. The quadratic ei-
genvalue problem, which might be computationally expen-
sive in the case of dense section discretization, especially for 
laminated composite materials, is linearized and solved for 
the first few smallest eigenvalues. Although the formulation 
uses the 3D constitutive material matrix, a reduced material 
matrix with plane stress/strain assumption can easily be ad-
opted. Additionally, warping constraints can easily be intro-
duced by constraining the displacement mode constants at 
the boundaries, and the determination of any shear, torsion-
al and warping constants is not needed. A MATLAB code 
has been developed to implement the proposed FE model. 
The accuracy of the beam element derived from the present 
approach is verified by several numerical examples that exist 
in the literature.  

2. Kinematics of the Higher Order Beam

The assumption is that the beam-like composite structure 
has a prismatic, slender geometry and exhibits no sudden 
variations in its cross-sectional shape or material properties. 
Gradual elastic deformations arise along the beam due to 
the applied loads. The kinematics of the beam are consid-
ered by taking the longitudinal (warping) and the transver-
sal (distortional) deformation modes into account in the 
calculation of the 2D formulation. Thus, the deformations 
that can occur in the beam have been incorporated into the 
analysis. The conventional treatments and notions adopted 
in Islam et al. (2021) are followed and summarized for the 
completeness of the formulation.

The prismatic thin-walled beam member is located in a 
global rectangular, right-handed Cartesian coordinate sys-
tem (X, Y, Z). The cross-section of the beam situates in the 
X-Y plane, and the beam axis is straight and parallel to the 
Z axis. The displacement vector ( , , )x y zu  consists of three 
components in a material point on the cross-section is sep-
arated into rigid plane translations/rotations ( , , )x y zur  and 
the warping/distortional components ( , , )x y zud  as given in 
Eq. (1)
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where ,cos sinm ni i= = , and T3  is identical to T1  with i  
is replaced by b .

3. Calculation of the Cross-Section Displacements 
Modes
The process of determining the cross-section mode involves 
solving displacement mode differential equations by assum-
ing exponential solutions. This is accomplished by solving 
the characteristic equations, which are formulated as a qua-
dratic eigenvalue problem. Having accounted for the kine-
matic and constitutive relations, the linear elastic strain en-
ergy can be formulated as follows:

U dV dA dz2
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By substituting Eqs. (5), (6) and (7), the strain energy ex-
pression takes the following form
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Taking the first variation of Eq. (12), the strain energy vari-
ation is obtained as
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Integrating the block matrices in Eq. (13) over the cross-sec-
tional area, the matrix H is obtained and the strain energy 
variation takes the following form
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laminated composite materials as given in many textbooks 
(Reddy 2004, Barbero 2018). Additionally, coordinate trans-
formations of the 3D material matrix are needed to account 
for the fiber and laminate orientation described in Figure 1. 
Hence, the constitutive relationship of a ply/lamina, defined 
in its material coordinate system, can be converted into the 
laminate coordinates by using the fiber orientation angle θ, 
the laminate orientation angle β, and applying addition-
al transformations. Thus, the constitutive relationship of a 
lamina can be obtained as 

T T T T QT T T TT T T T
4 3 2 1 1 2 3 4f =   (7) 

where T1  is used to transform the material constitutive re-
lationship from lamina coordinate system (1-2-3) to lam-
inate coordinate system (x y z- - ), T2  transforms the co-
ordinate system from (x y z- - ) to (X Y Z- -l l l) and T3  
transforms the coordinate system from (X Y Z- -l l l) to                   
(X Y Z- - ). Finally, T4  performs a transformation between 
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Figure 1. Representations of lamina-laminate configurations and 
beam coordinate system.
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assumed and the corresponding eigenvalues m  and eigen-
vectors eT  can be obtained (Hansen and Jönsson 2019a). 
However, the solution to Eq. (19) can be cumbersome if 
the cross-section is discretized using a dense mesh, which 
results in a relatively high number of dofs. Hence, Eq. (19) 
can be linearized as given in Eq. (20). The linearized form 
of the quadratic eigenvalue problem can be solved for the 
necessary number of eigenmodes (e.g. for the lower energy 
modes). The solution can be achieved by using MATLAB 
eigs function, which has parallel processing capabilities.  

