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Abstract: Matrices are commonly used data structures in computer science. There do not exist available 

structures in programming languages for the special type of matrices such as triangular matrix. If it is required 

to use a triangular matrix as a data structure, then softwares are coded with inefficient space and time 

complexity due to the lack of data structure of a programming language. In this paper, transformation and 

inverse tranformation formulae to be used for representing the triangular matrices as a one dimensional array 

are gathered and an increase in the amount of efficiency of a program in terms of space and time complexity is 

objected. 

 

Keywords: Triangular matrix, One dimensional array, Space complexity, Time complexity. 

 

Üçgen Matrisler Kullanılarak Yer ve Zaman Karmaşıklığının Azaltılması 

 
Özet: Matrisler bilgisayar bilimlerinde sıklıkla kullanılan veri yapılarıdır. Üçgensel matris gibi özel matris 

türleri için programlama dillerinde hazır yapılar bulunmamaktadır. Bir veri yapısı olarak üçgensel matris 

kullanmak gerekiyorsa programlama dilinden kaynaklanan bu eksiklik nedeniyle bellek ve zaman karmaşıklığı 

yönünden etkin olmayan yazılımlar kodlanmaktadır. Bu çalışmada üçgensel matris tipindeki yapıların bir 

boyutlu dizi olarak temsil edilmesinde kullanılan dönüşüm ve ters dönüşüm formülleri elde edilerek 

programların yer ve zaman karmaşıklığı açısından etkinliğinin arttırılması amaçlanmaktadır. 

 

Anahtar Kelimeler: Üçgensel matris, Bir boyutlu dizi, Yer karmaşıklığı, Zaman karmaşıklığı. 

 

 

1. Introduction 

 

A square matrix ijA a     is called upper triangular if the elements below the main diagonal are 

zero, that is 0ija   for i j . It is called lower triangular if 0ija   for i j . Triangular matrices 

are of critical importance for computer science since those type of matrices are all used for 

representation and solution of many problems existing in literature. As an example, the LU -

factorization of a matrix used to efficiently solve a linear system, representation of symmetric 

matrices with less space [1,2]. 

 

There are many applications of the triangle matrices such as graph theory [3-5], computer games 

[6], big data processing [7-12], solutions of linear equation systems [13-18]. 
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When it is required to use triangular type matrices, since the data structures for triangular matrices 

are not existing in programming languages, there occur two disadvantages. The first one is if the 

triangular matrices are stored with square matrix data structures in a wasteful manner, then the 

increase in the space complexity due to the use of much more space than required decreases the 

efficiency of the program. The second one is that if jagged arrays are created by the use of pointers 

for the structure of triangular matrices, then this time the increase in the time complexity due to the 

use of pointer arithmetic often decreases the efficiency of the program. 

 

The paper proceeds as follows. Representation of the triangular matrices as a one dimensional array 

are deeply investigated, mathematical analysis for space and time complexity is performed, and 

transformation and inverse transformation formulae are derived throughout section 2. Section 3 

includes computational experiments performed in order to demonstrate the efficiency of the derived 

formulae. Finally, section 4 concludes the paper. 

 

2. Method 

 

The method proposed for the representation of triangular matrices takes the method as a base that is 

used for representing the two dimensional matrices as a one dimensional array, and the underlying 

idea for storage of matrices in memory and accessing the contents of the cells are the same [2-3]. 

The direct relation between a two dimensional m n  matrix and a one dimensional array with m n  

elements can be represented as given in Figure 1. It is clear that if the transformation formulae are 

found, then an array can be used instead of matrix as a data structure and vice versa. 

 

Figure 1. A two dimensional matrix and a one dimensional array with elements 

 

2.1 Representation of matrix data structure as a one dimensional array and transformation 

formula 

 

For the simplicity of both introducing the method and the occurrence of triangular matrices, 

matrices are all considered as square matrices throughout the rest of the paper. The cells of the 

matrix are labeled in increasing order from left to right and from top to bottom as seen in Figure 2 

for the ease of understanding which cell of the matrix is for the which element of the array. 
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j  

  
1 2 3 4 5 

i  

1 1 2 3 4 5 

2 6 7 8 9 10 

3 11 12 13 14 15 

4 16 17 18 19 20 

5 21 22 23 24 25 

                 Figure 2. 5x5 square matrix 

 

Simply the method is based on the projection of a plane on a line. That is, by taking the index 

numbers of the row vectors of the matrix into consideration, the indices are sorted successively to 

obtain a unique vector. For this purpose, the row vectors of the matrix should be isolated from each 

other, thus if the column index value j  is subtracted from the current value of each cell, then the 

state holds as it can be seen in Figure 3. 

