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Abstract 
 
This paper is concerned with numerically solving of a nonlocal fractional boundary value problem 
(NFBVP) by hybridizable discontinuous Galerkin method (HDG). The HDG methods have been suc-
cessfully applied to ordinary or partial differential equations in an efficient way through a hybridiza-
tion procedure. These methods reduce the globally coupled unknowns to approximations at the ele-
ment boundaries. The stability parameter has to be suitably defined to guarantee the existence and 
uniqueness of the approximate solution. Some numerical examples are given to show the performance 
of the HDG method for NFBVP.  
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1. Introduction 

 
Consider a fractional differential equation with nonlocal boundary conditions as follows [1] 
 

0 1( ) ( ) ( ) ( ) ( ) ( ),  in (0,1)C D u x a x u x a x u x f x        (1)
,  on = {0,1}u g   (2)

Where 1 2  , g  is a given function such that 
1

(0) 0,  (1) ( )
m

i i
i

g g u 


  , 0 1i  , 

 ( 0,1)ja j  , and f  are given functions such that satisfy the existence and uniqueness of the 

solutions of the problem. Fractional differential equations arise in modeling many natural 
phenomena of physics, engineering, electrodynamics of complex medium, aerodynamics, 
porous media, continuum and statistical mechanics [2-7]. The multipoint boundary conditions 
arise from many phenomena such as thermodynamics, elasticity, and wave propagation of 
applied sciences [8] and the references therein. These boundary conditions can be interpreted 



122 

as the controllers at the end of the points distribute or add energy with respect to censors set-
tled at intermediate points. Some basic studies and recent researches on the NFBVP s can be 
found in [9-15]. 
 
Benchohra et al. [16] established sufficient conditions for the existence results of NFBVP 
with Caputo derivative 
 

( ) ( , ( )),  0 ,  1 2,C D u x f x u x x T        (3)

(0) ( ),  ( ) Tu g u u T u    (4)
 
where  : 0, x f T R R  and : ( , )g C J R R  are continuous functions. Bai [17] studied the 

existence and uniqueness solution of the following nonlocal problem 
 

( ) ( , ( )) 0,  0 1,D u x f x u x x       (5)
(0) 0,  ( ) (1),u u u    (6)

 
where 1 2  , 10 1,  0 1       and f  is a continuous function on  0,1  x [0, ] . 

El-Sayed and Bin-Thaer [18] obtained the existence of at least one solution for nonlocal mul-
tipoint boundary value problem as follows 
 

( , ( )) 0,         0 1,  0 1,Cu f x D u x x          (7)

1

(0) 0,  (1) ( ),  ( , ) (0,1).
k

j j j
j

u u a u a b 


     
 

(8)

Li and Wu [19] proposed a new numerical method based on the reproducing kernel method 
for the following NFBVP 
 

( ) ( ) ( ) ( ) ( ) ( ),  [0,1],  1 2,C D u x a x u x b x u x f x x         (9)

1 1 2 2,  u u        (10)
 
where 1 1u   and 2 2u   are linear nonlocal boundary conditions, 1( ), ( ) [0,1]a x b x W ,

4( ) [0,1]u x W , the existence and uniqueness of the solution are provided for a suitable ( )f x . 
 
Cockburn et al. [16] firstly presented the HDG methods in the framework of second order 
elliptic problems. These methods involve hybridized mixed, continuous Galerkin, noncon-
forming, and HDG methods. The HDG methods have an efficient convergence results for the 
ordinary or partial differential equations and a built-in stabilization mechanism which do not 
degrade their accuracy [20-23]. 
 
The application of the HDG methods for fractional differential equations is limited in the lit-
erature. Cockburn and Mustapha [24] used the HDG method for numerically solving sub-
diffusion fractional model problem for 1 0   . Then, Mustapha et al. [25] studied the 
method for the spatial discretization of time fractional diffusion equation with Caputo deriva-
tive of order 0 1  . Karaaslan et al. [26, 27] obtained the numerical solution of the Bag-
ley-Torvik equation and a class of fractional boundary value problem (FBVP) with 1 2   
and 0 1   by HDG method. 
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The aim of this paper is to derive an efficient numerical solution of (1)-(2) problem by HDG 
method. To the best of my knowledge, this is the first time an HDG method is applied to the 
NFBVPs in a systematic way. 
 
The organization of this paper is as follows. In Section 2, the HDG method is presented with 
its basis components for the NFBVP. The characterization of the HDG approximation is given 
in Section 3. The convergence results of the method are given on numerical examples in Sec-
tion 4. 
 

2. The HDG methods 
 

The HDG method is applied to the (1)-(2) problem by defining Caputo fractional derivate 
with an operator T  as follows 
 

0 1

0

1 ( )
: [ ( )].