I I

0

0 0 0

0
s s

2 10

T
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T
TW W W

+
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=
r r
l; ; ; ; ;E E E E E  (20)

In Eq. (20), Is  is the identity matrix with appropriate size 
and z zT T=r l^ ^h h . From the solution of Eq. (19) or (20), 
the eigenvalues and the corresponding eigenvectors are ob-
tained as the pairs of real eigenvalues and the complex qua-
druples.  

4. Beam Element Stiffness Matrix
Having obtained the cross-sectional displacement modes, 
standard displacement-based FE beam elements can be for-
mulated using linear or higher-order interpolation functions 
with C 0 continuity. It should also be mentioned that the 
interpolation functions with C1 continuity can also be ad-
opted, yet, the resulting beam element would have higher 
dofs. The inclusion of complex quadruples in the formulation 
of the beam element stiffness matrix requires dealing with 
complex numbers. In order to avoid dealing with complex 
section displacement functions extracted from complex qua-
druples, real and imaginary parts of an eigenvector corre-
sponding to an eigenvalue with positive real and imaginary 
parts are adopted separately.

The distortional part of the cross-section displacements ud  
at any material point can now be expressed by the displace-
ment mode constant c as
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where the mode matrix {  contains the eigenvectors, which 
consists of the corresponding elements of the eigenvector 
eT  obtained from the solution of Eq. (19) or (20). The num-

ber of modes included in the analysis is indicated by nm. 
The section displacement vector U  and the displacement 
mode constant vector c  within the element domain can be 
expressed using interpolation functions Nr  for section dis-

By performing the integration by parts on the variational 
terms, which are differentiated with respect to axial coordi-
nate (e.g. q ,zd ), Eq. (15) can be obtained.
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The terms inside the last bracket correspond to the bound-
ary terms, which are needed to satisfy the boundary condi-
tions. As is known from the theory of calculus of variations,   
U 0ed =  must vanish for arbitrary values of the variational 

terms dY  and qd . Hence, the following system of differen-
tial equations can be obtained. 
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However, Eq. (16) requires six constraints that should be 
imposed on the warping displacements and their derivatives 
(Kashefi et al. 2016) in order to prevent the warping dis-
placement inducing section translations and rotations. The 
constraints can be introduced by Lagrange multipliers m  
and the resulting equation can be written as
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The constraint matrix D  introduced in Eq. (17) expresses 
that the warping and distortional displacements should not 
contribute to the section translations and rotations and giv-
en as   
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Where I  is the identity matrix, hi  consists of the coordinates 
of ith  is the node and  is the number of nodes in the discret-
ized cross-section. Additionally, Eq. (17) can be written in 
a compact form by introducing the matrices , ,2 01W W W  and 
the vector T  as follows

02 1 0T T TW W W+ + =lm   (19)

An exponential solution in the form of e ce
z
eT T= m  can be 
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However, in the present approach, the load is applied at the 
geometric center as a concentrated shear force and torsion-
al moment. The beam is discretized using 10 three-node 
FE elements with Lagrange basis shape functions, and the 
cross-section is meshed using four-node 96 quadrilateral el-
ements as shown in Figure 2c.

The eigenvalues, and the modal values of section strains Y  
calculated from the solution of the eigenvalue problem are 
given in Figure 3 for the first five cross-section displacement 
modes. The first and second modes are the warping modes 
due to coupled torsion and shear effect, the third mode is 
the 1st shear/bending mode in the  direction, the fourth 
mode is the 2nd shear/torsion coupled mode while the fifth 
mode is the 2nd shear/bending mode (in Table 1).

