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An Application of Nabla Operator for the Radial Schrodinger
Equation

Resat YILMAZER'

ABSTRACT: The aim of this present study is to obtain the discrete fractional solutions of the radial Schrodinger
equation by applying the nabla discrete fractional calculus (DFC) operator.
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OZET: Bu calismanin amaci, nabla ayrik kesirli hesap operatdriiniin uygulanmasiyla radyal Schrodinger
denkleminin ayrik kesirli ¢oziimlerini elde etmektir.
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INTRODUCTION

Two basic concepts of the ordinary calculus are
derivative and integral operators and similarly, two
basic concepts of the discrete calculus are sum and
difference operators in mathematics. In the fractional
calculus, orders of derivative and integral operators
consist of arbitrary numbers and similarly, orders of sum
and difference operators consist of arbitrary numbers
in the discrete fractional calculus (DFC). Kuttner
defined the difference operator with reel order in 1956
(Kuttner, 1957). In 1974, Diaz and Osler studied on
differences of fractional order (Diaz and Osler, 1974).
Gray and Zhang developed a new concept for the
fractional difference (Gray and Zhang, 1988). Miller
and Ross introduced sum and difference operators with
fractional order in 1989 (Miller and Ross, 1989). Thus,
many scientific studies take part in literature related to
fractional calculus and DFC at the present time.

Nabla DFC operator which is the basic subject of
our paper has an important position in the DFC theory.
Atici and Eloe mentioned the nabla derivative and, new
identities of the gamma function were developed (Atici
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and Eloe, 2009). And, two definitions were defined for
nabla discrete fractional sum operators (Abdeljawad
and Atici, 2012). Nabla discrete Sumudu transform of
Taylor monomials, fractional sums, and differences
were studied and, this transform was used to obtain
the solutions of some fractional difference equations
with initial value problems (Jarad et al., 2012). Inc and
Yilmazer exhibited some particular solutions of the
Chebyshev’s equations via nabla DFC operator (Inc
and Yilmazer, 2016). Sufficient conditions on global
existence and uniqueness of solutions of nonlinear
fractional nabla difference systems were introduced
and, the dependence of solutions on initial conditions
and parameters was studied (Jonnalagadda, 2015).
A nabla DFC method was used to solve the confluent
hypergeometric equation (Inc et al., 2016). A study
related to DFC operator was presented for the vibration
equations (Ozturk, 2016).

In our present paper, we used nabla DFC
operator for the radial Schrodinger equation and, we
obtained the solutions both as fractional forms and
as hypergeometric forms.

Definition 2.1. (Yilmazer and Ozturk, 2012) Fractional derivative and fractional integral definitions of

Riemann-Liouville are as follows:

1 dk

Y(p)

DY () =[]y, =

['(k —w)dtk ) (1 — p)eti-k "
a

dp

(1)
(k—1<w<kk€eN),
and,
o _ 1 ()
DY) =YDl = ) af DR dp (t>aw>0). @)
Lemma 2.1. When ¥(2) and ¢(2) are analytic and single-valued functions, linearity rule is
[ay(2) + bp(2)], = ay,(2) + bp,(z) (w ER,z € C), 3)

where a and b are constants (Ozturk and Yilmazer, 2016).
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Lemma 2.2. If ¥(2) is an analytic and single-valued function, index rule is

[lpv(z)]w = l/)v+a)(z) = [lpw(z)]v (v,a) eER,zeC )' 4)
rv+w+1) .
where |r Drwrnl < @ (Yilmazer and Ozturk, 2013).

Lemma 2.3. When (z) and ¢(z) are analytic and single-valued functions, generalized Leibniz
rule is

= MNw+1) (5)

WD = kz TR T TG T k@) weRzEC),

INw+1)
where |[‘(a)_k+1)[‘(k+1) < ® (Yilmazer and Ozturk, 2012).

Property 2.1. In the fractional calculus, the following properties are available:

(e*®), =a%e** (w€eR,zEeOQ), (6)

(e79%), = e M@0q®e=%% (p € R,z € C), (7)
o e @—a) ['w—a)

(zY, =e —I‘(—a) z <a) ER,z€C, |—F(—a) < 00>, (8)

Fw— k) = (1 lA =@ e p e, )

Nk+1-w)

where A (4 # 0) is a constant (Ozturk and Yilmazer, 2016).

Definition 2.2. The rising factorial power (¥ is given by

=1 +DE+2)..(t+k-1) (kEN,16= 1). (10)

And, “7T to the w rising” is also defined by
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5 Tr+w) ® _ (
T (w € R, T € R\{...,—2,—1,0},0%° = 0).

™% =
Thus, the following equality is available:

V(1?) = wt® T, (12)

where V(1) = Y (1) — Y (7 — 1) (Inc et al., 2016).

Definition 2.3.Let w € R* suchthat 0 <k—-1<w <k (k €Z)..

The @ -th order fractional sum of Y is defined as follows:

T

_ w-1
V(o) = z L f((s] Y(p) (a€eR), (13)
p=a

where TENg ={a,a+1,a+2,..}, ¢(tr) =7 — 1, is backward jump operator of the time scale
calculus.

The w -th order fractional difference of ¥ is given as follows:

t _ k-w—-1
V@) = T Oy = v ) Ty (14

p=a

where 1: N, - R (Atici and Acar, 2013).