(2 ) ( )

x

C
x

u
D u d T u x

x




 
  


 

    
 

(11)

 
Using two unknown variables p  and q  in (1), the HDG formulation is obtained as follows 
 

0 1 2

( )         ( )               0,         in ,

( )        ( )               0,         in ,

[ ( )] ( ) ( ) ( ),   in .

q x u x

p x q x

a T p x a q x a u x f x

  
  

   
 

 

(12)

 
Given a positive integer N ,   is divided into N elements by setting 
 

1 0 1 1: { ( , ) | 0 1}.h k k k N NI x x x x x x           

 
The set of nodes and interior nodes are defined as 0 1: { , , , },h Nx x x    0 : \h h   ; and 

: { : }h hK K    , respectively. For hK  , Kh  is the length of K , : max { }.
hK Kh h  

Let ( )kP K  denote the set of polynomials of degree less than or equal to 0k   that is a given 
polynomial degree on K . The space of piecewise polynomials of degree k  on   is defined 
as follows 
 

 : { : : | ( ) for all }k k
h h K hV v v P K K      

and 

 2 2
0 ( ) : { ( ) : 0 on }h hL m L m      

 
where 2 ( )hL   is  a copy of the 1N  . 
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The HDG method find a numerical approximation given as ˆ( , , , )h h h hq p u u  to the ( , , , )
h

q p u u

that is the exact solution of (12) where the space is defined as 2 ( )k k k
h h h hV V V L    . This ap-

proximate solution is defined for 2
0( , , , ) ( )k k

h h h h
kv w z V V V L      as follows 

 

0 1 2

ˆ( , )         ( , )   , . 0,

ˆ( , )        ( , ) , . 0,

( [ ], ) ( , ) ( , )  ( , ),

ˆ                                      . , 0,

h h h

h h h

h h h

h

q v u v q v n

p w q w q w n

a T p z a q z a u z f z

q n 

   
   

  
 

 

 

(13)

 
The boundary condition (2) is imposed by requiring that 
 

ˆ on h Du u    (14)
 
and the numerical trace ˆhq  is given as follows 

 
ˆ ˆ( )h h h hq q u u n     (15)

 
where   is a stability parameter of the linear system that is a nonnegative function on .h¶W  

(13), (14) and (15)  construct the framework of the HDG method. 
 

3. Characterization of the HDG approximation 
 

This section are first give the local solvers that form the basis of the HDG method. The first 
local solver is defined on hK   as the mapping 2 3( ) ( , , ) [ ( )]kL K Q P U P K       

where 
 

0 1 2

                             ( , ) ( , ) , ,

ˆ( , ) ( , ) , . 0,

( [ ], ) ( , ) (

    

      

, ) 0,

K K K

K K
K

K K K

Q v U v vn

w Q P w w Q n

a T P z a Q z a U z

  

  

  







  

   

  

 

 

(16)

 
for all , , ( )kv w z P K  where ˆ ( ) ,    on Q Q U n K        . 

 
The second local solver is defined on the element hK   as the mapping 

2 3( ) ( , , ) [ ( )]kf L K Qf Pf Uf P K   where 
 

0 1 2

                                

    

( , ) ( , ) 0,

ˆ( , ) ( , ) , . 0,

( [ ], ) ( , ) ( , ) ( , )

  

 

K K

K K
K

K K K K

Qf v Uf v

w Qf Pf w w Qf n

a T Pf z a Qf z a Uf z f z





 

   

  

 

 

(17)

 
for all , , ( )kv w z P K  where ˆ ( 0) ,     on Qf Qf Uf n K    .  
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The function Du , as well as any other function defined only on   is extended to h  by zero. 

 
Also,  

 
ˆ on \ ,

:
0 on ,

h h
h

u


 
  

 

and ˆh h Du u   where 2
0 ( )h hL  . 

 
Theorem 3.1 The approximate solution 3 2

0( , , , ) [ ] ( )k
h h h h hhq p u V L    obtained by the HDG 

method (13) can be written with respect to the local solvers as 
 

,

,

,

h h D

h h D

h h D

q Q Qu Qf

p P Pu Pf

u U Uu Uf





 
 

  


  

 

(18)

where h  satisfies 

 
2
0( , ) ( ), for all ( ),h h h ha m b m m L     (19)

where 
 

ˆ( , ) ,

ˆ ˆ( )     .

h

h

h h h

h D

a m Q mn

b m Qu Qfmn

  



   

  
 

 
(20)

 
Proof.  It is clearly seen as a reference to [20] and [28] rewriting (19) with respect to the last 
equation called as conservativity condition in (13). 
 
Remark 2.2 The logarithm of the ratio of the two consecutive errors for the two HDG ap-
proximations with consecutive meshes are given as convergence order of the approximate 
solution and  
 0h Ch    

 

where   is convergence order, C  is a constant number independent of h . Also, 
 
 

 
ˆ ˆmax | ( )( ) |

h
h h

e
u u u u e

 
    

 
and the stability parameter 1   is taken on h  in each examples. 