The calculated displacement modes are also in accordance 
with the ones presented in Hansen and Jönsson (2019b), 
except that the first and the second modes presented in this 
study are similar in shape, yet, the magnitudes of the dis-
tortions and the warping displacements are different. As 
reported by Hansen and Jönsson (2019b), those modes are 
also the same as unrestrained torsional mode, which is the 
case for open sections.    

The displacement values calculated at point B using only 
one displacement mode and the first ten displacement 
modes are presented in Table 2. It should be noted that the 
first ten displacement modes include ten real parts and nine 
corresponding imaginary parts of the displacement modes. 
Hence, a total of nineteen modes are used, yet, the total 
number of modes will not given hereinafter in order to pre-
vent confusion. Obviously, the calculated displacements rea-
sonably agree with the displacements presented in Hansen 
and Jönsson (2019b). The differences arise due to the meth-
od of applying the external load, and the sign differences 
result from variations in the direction of coordinate selec-
tion. In Hansen and Jönsson (2019b), the load is applied as 
nodal forces distributed along the web, whereas in this study, 
the loads are applied at the geometric center as concentrat-
ed shear and torsion. Furthermore, the displacement results 
obtained using only one displacement mode are still in good 
agreement with results from the analysis in which the first 
ten displacement modes were used. 

The normal and shear stress variations along the cross-sec-
tion calculated by the proposed beam element for different 
numbers of displacement modes are given in Figure 4. It 
is observed that the variations of normal stresses along the 
web and flange are reasonably in agreement with Abaqus re-

placements and Nd  for displacement modes constants as 
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where Ut  and ct are the nodal degrees of freedom. It should 
be noted that the section displacement vector includes six 
components while the length of c depends on the number 
of displacement modes included in the analysis. Besides, the 
displacement mode constant vector includes constants for 
both the real and the imaginary part of the displacement 
modes. The number of degrees of freedom at a node of the 
finite element depends on the number of modes included in 
the analysis. By substituting Eqs. (3), (6) and (23) into Eq. 
(5) and using the first variation of elastic strain energy, the 
beam element stiffness matrix can be obtained as 
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where R  can be expressed as 

R N NL ,z= +{ {   (24)

5. Numerical Results
In this section, several examples, including the beams with 
open and closed sections made of homogeneous isotropic 
and anisotropic material, are presented to assess the perfor-
mance of the proposed method. The results obtained from 
the proposed method are benchmarked against those from 
previous studies and/or 3D solid and shell element formula-
tions. The developed 3D beam analysis approach consists of 
two main parts: a 2D cross-sectional analysis using quadri-
lateral elements, and a 1D beam finite element (FE) analy-
sis employing either linear or cubic interpolation functions, 
which can be utilized to analyze beams with any arbitrary 
cross-section shapes. Cross-sectional displacement modes, 
including warping and distortion, were calculated by solving 
a quadratic eigenvalue problem and subsequently integrated 
into the FE formulation. The proposed FE model was im-
plemented using custom-developed MATLAB code.

5.1. End Loaded Cantilever Beam with Channel Section

The first example is a cantilever beam (Figure 2a), which 
was also analyzed by Hansen and Jönsson (2019b). The 
cross-sectional shape of the beam is a channel, with a height 
of 100 mm, a width of 40 mm, and web and flange thick-
nesses of 3 mm. The elasticity modulus of the beam material 
is 210 GPa, and Poisson’s ratio is 0.3. A load of 50 kN/m 
shear force is distributed along the web of the tip section. 
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Figure 2. The support and loading conditions for A) channel and B) double T cross-section beams, the geometry and the FE mesh for 
C) channel section, D) double T section.

Table 1. Mode details and mode shapes.