Definition 2.4. (Ozturk, 2016) The shift operator E is

Efy(t) =y(t+k) (keN). (15)

Theorem 2.1. When w,v > 0 and a, b are scalars, then,

VeV VY (1) = V@Y (1) = VIV @Y(7), (16)
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Velay(7) + bp(D)] = aVyP(7) + bV (1),
VU (z) = V@ Dy(a),

vewp) = V@ - (FHOT ) po),

where ¥, 9: Ny = R (Inc and Yilmazer, 2016).
Lemma 2.4. (Inc et al., 2016) For v 7 € N, , power rule is given by

rv+1)

Vo _ 172
«“(T—a+1) MNw+v+1)

Lemma 2.5. The following equality is available:

(t—a+ 11
I'(w)

Vasi V(1) = V(1) — Y@ (0>0),

where ¥:Ng = R (Atici and Acar, 2013).
Lemma 2.6. In DFC, Leibniz rule is as follows:

T

VRN = Y (1) 19 w6 - IVe@], (> 01z,

k=0

where ¥, ¢: Ny = R (Ozturk, 2016).

MAIN RESULTS

In the B- dimensional space, the radial equation of the fractional Schrédinger equation is
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(17

(18)

(19)

(20)

e2y)

(22)
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- 5,\ £(f—f—2
p )—( xf )lF(x)zo, (23)

2 2
F (x)+—F( )+lh2 (E+ -

where 1 < < 3,0 < x < 0, and §, is defined by

6, = (a>2).

2m/2(q — 2)b,
For “Eq. 23.”, we use the following equalities:
F(x) = x’e %y (x) (6% = —2mE/h?),
and,

me?s,
hz -’

z=20x, c=

And then, we have

2
dlp lp ( —a %)IP(Z)=O (zeC,z+0), (24)

C
where , # =2t +f—1,v = 23—aga—a (Yilmazer and Ozturk, 2013).
Hereafter, we can apply the nabla DFC operator to “Eq. 24.” by means of the following theorem.

Theorem 3.1. Let a=2 in “Eq. 24.”. Thus, we write

dZ
Zd—w+(u—z)—w+(z—g)1p(z)=0. 25)

The discrete fractional solutions of “Eq. 25.” are given by
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Yl = Azl—ue(l—m)Z/Z[Z—(E+2—u)e\/mZ]_(1+E_lg)' (26)
Yl = le_”e(Hm)z/Z[Z_(&z_“)e_mz]_(1+E-15)» 27)
where Y € {{:0 #| Y| < 0;w € R}, A, B, 1 and v are constants.
Proof. At first, we choose ¥ = z%¢p (¢ = ¢(2)) for “Eq. 25.”, and then, we have
zp, + Qa+u—2)p, + [a(a +u—1z1- (a + %) + vz] @ = 0. (28)

If we get a(@+p—1) =0 in “Eq.28.”,50 a =0 or @ =1 —p. When @ = 0, we obtain “Eq.
25.” from “Eq. 28.”. So, we use @ = 1 — y for “Eq. 28.”, and

Z<p2+(2—,u—z)<p1+(ﬁ—1+vz)<p=O. (29)

2

Now, we get ¢ = e™f (f = f(z)) for “Eq.28.”, and so,

Zf2+[2_.u+(277_1)z]f1+[TI(Z—M)'i‘%—1+(772_77+U)Z]f:0- (30)

fn?—n+v=0in “Eq.30.”, thus, n = 11”;_41’ and, we obtain

zf2+[2—u—x/1—4vz]f1+[\/1-41}(%—1)]]":O. 31)
where n = 1 ;_41). Hereafter, we can use the nabla (V) DFC operator to “Eq. 31.”, and we have
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Zforew T+ [wE+2 —u—v1 —4vz]f1+w —V1—-4v (wE—%+ l)fw = 0. (32)

For wE — g +1=0 in “Eq.32.”, @ = E71¢ (f = g— 1), and “Eq. 32.” is be written as

Zforg-1g + [+ 2 — p— VI —4vz|f 51 = 0. (33)

Now, we suppose that f1+e-1¢ =9 = 9(2) (f = g_(148-1¢)) for “Eq. 33.”. Therefore,

g1+[(E+2—u)z‘1—\/1—4v]g=0, (34)
and,
g = Az~ C+2-wg 1—4uz’ (35)

where A is a constant. After all, we obtain “Eq. 26.” by means of backwards processes.

By means of the similar steps, we have “Eq. 26.” for n =

s ;_41) in “Eq.31.”.

Theorem 3.2. Let 2P0 be Gauss hypergeometric function. “Eq. 26.” is written as the following
hypergeometric form:

1
— ,—(E+D) (1+VI-40)z/2 [1—E‘1 o ]

zZ)=12z e E+2 pp— ) 36

v N T 39
_(F42— 1

where |[Z €z M)]k| < oo (k € Z* U{0}) and |mz| <1.

Proof. At first, if “Eq. 5.” is applied to “Eq. 26.”, we have

w(z) — AZl—/,Le(l—\/m)z/Z

[(—E™¢)
—(E+2—-p) Vi—4v

* L T(=EE — Ik 275 L () (g (37)
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By means of “Eq.6.”, “Eq. 8.” and “Eq.9.”, “Eq. 37.” is obtained as follows:

W(z) = AVT = 4u)_(1+E_1E)Z—(5+1)e(wm)z/z

- 1
XZ(l —E71), (¢ +2 _H)kﬁ(
k=0

At the end of, we have “Eq. 36.” for 1/4 = (m)‘(HE_

1 Kk
V1 —4vz) '

(3%)

1
£) in “Eq. 38.”

Theorem 3.3. Let 2¢0 be Gauss hypergeometric function. “Eq. 27.” is written as the following

hypergeometric form:

P(2) = 2 VOS2 1 1 —EIg g 42—

-1
V1 — 4vz] ' 39)

where |[Z—(€+2—M)]k| < o (k € Z* U{0}) and |—¢1:—L,Z| <L

CONCLUSION

Our present paper is related to an application of
nabla DFC operator for the radial Schrédinger equation.

In this context, we obtained the successful results for
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