 
4. Numerical examples 

 
In this section, two numerical examples are given to test the convergence order and accuracy 
of the HDG approximation for NFBVPs using MATLAB 2014a. 
 
Example 4.1 Consider the following nonlocal fractional boundary value problem [19, 29] 
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( ) ( ) ( ),    (0,1),1 2

(0) 0,   (1) ( ),  = { 0,1 }

C D u x u x f x

u u u

  
 

     
  

 

 

where
33 125 2 1

,  ,  = ,  = ,  (1)
2 196 5 40

e
u



   




     , 

3
2 2 3 2( ) ( (40 74 33) 4 (128 148 33))

40

e
f x x x x e x x x








       and the exact solution is 

given as 2 2 37 33
( ) ( )

20 40
u x x x x   . The error value and convergence order for 2L -norm are 

presented in Table 1. For 2k =  and 3k = , hu  and hq  converge with order  1k + . For 2,k 

hp  and ˆhu  converge with order 1k   whereas the HDG method captures the exact solution 

(up to the machine accuracy)  for hp  and ˆhu  in 3.k   However, the exact solution is captured 

for hu  and hq  in 4k = . 

 
Table 1. Convergence order and error result for Example 1. 

 

 0,hu u



 0,hq q




0,hp p


 2 ( )
ˆ

hLhu u




k N Error Order Error Order Error Order Error Order 

2 

8 1.78e-04  2.99  1.56e-04 2.99 3.87e-07 1.15  3.67e-08  0.87
16 2.24e-05  2.99  1.95e-05 3.00 1.90e-07 1.03  1.86e-08  0.99
32 2.80e-06  3.00  2.44e-06 3.00 9.45e-08 1.01  9.32e-09  0.99
64 3.51e-07  3.00  3.05e-07 3.00 4.73e-08 1.00  4.67e-09  1.00
128 4.39e-08  3.00  3.85e-08 2.99 2.36e-08 1.00  2.34e-09  1.00

3 

8 1.16e-06  4.00  1.31e-06 3.99 4.08e-11 3.86e-12 
16 7.27e-08  4.00  8.20e-08 3.99 2.92e-11 9.33e-13 
32 4.54e-09  4.00  5.14e-09 4.00 2.69e-10 5.42e-12 
64 2.86e-10  3.99  3.45e-10 3.90 2.15e-09 4.95e-11 

4 
4 1.93e-13    6.55e-13 3.61e-12 2.95e-13 
8 4.89e-12    2.08e-11 1.75e-10 7.61e-12 

16 7.26e-11    3.30e-10 5.70e-09 1.16e-10 

 
 

Example 4.2 Consider a fractional differential equation with three-point boundary conditions 
 

( ) ( ) 2 ( ) ( ),    (0,1),  

1 1 31 7
(0) 0,  (1) 2

8 2 49 8

CD u x u x u x f x

u u u u

     

         
   

 

 

where the fractional order 1.3  , 2 0.7(3)
( ) 2 2

(1.7)
f x x x x


  


, and the exact solution is 

given as 2( )u x x . Table 2 shows that for 1k  , the convergence order of the hu , hq , and the 

numerical trace ˆhu  is 1 while hp  slowly convergences to 1 unlike the others. For 2k = , the 

numerical solution hu , hq , hp , and the numerical trace ˆhu  capture the exact solution (up to 

the machine accuracy).  
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Table 2. Convergence order and error result for Example 2. 
 

 0,hu u



 0,hq q




0,hp p


 2 ( )
ˆ

hLhu u




k N Error Order Error Order Error Order Error Order 

1 

8 1.79e-03 1.54 4.36e-03 1.04 2.71e-02 0.48 1.90e-03 0.99 
16 7.78e-04 1.20 2.26e-03 0.95 1.83e-02 0.57 9.81e-04 0.95 
32 3.76e-04 1.05 1.17e-03 0.95 1.16e-02 0.65 5.02e-04 0.97 
64 1.87e-04 1.01 5.95e-04 0.97 7.15e-03 0.70 2.54e-04 0.98 
128 9.36e-05 1.00 3.00e-04 0.99 4.31e-03 0.73 1.27e-04 0.99 

2 
4 4.50e-15  1.21e-14  1.38e-13  4.41e-15  
8 7.56e-15  2.59e-14  3.30e-13  9.21e-15  

16 8.70e-15  4.22e-14  5.07e-13  1.53e-14  

 
 

4. Conclusion 
 
In this paper, the numerical solution of a NFBVP is investigated using HDG method. The 
HDG method captures the exact solution (up to the machine accuracy) of these problems by 
increasing the degree of the polynomial basis functions. The convergence order and error 
show the effective performance of the HDG method on the problem under consideration. 
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