Real Mode Hansen and Jönsson, 2019b Present Present -
Mode Shape

1 Warping Warping mode (coupled torsion and shear)

2 Warping Warping mode (coupled torsion and shear)

3 Shear/bending 1st shear/bending (in x-direction)

A B

C D
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Table 2. Displacement at the upper right corner of box section (x=21.5mm, y=51.5mm) (units are in mm)

Displacement Hansen and Jönsson 
(2019b)

Hansen and Jönsson 
(2019b)- Abaqus

Present-number of 
modes=10

Present-number of 
modes=1

ux 1.1055 1.1107 0.7740 0.8331
uy -2.9155 -2.9324 3.2251 3.1389
uz -0.1488 -0.1501 0.1415 0.1399

Figure 3. First five cross-section displacement modes of the channel section. The first and second rows illustrate the real and imaginary 
parts of the warping (out-of-plane) displacements, while the third row illustrates the transverse (in-plane) displacement.

4 Shear/torsion 2nd shear/torsion

5 Shear/bending Shear/bending

Table 1. Cont.
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ent numbers of modes are included. Hence, it is noted that 
higher-order modes should be included in the calculation of 
shear stress variations for more accurate predictions.

The contributions from each mode (the displacement mode 
constants) are illustrated in Figure 5. However, it is worth 
noting that the values of the constants presented in Figure 

sults. Moreover, the normal stress variations do not signifi-
cantly differ when higher displacement modes are included. 
The inclusion of the first mode gives sufficiently good pre-
dictions for normal stress variation. However, this is not the 
case for the shear stress variations. Regarding the predicted 
shear stress distributions, considerable discrepancies are ob-
served between the results from the analysis where differ-

Figure 4. Stress distribution on channel cross-section at 10 mm from the support. Normal stress and shear stress  distributions are given 
in first and second rows, respectively. The Abaqus results presented in Hansen and Jönsson (2019b) are given in parentheses.

Figure 5. Displacement mode constants for channel section.
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1b), which causes bending/shear with non-uniform torsion. 
Young’s modulus and Poisson ratio are assumed to be E=40 
GPa and v=0, respectively. The beam was analyzed by using 
ten three-node finite elements in the axial directions, and 
464 quadrilateral elements were used in cross-section dis-
cretization (Figure 1d). 

Computing the corresponding eigenvalue problem and se-
lecting the appropriate modes, the total number of 1761 
displacement modes was obtained. The first five displace-
ment modes are presented in Figure 6. Observing the dis-
placement mode shapes and the modal section strain values, 
it can be deducted that the first mode is a coupled shear/
torsion warping mode. This is expected since the section is 
monosymmetric, which means shear and geometric centers 
are not coincident. The second mode is the shear/bending 
mode in the y direction. The third mode is the second shear/
torsion warping mode. The fourth mode is the coupled ex-

5 may change depending on the normalization procedure 
adopted for the displacement modes. In this study, the dis-
placement modes were simply normalized with respect to 
their maximum values. Obviously, the first mode has a sig-
nificant contribution to the deflected shape, which is also 
consistent with the displacements presented in Table 2. This 
is also true for the normal stress distribution given in Fig-
ure 4. Besides, there are some higher modes of which their 
constants take notable values. However, these modes largely 
affect the shear stress variations rather than the deflected 
shape and normal stress variations as demonstrated previ-
ously.  

5.2. Double T Cross Section

The second example concerns a beam with a double T 
cross-section studied by Ferradi and Cespedes (2014). Both 
ends of the beam are fixed, whereas a 10000 kN eccentric 
load is applied at the corner of the mid-span section (Figure 

Figure 6. First five displacement modes of double T section. The first and second columns are the in-plane and warping displacement 
modes, respectively. The modes are ordered from top to bottom in increasing order.
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The normal and shear stress variations along the flange of 
the double T cross-section given in Figure 8 demonstrate 
the accuracy of the stress field predictions. The stress varia-
tions obtained from the present beam element and the re-
sults of Ferradi and Cespedes (2014) agree well. However, 
the accuracy starts to decrease when only the first fifteen 
displacement modes are included in the analysis. Specifical-
ly, dramatic changes occur in shear stress variations, while 

tension and shear/bending mode, and the fifth mode is the 
second shear/bending mode in the y direction. The mode 
constants presented in Figure 7 show that the first warping 
mode contributes significantly. In addition, the contribution 
of some higher modes (modes between mode 10 and mode 
20) is also obvious, while the contributions from imaginary 
parts are less significant in this example.    

