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Kolorektal kanser, kolonoskopi sırasında gözden kaçan poliplerin bilgisayar destekli 

tanı sistemi ile tespit edilmesiyle potansiyel olarak önlenebilir. Endoskopi 

uzmanlarına yardımcı olmak amacıyla, gerçek zamanlı polip tespiti için yolov5 ve 

yolov6 modelleri kullanılarak performans ve hız analizi yapılmıştır. Polip tespiti için 

you look only once v5 (yolov5) ve you look only once v6 (yolov6) modelleri 

kullanılmıştır. Nesne tespiti modellerini eğitmek için açık kaynaklı bir veri setine 

yeni bir özel veri seti eklenmiştir. Bulgular, yolov5x ve yolov6l modelleri için 

ortalama doğruluk (mAP50) oranlarının sırasıyla 0.896 ve 0.913 olduğunu 

göstermiştir. Yolov5x ve yolov6l modelleri karşılaştırıldığında, yolov5x'in daha 

yüksek bir doğruluk oranına, yolov6l'nin ise daha yüksek bir duyarlılık oranına 

sahip olduğu belirlenmiştir. Modeller, literatürdeki diğer araştırmalarla 

karşılaştırıldığında, yolov5x ve yolov6l'nin sırasıyla duyarlılık (0.893) ve f1-skoru 

(0.876) açısından önceki çalışmalardan daha başarılı olduğu görülmüştür. 
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Gerçek zamanlı polip tespiti 
Yolov5 
Yolov6 
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 Colorectal cancer can potentially be prevented by detecting polyps missed during 

colonoscopy using a computer aided diagnosis system. In order to help endoscopy 

specialists, a performance and speed analysis were carried out utilizing the yolov5 

and yolov6 models for real-time polyp detection. You look only once v5 (yolov5) 

and you look only once v6 (yolov6) models were used for polyp detection. To train 

object detection models, a new private dataset was added to the open-source dataset. 

The findings showed that the mean average precision 50 (mAP50) rates for yolov5x 

and yolov6l were 0.896 and 0.913, respectively. After comparing yolov5x and 

yolov6l, it was determined that yolov5x had superior precision while yolov6l had 

superior recall. When models were compared to other research in the literature, 

yolov5x and yolov6l succeeded better than previous studies in terms of recall 

(0.893) and f1-score (0.876), respectively.  
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1. Introduction 
According to data from the American Cancer Society, colorectal cancer is the second leading cause of 

cancer-related deaths worldwide (Rahim et al., 2021). Colorectal cancer is the term used to describe the 

gradual development of malignant tumors from benign polyps in the colon and rectum (Pacal and 

Karaboga, 2021). Polyps can be detected by colonoscopy (Pacal et al., 2022). Research suggests that a 

considerable proportion of polyps, as many as 28%, may be missed during a colonoscopy (Wang et al., 

2021). In order to combat colorectal cancer, professionals may find it useful to use an automated 

diagnosis system that was created for polyp identification. 

In recent years, object detection models have advanced significantly and are now widely employed in a 

variety of industries, including healthcare. Using two-stage models yields good results for problems 

involving object detection. Furthermore, one-stage versions have gained popularity recently (Lin et al., 

2017). Two-stage models are exemplified by the region-based convolutional neural networks (R-CNN) 

series. A convolutional neural network is used to extract characteristics from generated region proposals 

in a region-based convolutional neural network (Girshick et al., 2014). A support vector machine is used 

to classify the regions based on the features that were extracted (Girshick et al., 2014). Fast region-based 

convolutional neural network (Girshick, 2015) is a single-stage object identification model that arranges 

locations according to convolution-based assumptions. It synchronizes region proposals with the 

pooling of regions of interest. The region proposal network is used to create region proposals at various 

sizes on feature maps in the faster region-based convolutional neural network (Ren et al., 2017), which 

is the more sophisticated variant of the fast region-based convolutional neural network. The region 

proposal network helps to improve the quality of region proposals and produce more accurate outcomes. 