 

  
j  

  
1 2 3 4 5 

i  

1 0 0 0 0 0 

2 5 5 5 5 5 

3 10 10 10 10 10 

4 15 15 15 15 15 

5 20 20 20 20 20 

                 Figure 3. The column index value j had subtracted from the current value of each cell 

 

Thereafter, in order to obtain the corresponding values of the cells in each row, it is clear to see that 

the formula  1i n   that is dependent on i  can be used. As a last step, when the index value j  

that is subtracted at first is added to  1i n  , the following formula that will be used in vector 

projection of two dimensional array is obtained, that is,  1k i n j    . 

 

2.2 The formulae of transformation from array data structure to two dimensional matrix data 

structure 

 

The projection function  1k i n j     obtained in the previous subsection is defined in the set of 

positive natural numbers and since it is a bijective function, it is quite possible to find the inverse 

tranformation formulae. 

 

It is clear that in order to find the value of the row index i , k  should be divided by the dimension 

of the matrix n . The reason is that while k  is being evaluated, i  times k  is added, therefore the 

number of i s used for reaching k  should be found by division. The problem encountered here is 

that the result of division is not an integer, hence the value k n  is rounded up to get an integer 

value as i k n   . 
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On the other hand, the value of the column index j  is found by  modj k n  since it should be 

detected for the related row that how many times j  is added to get k . Thus, the modulo operation 

is taken into consideration. The problem encountered here is the result obtained after the modulo 

operation is zero. Since there does not exist a zero indexed column in the matrix, when j  is zero 

due to the equivalence  modj n n , the value n  itself will be taken instead of zero. Without 

making any adjustments, the correct result can be obtained by typing: (( 1) mod ) 1j k n   . 

 

2.3 The representation of triangular matrix data structure as a vector and transformation 

formulae  

 

The triangular matrices are the matrix types that are often used in computer science. There do not 

exist any special type data structures available in programming languages for the use of those type 

matrices. Therefore, the triangular matrices are commonly stored in square matrix data structures 

and the unnecessary increment of the space complexity leads inefficient program design. As an 

example, if a triangular matrix is stored in a square matrix of dimension n n , it takes a space of 

 1 2n n   units, but  1 2n n   units of space remain inert and this leads an increase of the space 

complexity as a rate of 50%  for the values of 50n   with respect to the formula 
50

50 %
n

 
 

 
. To 

avoid such types of disadvantages, the transformation formulae can be generated between two 

dimensional array and a vector by the repetition of the same steps detailed in subsection 2.1. The 

cells of the matrix are labeled in the increasing order of counting numbers from left to right and 

from top to bottom as seen in Figure 4. 

  
j 

  
1 2 3 4 5 

i 

1 1         

2 2 3       

3 4 5 6     

4 7 8 9 10   

5 11 12 13 14 15 

                Figure 4. Triangular matrix 

 

The row vectors of the matrix should be isolated from each other. This is achieved by subtracting 

the value of column index j  from the value of each cell as it is seen in Figure 5. 

 

  
j 

  
1 2 3 4 5 

i 

1 0         

2 1 1       

3 3 3 3     

4 6 6 6 6   

5 10 10 10 10 10 

                  Figure 5. The column index value j had subtracted from the current value of each cell 
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The same values are obtained at each row of the final matrix, and it is clear that those values are the 

sum of the integers from 1 to 1i  . As a consequence, the formula that gives the value of the vector 

index k  is determined as 
 1

2

i i
jk


 . 

 

The inverse transformation formulae for the triangular matrices are not easy to find as it is for the 

matrices considered in subsection 2.2. The following method can be used to reach a result.  