Figure 7. The absolute value of displacement mode constants for the deck section.

Figure 8. Stress variations along the flange of double T section A) normal stresses B) shear stresses.

A

B
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indicate the importance of higher-order modes. Particularly, 
the index numbers of the most pronounced constants for 
the section with foam filled are higher than 40. Besides, 
some imaginary parts of the displacement modes of the 
cross-section without foam filled seem to be more signifi-
cant than the real part, while the real parts of the displace-
ment modes are more dominant for the cross-section with 
foam filled. The first four dominant displacement modes are 
presented in Figure 11. The first warping mode (given in 
the second row of Figure 11a.), which is the lowest energy 
mode contributes significantly to the cross-section without 
foam filled. Otherwise, the most pronounced displacement 
modes are higher energy modes for the cross section with 
foam filled.

Having realized that the high energy modes contribute 
significantly to the deformation field, using the proposed 
approach numerical analyses have been carried out consid-
ering different numbers of highly contributed displacement 
modes. The displacement results obtained at the free end 
of the cantilever beam using the proposed calculation ap-
proach with different mode numbers are presented in Table 
4, compared to those in the literature (Islam et al. 2021). As 
seen, the results of the present beam element agree well with 

the normal stress variations are still reasonably accurate. 
Furthermore, the displacement results given in Table 3 in-
dicate that the beam nodal displacements can be predicted 
with reasonable accuracy even in the case when only one 
mode is involved in the deformation analysis.  

5.3. Thin-walled Composite Closed Box Beam 

A laminated thin-walled composite cantilever beam is ana-
lyzed implementing the presented approach in this study, and 
the results are compared with the those of Islam et al. (2021). 
This beam has also been analyzed considering the same sec-
tion with a polymer foam as an in-filled material. The geom-
etry and the lamina configuration are presented in Figure 9. 
The beam was analyzed under 1 kN transverse shear load and 
1 kNm torsional moment, respectively. The material prop-
erties of all layers are: . , .E GPa E E GPa48 5 5 51 2 3= = =

, . , , .G G GPa G GPa v v v2 5 2 0 3312 13 23 12 13 23= = = = = =

while the material properties of the foam are: 
. , .E GPa G GPa0 400 0 097= =  and .v 0 4= .

The numerical analysis results of the composite beam re-
vealed that the contribution of higher modes is more sig-
nificant than the lower-order displacement modes. The dis-
placement mode constants presented in Figure 10 clearly 

Table 3. The displacements calculated at the mid-span of the beam considering the contributions from different numbers of higher-order 
displacement modes (units in translation and rotation are m and radian, respectively).

Displacement / mode 
number 45 25 20 15 10 5 1

ux -0.00982 -0.00981 -0.00977 -0.00934 -0.00934 -0.010 -0.0099
uy 0.0263 0.0262 0.0259 0.0252 0.0245 0.0235 0.0232

zi 0.0380 0.0377 0.0376 0.0358 0.0346 0.0325 0.0324

Figure 9. Geometry and fiber orientation of laminated composite A) box cross-section B) I cross-section.

A B
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Figure 10. Displacement mode constants obtained from the analysis of the beam when 1 kNm torsional moment is applied A) section 
without foam filled B) section with foam filled.

Figure 11. The first four most pronounced transversal and warping displacement modes A) without foam filled B) with foam filled.

A

B

A B
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the cross-section, which results in a lower deformation state 
that can be represented by a few displacement modes. As 
seen in Figure 12, the normal stress distribution calculated 
at the fixed end of the cross-section without foam shows 
that the shear lag effect can be captured properly. The cal-
culated maximum normal stress is almost identical to the 
maximum stress value reported in Islam et al. (2021), which 
is given as 79.2 MPa.     