One example of a single-stage model is yolo. The single shot detector model is an additional single-

stage model (Liu et al., 2016). According to Redmon et al. (2016), yolov1 predicts items in a single 

network and considers object identification tasks to be a regression problem. To increase the accuracy 

performance of yolov1, yolov2 uses anchor boxes instead of a fully connected network (Redmon and 

Farhadi, 2017). The feature extractor network's residual connections (He et al., 2016) enable the 

extraction of superior features in yolov3 (Redmon and Farhadi, 2018). Building on the success of earlier 

iterations, yolov4 (Bochkovskiy et al., 2020) is an upgraded version that incorporates a number of 

improvements to achieve greater speed and accuracy. The main concept of a single shot detector is to 

detect objects immediately on a single network pass, eliminating the need for post-processing or extra 

proposal creation (Liu et al., 2016). Despite their high accuracy, two-stage models are not suitable for 

real-time problems due to their speed (Lin et al., 2017). Yolo's novel network architecture enables high 

accuracy performance free from speed fluctuations. As a result, the yolo series can be used for tasks 

involving object recognition in real time. 

Significant research on polyp detection has recently been carried out in the literature with the 

introduction of object identification models based on convolutional neural networks. Rahim et al. (2021) 

improved feature extraction and polyp detection on colonoscopy images by using convolution kernels 
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of different sizes. Following a variety of augmentation methods, images were entered into a 16-

convolution model. Two fully linked layers and a softmax function were then used to make predictions. 

Their findings showed that the suggested convolutional neural network model has a f1-score of 88.30%, 

82.92% sensitivity, and 94.44% precision.  

In their work, Pacal and Karaboga (2021) improved the yolov4 model for real-time polyp recognition. 

They accomplished this by using a number of models as the feature extractor, with distance intersection 

over union (Zheng et al., 2020) serving as the loss and mish (Misra, 2019) serving as the activation. 

They claimed that the accuracy was increased by employing input of varying sizes. Yolo models were 

said to be effective at detecting polyps in real time.  

Chen et al. (2021) used faster r-cnn to detect polyps in their investigation. In order to make the polyps 

more noticeable, they preprocessed the colonoscopy images by increasing the contrast. They added a 

self-attention module to the feature extractor network in order to improve the quality of the feature map. 

Their findings showed that the suggested model had a 0.934 f1-score, 0.925 recall, and 0.943 precision. 

In order to achieve excellent performance in polyp identification, Pacal et al. (2022) employed the cross 

stage partial network (Wang et al., 2020) in the neck and head networks of yolov3 and in the backbone 

network of yolov4. It was shown that the false positive rate is decreased by include negative samples. 

Other networks came out worse than the suggested yolov4 cross stage partial (yolov4-csp) model. 

In order to perform data augmentation on image data for polyp detection in their experiment, Qian et al. 

(2022) used a conditional generative adversarial network (Mirza and Osindero, 2014) because they 

lacked colonoscopy images. By using skip connection and dilated convolution, they enhanced the 

yolov4's architecture. Based on the results, the suggested model produced 17.2 frames per second and 

an average precision of 92.37%. 

Karaman et al. (2022) adjusted the yolo models' hyperparameters using the artificial bee colony 

algorithm. Following the recommended modification, the scaled-yolov4 (Wang et al., 2021) model's 

mean average precision value and f1-score both increased by 2% and 3%, respectively. Tang et al. (2022) 

employed image processing techniques to simulate the narrow band imaging approach used during 

colonoscopy. When compared to the original images, the multi-scale retinex approach was more 

successful in identifying polyps. 

In this work, the most recent yolo models, yolov5 and yolov6 (Li et al., 2022), were used to create an 

automated diagnostic solution for real-time polyp identification. This study's primary goal is to evaluate 

the yolov5 and yolov6 model variants' performance and speed. Open-source data and a new private 

dataset were used as the datasets. The private dataset only included a tiny amount of data, thus data 

augmentation techniques such motion blur, rotation 90 degrees, and vertical and horizontal flips were 

applied. To lower the amount of false positives, negative samples were added to the training set of data. 

Precision, recall, f1-score, f2-score, mAP50, and mAP50:95 metrics were used to compare the models' 

performance. The models were also put through a speed test. The yolov5x and yolov6l models were also 

compared with previous studies in the literature.  
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This study offers the following contributions that are different from other studies for real-time polyp 

detection: 

 Performance comparison of the accuracy and speed of yolov5 and yolov6 models. 