 

Let i  be the row index of k .Whereat it can be written as 
   1 1

2 2

i i i i
k

 
  . When this inequality 

is simplified we have that 

( 1)* 2 * ( 1)i i k i i     

 

2 2

1 2

2 0 2 0

1 1 8 1 1 8

2 2

i i k i i k

k k
i i

     

    
 

 

The roots of the inequalities 1i  and 2i  are of the same real values with opposite signs, thereof the 

positive valued root 2i  is preferred and used for the row index i . The resulting value is ceiling to 

get an integer, that is 
1 8 1

2

k
i

  
  
 

. 

 

The most difficult part is to find a transformation formula of the column index j  for the triangular 

matrices. To obtain this formula, it will be useful to carefully examine Figure 6. 

 

k  i  j  
 

 m  

1 1 1 
 

- 

2 2 1 
 

- 

3 2 2 
 

- 

4 3 1 
 

3 

5 3 2 
 

3 

6 3 3 
 

0≡3 

7 4 1 
 

6 

8 4 2 
 

6 

9 4 3 
 

6 

10 4 4 
 

6 

Figure 6. The value of the column index j changes depending on the value of the row index i 

 

The value of the column index j  that is in bold in Figure 6 changes depending on the value of the 

row index i . The reason is that the value j  is obtained when the modulo of k  is taken due to the 
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value in the column m  and here the value 
( 1)

2

i i
m


  used in the modulo operation depends on the 

index i . The first row in which m  equals zero, and the second and the third rows in which m  

equals one are all left blank since the modulo operation is meaningless. Therefore, the column index 

j  for the first three values should be given as predefined. 

 

As it can be seen in the sixth row of Figure 6, a special case occurs. When 6k  , the value 

 6 mod3 0j    is obtained and the value 0 is updated with 3. This special case is only valid for 

6k   and this can be proven as follows. 

 

Proof. All values of i  that are used in the equation 
( 1)

2

i i
m


  and satisfying the equivalence of 

 mod 0k m   are investigated. As it is seen in Figure 6, k  is ranging between ( 1) ( )m k m i    . 

Thus, the remainders that are found by  modk m  should be in the interval  1 modk m i  , that 

is, a division with remainder zero is not expected. However, as it is in the case of otherwise, it is 

examined that whether it is possible to choose such a value i  that determines the upper bound of 

m i  so that  mod 0k m  , that is,   mod 0m i m  . If m  is rewritten in terms of i , we get 

( 1)

2

i i
m


  and so 

( 1) ( 1)
( ) mod 0

2 2

i i i i
i

  
  

 
. Then, cZ should be found that satisfies 

( 1) ( 1)
( )

2 2

i i i i
i c

 
  . This leads an equation of 

2(1 ) (1 ) 0c i c i     with 
2(1 )c    yielding 

two different roots;  

1 2

(1 ) (1 ) (1 ) (1 )
0

2(1 ) 2(1 )

c c c c
i i

c c

       
  

 
. 

If 2 0i i  , then the equation 
2(1 ) (1 ) 0c i c i     is valid for all cZ, but this case contradicts 

with Figure 6. Henceforth, 1

(1 ) (1 ) 1

2(1 ) 1

c c c
i i

c c

    
  

 
. It is clear that 

1

1

c
i

c





 takes an integer 

value only for 3c  . 

 

Consequently, the formula that will be used to evaluate the value of index j  is as follows: 

 

1,                                1  2;

2,                               3;

1
mod ,   3.

2

if k or k

j if k

i i
k if k




 


 


      
  

 

 In a simpler way that j can be found as follows: if j is extracted from the formula 

 1

2

i i
jk


 , then 

 1

2

i i
j k


   is obtained. 
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2.4 The representation of modified triangular matrix data structure as a vector and 

transformation formulae  

 

If the definition of a triangular matrix is modified as if it does not include the main diagonal, then 

the transformation formulae should be updated as follows. 

 

  
j 

  
1 2 3 4 5 

i 

1 
 

        

2 1 
 

      

3 2 3 
 

    

4 4 5 6 
 

  

5 7 8 9 10 
 

            Figure 7. Modified triangular matrix 

In Figure 7, a new matrix is obtained by shifting down the matrix in Figure 4 to one row below. If 

the proposed method is applied, then the desired formulae are as follows. 

