
ABSTRACT: In this work, we establish a new matrix by using Lucas numbers and define a new sequence space. 
Besides, we give some inclusion relations and investigate the geometrical properties such as Banach-Saks type , 
weak fixed point property for this space. 
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ÖZET: Bu makalede, Lucas sayılarını kullanarak yeni bir matris oluşturuyoruz ve yeni bir dizi uzayı tanımlıyoruz. 
Ayrıca bu uzay için bazı kapsama bağıntıları veriyoruz ve uzayın p tipi Banach-Saks, zayıf sabit nokta gibi 
geometrik özelliklerini araştırıyoruz.

Anahtar Kelimeler: Banach-Saks özelliği, fark matrisi, fark dizi uzayları, lucas sayıları, zayıf sabit nokta özelliği
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INTRODUCTION

Recently, (Kara, 2013) has defined and studied 
Fibonacci difference sequence spaces. According to his 
study, we have examined the Lucas difference sequence 
space  and have shown that this space is a Banach -space 

and also is linear isomorphic to 

2 
 

All real and complex valued sequences are represented by 𝑤𝑤. A sequence space is linear 20 

subspace of 𝑤𝑤. Throughout the paper ℓ∞,ℓ𝑝𝑝(1 ≤ 𝑝𝑝 < ∞), 𝑐𝑐, 𝑐𝑐0 characterise the spaces 21 

of all bounded, 𝑝𝑝-absolutely summable, convergent and null sequences.  22 

Let 𝐵𝐵 = (𝑏𝑏𝑛𝑛𝑛𝑛) be an infinite matrix of real numbers 𝑏𝑏𝑛𝑛𝑛𝑛 (𝑛𝑛,𝑘𝑘 = 1,2, … ) and 𝑋𝑋,𝑌𝑌 be 23 

two sequence spaces. It is said that the matrix 𝐵𝐵 describes a matrix transformation from 24 

𝑋𝑋 into 𝑌𝑌, and we symbolize it 𝐵𝐵:𝑋𝑋 → 𝑌𝑌, if the sequence 𝐵𝐵𝐵𝐵 = (𝐵𝐵𝑛𝑛(𝐵𝐵)) is in 𝑌𝑌 for every 25 

𝐵𝐵 = (𝐵𝐵𝑛𝑛) ∈ 𝑋𝑋 where 26 

𝐵𝐵𝑛𝑛(𝐵𝐵) = ∑ 𝑏𝑏𝑛𝑛𝑛𝑛𝐵𝐵𝑛𝑛𝑛𝑛                                                                  (1) 27 

The sequence 𝐵𝐵𝐵𝐵 is said to be the 𝐵𝐵-transform of 𝐵𝐵 by the matrix 𝐵𝐵. The notation (𝑋𝑋,𝑌𝑌) 28 

shows the class of matrices 𝐵𝐵 such that 𝐵𝐵:𝑋𝑋 → 𝑌𝑌. Therefore 𝐵𝐵 ∈ (𝑋𝑋,𝑌𝑌) iff the series on 29 

the equality (1) converges for each 𝑛𝑛 ∈ ℕ and every 𝐵𝐵 ∈ 𝑋𝑋, and 𝐵𝐵𝐵𝐵 ∈ 𝑌𝑌 for all 𝐵𝐵 ∈ 𝑋𝑋.  30 

The matrix domain of 𝐵𝐵 for a sequence space 𝑋𝑋 is given by 31 

𝑋𝑋𝐵𝐵 = {𝐵𝐵 ∈ 𝑤𝑤:𝐵𝐵𝐵𝐵 ∈ 𝑋𝑋}                                                               (2) 32 

which is a sequence space. 33 

For the sequence whose 𝑛𝑛𝑡𝑡ℎ term is 1 and others are 0 for each 𝑛𝑛 ∈ ℕ, we’ll write 𝑒𝑒(𝑛𝑛) 34 

and also use 𝑒𝑒 = (1,1, … ). 35 

Recently, several authors have made use of the view of constituting sequence space by 36 

the help of matrix domain of an infinite triangle matrix, e.g., (Mursaleen and Noman, 37 