 A new dataset for polyp detection was created and validated by an endoscopy specialist. 

 The performance in polyp detection was significantly improved by using data augmentation 

techniques.  

The rest of the content of this research is divided into the following sections: In Section 2, the materials 

and methods of this study are presented. Section 3 consists of performance metrics, experimental results 

of the models, and discussions about the results. Section 4 gives the conclusion and future research.  

 

2. Materials and Method 

In this study, real-time polyp detection was carried out using yolov5 and yolov6 models.  

 

2.1. Dataset 

In this study, open source datasets and private dataset were used for polyp detection. Table 1 provides 

comprehensive details about the dataset.  

 

Table 1. Detailed information about the dataset. 

 Training Testing Total 

CVC-ColonDB  (Bernal et al., 2012) 244  56 300 
ETIS (Silva et al., 2014) 157  39 196 

Kvasir-SEG (Jha et al., 2020) 800  200 1000 
CVC-ClinicDB (Bernal et al., 2015) 500  112 612 

Private dataset 516  122 638 
Total 2217  529 2746 

 

There are 2217 and 529 data points for training and test, respectively, in Table 1. A new private dataset 

was created in this study. The private dataset was obtained from a private healthcare facility in Turkey, 

while the open-source datasets were sourced via online sites. Video recordings were gathered following 

the acquisition of the required ethical permissions. An endoscopic specialist recognized and annotated 

frames in the videos that included polyps. Data augmentation was used because the private dataset only 

contained a small number of images. For the private dataset in this investigation, data augmentation 

techniques such as vertical flip, horizontal flip, rotate 90, and motion blur were used. The albumentations 

(Buslaev et al., 2020) library was used for data augmentation. In addition, it was stated in the study by 

(Pacal et al., 2022) that adding negative sample to the training data reduces the false positive rate. 

Therefore, 765 negative sample images were added to the training data in this study. The added negative 

samples are images that do not contain polyps. In addition to negative sample processing and data 

augmentation, no other preprocessing was used. Following these methods, Table 2 provides the dataset 

information.  
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Table 2. Relevant details about the dataset after taking data augmentation methods. 

 Training Testing Total 

CVC-ColonDB  244  56 300 
ETIS  157  39 196 

Kvasir-SEG 800  200 1000 
CVC-ClinicDB 500  112 612 
Private dataset 516  122 638 

Private dataset(Horizontal flip) 516 - 516 
Private dataset(Vertical flip) 516 - 516 

Private dataset(Rotate 90) 516 - 516 
Private dataset(Motion blur) 516 - 516 

Negative sample 765 - 765 
Total 5046  529 5575 

 

Table 2 shows that while the quantity of data for test stays the same, the number of data for training 

expands from 2217 instances to 5046 instances. In Figure 1, some examples from the private dataset are 

shown. The red bounding box represents the ground truth of a polyp. 

 
 
 
 
 
 
 
 
 

                                   (a)                                                    (b)                                                    (c) 
 
 
 
 
 
 
 
  
                        

                                                                (d)                                                     (e)              
Figure 1. Example of images from the dataset. (a) Original image, (b) Horizontal flip,  (c) Vertical flip, (d) 

Rotate 90,  (e) Motion blur 

 

2.2. Yolov5 

Cross stage partial network is used as a backbone in yolov5. Cross stage partial network consists of 

cross stage partial modules from which information is extracted using convolution filters. Cross stage 

partial modules learn features using convolution, gain stability using batch normalization, and perform 

smooth optimization using mish activation (Sun et al., 2022). Information from the upper layers is 

transmitted to the lower layers using feature pyramid network to enhance the fusion feature in the neck 

network (Mushtag et al., 2023). In addition, spatial information of feature pyramids is aggregated and 

sent to the head via path aggregation network (Liu et al., 2018). Similar to the previous series, the head 
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network predicts the bounding box, object accuracy score, and object category. From the fewest to the 

most in terms of parameters, the models in yolov5 are N, S, M, L, and X. Architecture of the yolov5 

models are given in Figure 2. 

 

Figure 2. Architecture of the yolov5 models (Kurniawan et al., 2024). 