The transformation formula from matrix data structure to vector is 
( 2)( 1)

2

i i
k j

 
  . 

The transformation formulae from vector to matrix are;  

1 8 1
1

2

k
i

  
  
 

 and 

  

1,                                1  2;

2,                               3;

2 1
mod ,   3.

2

if k or k

j if k

i i
k if k




 


 


       
  

 

 In a simpler way that j can be found as follows: if j is extracted from the formula 

( 2)( 1)

2

i i
k j

 
  , then 

( 2)( 1)

2

i i
j k

 
   is obtained. 

 

3. Computational Experiments 

 

Computational experiments are performed with the matrices which are generated with the use of 

jagged array by taking the dimension n  of the matrix in the interval 10000,11000, ,20000  to test 

the efficiency of the transformation formulae proposed in section 2.3 in practical. These tests are 

carried out with the accession to four different lower triangular matrices that are taken as a basis in 

the derivation of the formulae. The access order of the cells for each of the accession method is 

illustrated in the following figure. 
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 1 2 3 4 5   1 2 3 4 5   1 2 3 4 5   1 2 3 4 5 

1 1      1 1      1 15      1 15     

2 2 3     2 2 6     2 14 13     2 14 10    

3 4 5 6    3 3 7 10    3 12 11 10    3 13 9 6   

4 7 8 9 10   4 4 8 11 13   4 9 8 7 6   4 12 8 5 3  

5 11 12 13 14 15  5 5 9 12 14 15  5 5 4 3 2 1  5 11 7 4 2 1 

                           

   (I)       (II)       (III)       (IV)   

Figure 8. Four different lower triangular matrices 

 

In the method of projection from matrix to vector ( 2m v ), in the transformation formula 

( 1)

2

i i
k j


   there are four different operations performed and these operations increases the 

accession time to cells. In order to avoid this adverse effect, the formula can be partitioned into 

( 1)

2

i i
k


  and k k j  . Therefore, especially as it is in the accession types of I and III, when the 

row index i  is the outer loop and the column index j  is the inner index, the time loss is 

significantly reduced. On the other hand, since the operation division by 2 corresponds to the 

operation of shifting the dividend to the right for once, it is preferred in the formula and thus the 

results are equivalent to the times obtained by the jagged array approximation and sometimes even 

better results are obtained. 

 

In the accession types of II and IV in which the method of projection from matrix to vector ( 2m v ) 

is noticeably superior to the method of jagged array ( ja ), the column index j  is the outer loop and 

the row index i  is the inner loop. At first, this case is also disadvantageous for 2m v , and this 

adverse case is seen when the times are examined within the following table. On the other hand, in 

the accession types of II and IV, pointer arithmetic should be applied frequently due to the nature of 

the method ja , the times are more than the times of method 2m v .  

 

Table 1.  CPU times 

 I  III II  IV 

n  2m v  ja  2m v  ja  

10000 0,109 0,109 0,530 0,546 

11000 0,140 0,140 0,639 0,655 

12000 0,156 0,156 0,780 0,795 

13000 0,187 0,187 0,920 0,952 

14000 0,218 0,218 1,076 1,092 

15000 0,249 0,265 1,232 1,263 

16000 0,280 0,280 1,435 1,451 

17000 0,327 0,327 1,606 1,638 

18000 0,358 0,374 1,825 1,856 

19000 0,405 0,405 2,012 2,059 

20000 0,436 0,453 2,246 2,278 
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The results of the computational experiments show that the method 2m v  proposed in this paper is 

more efficient than the method ja . The times in Table 1 denote the CPU  times in terms of second, 

and the source codes used in computational tests are available in 

http://kisi.deu.edu.tr/murat.berberler/m2v/. 

 

4. Conclusion 

 

The programmers generally use the standard data structures that a programming language allows 

instead of special cases. However, if it is required to use a data structure specific for the program 

and if the language does not allow to use, then the programs designed with standard data structures 

require much more space and time complexity. This is not acceptable since it yields inefficient 

codes. Therefore, by the use of mathematical approximations, space and time complexity can be 

reduced. In this paper, a general method is proposed for how to derive transformation formulae 

between matrix and vector data structures for the triangular matrix types that can be represented by 

vector, and mathematical analysis is performed. 
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