2010;Mursaleen and Noman, 2010;Mursaleen and Noman, 2011), (Mursaleen et al., 38 

2006), (Altay et al., 2006), (Başar and Altay, 2003), (Altay and Başar, 2005), (Savaş et 39 

al., 2009), (Karakaş, 2015), (Kara and Başarır, 2012). 40 

 for 
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The matrix domain 𝜆𝜆𝛥𝛥 is called the difference sequence space if λ is a normed or 41 

paranormed sequence space where Δ symbolizes the backward difference matrix 42 

∆= (∆𝑛𝑛𝑛𝑛) and ∆′= (∆′𝑛𝑛𝑛𝑛) symbolizes the transpoze of the matrix Δ, the forward 43 

difference matrix, which are identified by  44 

∆𝑛𝑛𝑛𝑛=  { (−1)𝑛𝑛−𝑛𝑛 ,              𝑛𝑛 ≥ 𝑘𝑘 ≥ 𝑛𝑛 − 1
         0,            𝑘𝑘 > 𝑛𝑛 𝑜𝑜𝑜𝑜 0 ≤ 𝑘𝑘 < 𝑛𝑛 − 1 

and 45 

∆′𝑛𝑛𝑛𝑛 =  { (−1)𝑛𝑛−𝑛𝑛 ,              𝑛𝑛 ≤ 𝑘𝑘 ≤ 𝑛𝑛 + 1
         0,            𝑘𝑘 > 𝑛𝑛 + 1 𝑜𝑜𝑜𝑜 0 ≤ 𝑘𝑘 < 𝑛𝑛 
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lim𝑛𝑛→∞
𝐿𝐿𝑛𝑛
𝐿𝐿𝑛𝑛−1

= 𝜑𝜑 (golden section), 80 

𝐿𝐿𝑛𝑛−1𝐿𝐿𝑛𝑛+1 − 𝐿𝐿𝑛𝑛2 = −5. (−1)𝑛𝑛. 81 

It can be easily derived by placing 𝐿𝐿𝑛𝑛+1 in the last equality that 𝐿𝐿𝑛𝑛−12 + 𝐿𝐿𝑛𝑛𝐿𝐿𝑛𝑛−1 − 𝐿𝐿𝑛𝑛2 =82 

−5(−1)𝑛𝑛. 83 

RESULTS AND DISCUSSION 84 

In the present section, we’ll firstly give the following new double band matrix �̂�𝐸 =85 

(�̂�𝐿𝑛𝑛𝑛𝑛) by means of the sequence (𝐿𝐿𝑛𝑛) of Lucas numbers for all 𝑛𝑛,𝑘𝑘 ∈ ℕ − {0}: 86 

�̂�𝐿𝑛𝑛𝑛𝑛 =

{
 
 
 
 −

𝐿𝐿𝑛𝑛
𝐿𝐿𝑛𝑛−1

,     𝑘𝑘 = 𝑛𝑛 − 1
𝐿𝐿𝑛𝑛−1
𝐿𝐿𝑛𝑛

,        𝑘𝑘 = 𝑛𝑛 
0,             𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒

 

The inverse of the above Lucas matrix can be easily calculated and it is given by 87 

�̂�𝐿−1 = {
𝐿𝐿𝑛𝑛2

𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘
,    𝑛𝑛 ≥ 𝑘𝑘 > 0

0,         𝑛𝑛 < 𝑘𝑘
. 88 

Now, we define the �̂�𝐸-transform of a sequence 𝑥𝑥 = (𝑥𝑥𝑛𝑛) in the form: 89 

𝑦𝑦𝑛𝑛 = �̂�𝐸𝑛𝑛(𝑥𝑥) = 𝐿𝐿𝑛𝑛−1
𝐿𝐿𝑛𝑛

𝑥𝑥𝑛𝑛 −
𝐿𝐿𝑛𝑛
𝐿𝐿𝑛𝑛−1

𝑥𝑥𝑛𝑛−1, 𝑛𝑛 ≥ 1.                                            (3) 90 

And now, let’s introduce the Lucas difference sequence spaces ℓ𝑝𝑝(�̂�𝐸) and ℓ∞(�̂�𝐸) in the 91 

form of 92 

ℓ𝑝𝑝(�̂�𝐸) = {𝑥𝑥 ∈ 𝑤𝑤:∑|𝐿𝐿𝑛𝑛−1𝐿𝐿𝑛𝑛
𝑥𝑥𝑛𝑛 −

𝐿𝐿𝑛𝑛
𝐿𝐿𝑛𝑛−1

𝑥𝑥𝑛𝑛−1|
𝑝𝑝
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𝑛𝑛

} , 1 ≤ 𝑝𝑝 < ∞ 

and 93 
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These spaces can be redefined with the help of equality (2) by 95 

ℓ𝑃𝑃(�̂�𝐸) = (ℓ𝑃𝑃)�̂�𝐸 , 1 ≤ 𝑠𝑠 < ∞ and ℓ∞(�̂�𝐸) = (ℓ∞)�̂�𝐸.                                    (4) 96 