2.3. Yolov6 

Yolov6 proposes small and large models for different purposes as a one-stage model. While large models 

yield better results with the increase in parameters, the single path architecture creates a cost for large 

models. For small models, the single path architecture provides a consistency in terms of cost. Yolov6 

shows high performance without sacrificing inference with domain-specific methods and cutting-edge 

quantization methods (Li et al., 2022). The models in yolov6 range in size from the smallest to the largest 

with respect to the quantity of parameters: N, T, S, M, and L. Figure 3 shows the architecture of the 

yolov6 N and S models. 

 

Figure 3. Architecture of the yolov6 N and S models (Li et al., 2022). 
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A backbone called efficientrep, which includes cross stage partial (Wang et al., 2020) blocks 

representing strong feature characteristics, is introduced for the backbone network. Thanks to the 

structural design of the multi-branch methodology and the reparameterization technique used during the 

training, repblocks (Ding et al., 2021) offers an optimal compromise between speed and accuracy.  

A network architecture called a path aggregation network is intended to increase information flow and 

feature fusion. By allowing both top-down and bottom-up paths to aggregate features across several 

levels of a neural network, it expands on the concept of feature pyramids. In the neck network, the path 

aggregation network strengthens the information feature by performing fusion integration with feature 

aggregation at the layers (Xiao et al., 2022). The residual module located in the cross stage partial block 

provides a deep network, and the cross stage partial modules implement cross-stage hierarchy. Yolov6 

uses the efficient decoupled head module for the head network. Hybrid-channel integration was provided 

for better performance. Yolov6 uses focal loss based varifocal loss (Zhang et al., 2021) to minimize 

classification loss. Varifocal loss is given in Equation 1. 

 

𝑙𝑜𝑠𝑠𝑣𝑎𝑟𝑖𝑓𝑜𝑐𝑎𝑙 = {
−𝑞(𝑞𝑙𝑜𝑔(𝑝) + (1 − 𝑞) log(1 − 𝑝)), 𝑞 > 0

−𝛼𝑝𝛾log⁡(1 − 𝑝), 𝑞 = 0
 

(1) 

 

where, 𝑝 is the predicted classification score based on localization-aware, and 𝑞 is the actual value. 𝛾 is 

adjustable parameter and defined as 𝛾 ≥ 0. 

Yolov6 uses scylla intersection over union (Gevorgyan, 2022) and generalized intersection over union 

(GIoU) (Rezatofighi, 2019) to localize bounding boxes. Equation 2 gives the generalized intersection 

over union loss function. 

 

𝑙𝑜𝑠𝑠𝐺𝐼𝑜𝑈 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
−
𝐶/(𝐴 ∪ 𝐵)

|𝐶|
 

(2) 

 

where, 𝐴 represents the predicted bounding box, whereas 𝐵 represents the actual bounding box. The 

smallest convex object that encloses a given shape or set of points is referred to as 𝐶.   

Distribution focal loss (DFL) (Xiang, 2020) is used as probability loss for the M and L models of yolov6. 

Distribution focal loss is given in Equation 3. 

 

𝑙𝑜𝑠𝑠𝐷𝐹𝐿(𝑆𝑖, 𝑆𝑖+1) = −((𝑦𝑖+1 − 𝑦) log(𝑆𝑖) + (𝑦 − 𝑦𝑖)log⁡(𝑆𝑖+1)) (3) 

 

where, 𝑦 is the target value, 𝑆𝑖 and 𝑆𝑖+1 are defined as 𝑆𝑖 =
𝑦𝑖+1−𝑦

𝑦𝑖+1−𝑦𝑖
 and 𝑆𝑖+1 =

𝑦−𝑦𝑖

𝑦𝑖+1−𝑦𝑖
, respectively. 
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3. Findings and Discussion 

In this study, real-time polyp detection was performed using the yolov5 and yolov6 object detection 

models. Different models of yolov5 and yolov6 were compared with each other. Additionally, the best 

yolov5 and yolov6 models in terms of mAP50 were also compared with previous studies in the literature. 

Precision, recall, f1-score, f2-score, mAP50 and mAP50:95 were used as evaluation metrics. 

In this study, training and tests were conducted on ubuntu 20.04 operating system. Computer hardware 

specifications are as follows: Intel Core i7-10700 CPU (Central Processing Unit) 2.90GHz, Nvidia 

GeForce 3060 12GB GPU (Graphic Processing Unit), 16GB RAM (Random Access Memory). 