5.4. Thin-walled Composite I Beam 

The last example is the laminated composite cantilever I 
beam loaded at the free end with a concentrated shear load 
(Figure 9b). In order to verify the results under non-uni-
form torsion, the analyses were also carried out considering 
that the warping dofs at the fixed end are constrained and 
a uniformly distributed torsion is applied along the beam. 
The material characteristics are the same as in the previ-
ous example. The cross-section was discretized using 2568 
quadrilateral elements, and the beam was divided into 10 
three-node finite elements in the longitudinal direction.

The displacement mode constants presented in Figure 13 
show that the contributions from higher modes are substan-
tially significant compared to lower-order modes. The first 
four most pronounced cross-section displacement modes 
are presented in Figure 14. The transverse displacement in 
the y direction was calculated using a different number of 

the results of Islam et al. (2021) when the first 20 displace-
ment modes are used. Besides, the difference between the 
results is not considerable even when the first two modes 
are considered in the calculations. In addition, the discrep-
ancies between the results from different number modes are 
so small for the cross section with foam filled. This is due 
to the fact that the foam introduces additional stiffness to 

Table 4. Tip displacements calculated using different numbers of displacement modes (units in translation and rotation are mm 
and radian, respectively).

Loading
(Displacement component) Condition

Number of modes
Islam et al. (2021) (Abaqus) mn=20 mn=10 mn=5 mn=2

Transverse force
(uy )

w/o foam 11.609 (11.46) 11.64 11.33 11.28 10.83
w/ foam 9.74 (9.58) 9.78 9.74 9.72 9.72

Torsional moment ( zi ) w/o foam 27.6 (28.06) 27.8 27.76 26.71 26.24

Figure 12. Normal stress variation calculated at the fixed end of 
the composite box beam.

Figure 13. Displacement mode constants obtained from the analysis of the I beam under 1 kN concentrated shear load.
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ed in commercial code ANSYS. The shell model includes 
115962 dofs, whereas the proposed beam element has 506 
dofs, which results from the inclusion of six section displace-
ments, and ten real and ten imaginary displacement mode 
constants at each node of the beam element. As seen in 
Figure 15b, the results of the presented beam element well-
agree with the results of ANSYS shell element model. There 
is a slight discrepancy in the stress prediction around the 
flange tips, which can be improved by adopting a finer mesh.

6. Conclusion
In this study, an efficient higher-order 3D beam element for-
mulation, which capable of accurately predicting the stress 
and deformation fields, was presented. The formulation can 

displacement modes and compared with the results of Islam 
et al. (2021) in Figure 15a. Obviously, the results are identi-
cal to those of Islam et al. (2021). Nevertheless, the accuracy 
of the results decreases when the number of displacement 
modes less than ten is considered in the analysis. The normal 
stress distribution given in Figure 16 demonstrates that the 
shear lag effect is correctly predicted. The maximum normal 
stress was found to be 72.47 MPa, compared to 71.67 MPa 
in Islam et al. (2021).

In order to verify the results under the effect of non-uni-
form torsion, 1 Nm/m distributed moment was applied and 
the warping degrees of freedom at the fixed end were con-
strained. The variation of twisting angle along the beam is 
compared with the results of a shell element model creat-

Figure 14. The first four most pronounced transversal (first row) and warping (second row) displacement modes for the composite I 
cross-section.

Figure 15. Displacement variation along the beam under A) transverse shear loading B) distributed torsion.

A B
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fewer degrees of freedom compared to corresponding shell 
and solid element models. Hence, it can be used in the 
analysis of complex 3D structural and mechanical systems, 
where the cross-sectional distortions and warping are sig-
nificant and can lead to non-negligible errors when ignored. 
As a result, all the examples presented in this study clearly 
indicate that the proposed beam element can predict the 
stress and deformation field for various cross-section and 
material properties with reasonable accuracy.
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