 

3.1. Performance Evaluation Metrics 

The intersection over union (IoU) measure is the fundamental performance evaluation information for 

identifying objects. In Equation 4, the intersection over union metric is presented. 

 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵′ ∩ 𝐵)

𝑎𝑟𝑒𝑎(𝐵′ ∪ 𝐵)
 

(4) 

 

where, the intersection region between the region of interests is represented by the numerator. The union 

area between the region of interests is represented by the denominator. The intersection over union 

value, similar to the classification, can potentially used to generate a confusion matrix. Using the 

components of the confusion matrix, metrics can be calculated. Calculated metrics are given in 

Equations 5, 6, 7 and 8, respectively. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(5) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6) 

 

𝑓1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(7) 

𝑓2𝑠𝑐𝑜𝑟𝑒 =
5 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

4 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(8) 

 

Precision-recall curve can be obtained by using different intersection over union threshold values.  The 

precision-recall curve is commonly used to compute the mean average precision given in Equation 9.  
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𝑚𝐴𝑃 =
1

𝑘
∑𝐴𝑃𝑙

𝑘

𝑙=1

 
(9) 

 

where, 𝑘 is the number of classes, 𝐴𝑃 is the average precision value for class 𝑙. 

 

3.2. Yolov5 Test Results 

In this study, yolov5 models were trained at 400 epochs. During training, the batch size and image size 

of the models were set to 32 and 512, respectively, and the optimization algorithm was set to adam 

(Diederik, 2014). The learning rate and momentum hyperparameters for adam optimization were set to 

0.0032 and 0.843, respectively. Models were evaluated using a 0.5 confidence and intersection over 

union threshold. Table 3 provides the performance results of the yolov5 models. 

Table 3. Outcomes of the yolov5 models. 

Models Precision Recall F1-Score F2-Score mAP50 mAP50-95 
Yolov5n 0.865 0.825 0.844 0.832 0.860 0.694 
Yolov5s  0.897 0.821 0.857 0.835 0.878 0.744 
Yolov5m 0.920 0.807 0.859 0.827 0.882 0.772 
Yolov5l 0.901 0.858 0.878 0.866 0.891 0.767 
Yolov5x 0.909 0.847 0.876 0.858 0.896 0.783 

 

The performance outcomes of the models utilizing the accuracy, recall, f1-score, f2-score, mAP50, and 

mAP50:95 metrics are given in Table 3. According to the results obtained, the yolov5m model achieved 

the highest precision value of 0.92. This means that the yolov5m model achieved the lowest false 

positive value in the detection of polyps. The yolov5l model achieved the highest recall value of 0.858. 

In the case of not missing polyp identification, the yolov5l model performs the best. The yolov5l model 

achieved the best score in regarding the f1-score with 0.878. This suggests that the L model offers the 

optimum precision and recall arrangement. The yolov5l model outperformed in terms of f2-score with 

a value of 0.866 compared to other models. Since f2-score gives more weight to the recall metric, this 

indicates that the yolov5l performs the greatest performance with respect to the recall when considering 

the f2-score metric. According to the mAP50 and mAP50:95 metrics, the yolov5x model achieved 

superior performance compared to other studies with values of 0.896 and 0.783, respectively. Therefore, 

the yolov5x model outperformed other models in polyp detection at different intersection over union 

thresholds. Table 4 provides the speed test outcomes of the yolov5 models. 

Table 4. The speed test outcomes of the yolov5 models. 

Models (B, C, W, H) Preprocess(ms) Inference(ms) NMS(ms) Total(ms) 
Yolov5n (32, 3, 512, 512) 0.1 1.1 0.9 2.1 
Yolov5s  (32, 3, 512, 512) 0.1 2.4 0.9 3.4 
Yolov5m (32, 3, 512, 512) 0.1 5.6 1.3 7 
Yolov5l (32, 3, 512, 512) 0.1 10.2 2.0 12.3 
Yolov5x (32, 3, 512, 512) 0.1 17.4 1.8 19.3 
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In Table 4, batch size is 32, images are 3-channel and image size is 512. In the table, the preprocess time 

of all models is 0.1 ms. In terms of NMS(Non Maximum Suppression) time, the fastest model is yolov5n 

and yolov5s with 0.9 ms, while the slowest model is yolov5l with 2.0 ms. Models with more parameters 

have a higher inference time. The yolov5n model with the fewest parameters, which has an inference 

time of 2.1 ms, is the fastest model, while the yolov5x model with the most parameters, which has an 

inference time of 19.3 ms, is the slowest. The yolov5n is the most efficient when thinking of overall 

time, while the slowest model is the yolov5x model. The yolov5m, with its 0.772 mAP50:95 value and 

7 ms speed, provides the best accuracy-to-speed balancing. A few instances of the yolov5x outcomes 

for object detection are shown in Figure 4. 

 

Figure 4. Examples of images containing predictions of the yolov5x model for polyp detection.  

 

The bounding boxes shown in Figure 4 correspond to the true regions, indicated by the green boxes, and 

the detected regions, indicated by the red boxes. 

 

3.3. Yolov6 Test Results 

In this study, yolov6 models were trained at 400 epochs. During training, the batch size and image size 

of the models were set to 32 and 512, respectively and the optimization algorithm was set to adam. The 

learning rate and momentum hyperparameters for adam optimization were set to 0.0032 and 0.843, 

respectively.  The intersection over union and confidence thresholds were both set to 0.5 to evaluate 

models. Table 5 provides the performance outcomes of yolov6 models.  
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Table 5. Outcomes of the yolov6 models. 

Models Precision Recall F1-Score F2-Score mAP50 mAP50-95 
Yolov6n 0.854 0.777 0.814 0.791 0.873 0.632 
Yolov6t 0.761 0.843 0.800 0.825 0.864 0.637 
Yolov6s 0.785 0.840 0.811 0.828 0.857 0.632 
Yolov6m 0.832 0.875 0.853 0.866 0.881 0.678 
Yolov6l 0.842 0.893 0.867 0.882 0.913 0.710 

 

Table 5 shows that the yolov6n model, with a rate of 0.854, offers the greatest precision value. This 

suggests that the N model performs the best at avoiding false-positive polyp detection. The yolov6l 

model, with a ratio of 0.893, offers the greatest recall value. The L model has the least number of missed 

detections in terms of detecting polyps compared to other models. The yolov6l model, with a ratio of 

0.867, achieves the greatest f1-score. This implies that the L model has the highest precision to recall 

ratio when compared to other models. With a rate of 0.882, the yolov6l model has the highest f2-score. 

This suggests that, when using the f2-score metric, the yolov6l model performs the best with respect to 

the recall. The yolov6l model has the highest mAP50 and mAP50:95 metrics with rates of 0.913 and 

0.71, respectively. This indicates that, when it comes to recognizing polyps at various intersection over 

union thresholds, the yolov6l model outperforms the other models. Table 6 provides the speed test 

outcomes of yolov6 models.  

Table 6. The speed test outcomes of the yolov6 models. 

Models (B, C, W, H) Preprocess(ms) Inference(ms) NMS(ms) Total(ms) 
Yolov6n (32, 3, 512, 512) 0.12 1.24 0.56 1.92 
Yolov6t  (32, 3, 512, 512) 0.11 2.26 0.56 2.93 
Yolov6s (32, 3, 512, 512) 0.09 3.07 0.69 3.85 
Yolov6m (32, 3, 512, 512) 0.09 6.40 0.64 7.13 
Yolov6l (32, 3, 512, 512) 0.09 10.08 0.61 10.78 

 

In Table 6, batch size is 32, images are 3-channel and image size is 512. According to the results 

obtained, the fastest models in terms of preprocessing time are yolov6s, yolov6m, and yolov6l with 0.09 

ms, while the slowest model is yolov6n with 0.12 ms. In terms of NMS, the fastest models are yolov6n 

and yolov6t with 0.56 ms. The slowest model in terms of NMS is yolov6s with 0.69 ms. Due to its 

significantly larger parameter count, the yolov6l model demonstrates the slowest inference time, taking 

approximately 10.08 milliseconds. With the smallest parameter count among the models, the yolov6n 

model achieves the fastest inference time, completing in just 1.24 milliseconds.  

In terms of the overall time elapsed, it can be observed that the yolov6l model exhibits a comparatively 

slower performance, while the yolov6n model demonstrates superior speed. In terms of speed, the 

models from the fastest to the slowest are the N, T, S, M, and L models. The yolov6t model presents an 

optimal compromise with regard to accuracy and speed, offering a commendable mean average 

precision (mAP50:95) rate of 0.637 alongside a swift inference time of 2.93 milliseconds. Figure 5 

shows example images containing the polyp predictions of the yolov6l model. 
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Figure 5. Examples of images containing predictions for polyp detection by the yolov6l model. 

 

Figure 5 depicts the actual box, which is shown in green, and the detected box, which is shown in blue. 

When yolov5 and yolov6 were compared, the yolov5m model obtained the highest precision value with 

0.92. In terms of precision, the other models of the yolov5 also outperformed all the models of the 

yolov6. From this, it can be inferred that the false positive rate of yolov5 models is smaller compared to 

yolov6 models. In terms of recall, the yolov6l and yolov6m models outperformed all models of yolov5 

with a ratio of 0.893 and 0.875, respectively. This indicates that the ability to not miss polyps is better 

in yolov6. The yolov5l model was particularly better than all of the yolov6 models, with a f1-score ratio 

of 0.878. It is clear from comparing the yolov6 and yolov5 models that the yolov5 model provides the 

best balance between precision and recall. The yolov6l model, which obtained a mAP50 score of 0.913, 

performed better than any of the yolov5 models. This suggests that the yolov6l model is the best option 

in regard to mAP50 when using an intersection over union threshold of 0.5. With a mAP50:95 score of 

0.783, the yolov5x model performed better than any of the yolov6 variants. In terms of mAP50:95 at 

various intersections over union thresholds, this suggests that yolov5x performed better than the other 

models of yolov6. 

The slowest model among the yolov5 models is yolov5x, which has a speed of 19.3 ms, while the slowest 

model among the yolov6 models is yolov6l, which has a speed of 10.78 ms. Compared to the yolov5x 

model, the yolov6l model exhibits an 8.52 ms speed advantage. With an impressive speed of 2.1 ms, the 

yolov5n model is the fastest of the examined yolov5 versions. At 1.92 ms, the yolov6n model is the 

quickest of the yolov6 variants. Yolov6n model is faster than yolov5n model. The evaluation revealed 

that the yolov6 models exhibit superior speed in the context of polyp detection compared to the yolov5 
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models. The yolov5x and yolov6l models, which show the best performance in terms of the mAP50:95 

metric, are compared with previous studies in the literature that perform polyp detection in Table 7. 

 

Table 7. Comparison of yolov5x and yolov6l models with previous studies in the literature. 

Paper Method Precision Recall F1-Score F2-Score mAP50 mAP50-95 
Proposed 

models 
Yolov5x 0.909 0.847 0.876 0.858 0.896 0.783 
Yolov6l 0.842 0.893 0.867 0.882 0.913 0.710 

(Shin et al., 

2018) 
Faster R-

CNN 
0.815 0.803 0.809 - - - 

(Pacal and 

Karaboga, 

2021) 

Yolov4-CSP 0.916 0.825 0.868 - - - 

(Karaman et 

al., 2022) 
Yolov4-

CSP+ABC 
0.860 0.840 0.850 - 0.890 - 

(Taş and 

Yılmaz, 

2021) 

Faster R-

CNN 
0.710 0.844 0.770 0.810 - - 

(Xu et al., 

2021) 
Yolov3 0.832 0.716 0.770 0.736 - - 

(Sornapudi 

et al., 2019) 
R-CNN 0.729 0.802 0.764 - - - 

 

The performance results of studies that carried out polyp detection in the literature, along with the 

proposed yolov5x and yolov6l models, are given in Table 7. Based on the acquired results, the yolov4-

CSP model, as suggested by (Pacal and Karaboga, 2021), exhibited the highest precision performance, 

attaining a value of 0.916. This indicates that the yolov4-CSP model proposed by (Pacal and Karaboga, 

2021) has the least false detections. The precision value of the yolov5x model is 0.909. The yolov5x 

model exhibits the highest precision performance compared to the other studies, with a precision value 

very similar to that of the yolov4-CSP model proposed by (Pacal and Karaboga, 2021). Compared to 

other studies, the yolov6l and yolov5x models exhibit the best performance with recall values of 0.893 

and 0.847, respectively. This indicates that the yolov6l and yolov5x models have the best capacity to 

identify polyps. The yolov5x model displayed the best performance in terms of the f1-score metric, with 

a value of 0.876. After the yolov5x model, the yolov4-CSP model put forward by Pacal and Karaboga 

(2021) obtained the greatest f1-score value of 0.868. The yolov5x and yolov6l models we suggested 

operate differently from the yolov4-CSP model put forward by Pacal and Karaboga (2021). The yolov4-

CSP model performed the best in terms of precision. Our suggested yolov6l model, however, performed 

better than the yolov4-CSP model in terms of recall. The yolov5x model offered the best results in terms 

of the f1-score. The yolov5x model performed better than the yolov6l and yolov4-CSP models because 

the f1-score is the harmonic mean of recall and precision. At a value of 0.882, the yolov6l model had 

the best performance in terms of the f2-score metric. Furthermore, the yolov5x model trailed the yolov6l 

model with a value of 0.858, achieving the second-best performance. The yolov3 proposed by Xu et al. 

(2021) and the quicker R-CNN proposed by Taş and Yılmaz (2021) both achieved f2-score values of 

0.736 and 0.81, respectively. Our suggested models performed better than the models in the references 
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(Taş and Yılmaz, 2021) and (Xu et al., 2021), especially when it came to the f2-score metric. 

Furthermore, the yolov6l model showed the best performance when taking the mAP50 measure into 

account, with a value of 0.913. This suggests that the yolov6l model obtained the highest average 

precision value when the intersection over union threshold was set to 0.5. The yolov5x model has the 

highest mAP50 value (0.896), followed by yolov6l. The yolov4-CSP+ABC model put forward by 

Karaman et al. (2022) has a mAP50 value of 0.89. The yolov5x and yolov6l models performed better 

than the yolov4-CSP+ABC model put forward by Karaman et al. (2022) in terms of mAP50. There was 

no information regarding mAP50:95 in other studies. As a result, yolov5x performed better than yolov6l 

when our suggested models were evaluated, with a mAP50:95 score of 0.783. 

The quicker R-CNN model achieved precision, recall, and f1-score values of 0.815, 0.803, and 0.809, 

respectively, according to the research conducted by Shin (2018). Our suggested models outperformed 

the quicker R-CNN model put forward by Taş and Yılmaz (2021) in terms of precision, recall, and f1-

score measures. Taş and Yılmaz (2021) reported that the quicker R-CNN model achieved a recall value 

of 0.844. This figure is poorer than our models, but it is better than other studies. The precision value of 

the yolov3 proposed by Xu et al. (2021) was 0.832. This result is worse than yolov5x and yolov6l, but 

better than the models put forward by Taş and Yılmaz (2021) and Sornapudi et al. (2019). With a ratio 

of 0.802, the R-CNN model put forward by Sornapudi et al. (2019) performs better than the yolov3 

model put forward by Xu et al. (2021), but it is still inferior to our models and previous research. 

 

3. Conclusions 

Through the identification of polyps, computerized detection has the potential to reduce the death rate 

associated with colorectal cancer. The death rate from colorectal cancer can be decreased by using 

computer-aided diagnosis methods to detect polyps. By identifying polyps, computer-aided diagnostic 

tools can lower the death rate from colorectal cancer. Consequently, within the framework of this 

investigation, real-time polyp detection was carried out using the yolov5 and yolov6 object detection 

models. To enhance the performance of object detection, this study incorporated data augmentation 

techniques and introduced negative samples into the training data to mitigate the false positive rate. 

According to the obtained results, the yolov6l model outperformed the yolov5x model, which had a 

mAP50 value of 0.896, with a mAP50 value of 0.913. When considering the mAP50-95 measure, the 

yolov5x model scored better than the yolov6l model, with a mAP50-95 score of 0.783 versus 0.71. The 

matching yolov5 models were all outperformed by the yolov6 in terms of speed. Additionally, with f1-

score values of 0.876 and 0.867, respectively, the yolov5x and yolov6l models outperformed earlier 

models documented in the literature. In future studies, real-time multi-class polyp detection is going to 

be carried out as a computerized diagnostic system. 
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