Theorem 3.1. The sets ℓ𝑝𝑝(�̂�𝐸) and ℓ∞(�̂�𝐸) are Banach 𝐾𝐾-spaces with ‖𝑥𝑥‖ℓ𝑝𝑝(�̂�𝐸) =97 

(∑ |�̂�𝐸𝑛𝑛(𝑥𝑥)|𝑝𝑝𝑛𝑛 )
1/𝑝𝑝

, 1 ≤ 𝑠𝑠 < ∞ and ‖𝑥𝑥‖ℓ∞(�̂�𝐸) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛|�̂�𝐸𝑛𝑛(𝑥𝑥)|. 98 

Proof. By the Theorem 4.3.12 of (Wilansky, 1984), we obtain that ℓ𝑝𝑝(�̂�𝐸) and ℓ∞(�̂�𝐸) 99 

are Banach 𝐾𝐾-spaces with the above norms since the matrix �̂�𝐸 is triangle and equality 100 

(4) holds. 101 

ℓ𝑝𝑝(�̂�𝐸) and ℓ∞(�̂�𝐸) are the sequence spaces of non-absolute type. So indeed,  102 

‖𝑥𝑥‖ℓ𝑝𝑝(�̂�𝐸) ≠ ‖|𝑥𝑥|‖ℓ𝑝𝑝(�̂�𝐸) and ‖𝑥𝑥‖ℓ∞(�̂�𝐸) ≠ ‖|𝑥𝑥|‖ℓ∞(�̂�𝐸). 103 

This means that the absolute property is not valid on the spaces ℓ𝑝𝑝(�̂�𝐸) and ℓ∞(�̂�𝐸) for 104 

fewest one sequence where |𝑥𝑥| = (|𝑥𝑥𝑘𝑘|). 105 

Theorem 3.2. The Lucas difference sequence space ℓ𝑝𝑝(�̂�𝐸) of non-absolute type is 106 

linear isomorphic to ℓ𝑝𝑝 for 1 ≤ 𝑠𝑠 ≤ ∞. 107 

Proof. Let 1 ≤ 𝑠𝑠 ≤ ∞ and consider the transformation 𝑍𝑍 from ℓ𝑝𝑝(�̂�𝐸) to ℓ𝑝𝑝 defined by 108 

𝑥𝑥 → 𝑦𝑦 = 𝑍𝑍𝑥𝑥 with the notation of equality (3). Then, we have 𝑍𝑍𝑥𝑥 = 𝑦𝑦 = �̂�𝐸𝑥𝑥 ∈ ℓ𝑝𝑝 for 109 

every 𝑥𝑥 ∈ ℓ𝑝𝑝(�̂�𝐸). It is trivial that 𝑍𝑍 is linear. Additionally, it is easy to see that 𝑥𝑥 = 0 if 110 

𝑍𝑍𝑥𝑥 = 0 and so 𝑍𝑍 is injective. 111 

Besides, let 𝑦𝑦 = (𝑦𝑦𝑘𝑘) ∈ ℓ𝑝𝑝 and consider the sequence 𝑥𝑥 = (𝑥𝑥𝑘𝑘) by  112 
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are Banach 𝐾𝐾-spaces with the above norms since the matrix �̂�𝐸 is triangle and equality 100 

(4) holds. 101 

ℓ𝑝𝑝(�̂�𝐸) and ℓ∞(�̂�𝐸) are the sequence spaces of non-absolute type. So indeed,  102 
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𝑍𝑍𝑥𝑥 = 0 and so 𝑍𝑍 is injective. 111 
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𝑥𝑥𝑘𝑘 = ∑ 𝐿𝐿𝑘𝑘2

𝐿𝐿𝑗𝑗−1𝐿𝐿𝑗𝑗
𝑦𝑦𝑗𝑗𝑘𝑘

𝑗𝑗=1 .                                                                 (5) 113 
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‖𝑥𝑥‖ℓ𝑝𝑝(�̂�𝐸) = (∑|𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘
𝑥𝑥𝑘𝑘 −

𝐿𝐿𝑘𝑘
𝐿𝐿𝑘𝑘−1

𝑥𝑥𝑘𝑘−1|
𝑝𝑝

𝑘𝑘
)

1
𝑝𝑝
 

= (∑|𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘
∑ 𝐿𝐿𝑘𝑘2

𝐿𝐿𝑗𝑗−1𝐿𝐿𝑗𝑗
𝑦𝑦𝑗𝑗

𝑘𝑘

𝑗𝑗=1
− 𝐿𝐿𝑘𝑘
𝐿𝐿𝑘𝑘−1

∑ 𝐿𝐿𝑘𝑘−12

𝐿𝐿𝑗𝑗−1𝐿𝐿𝑗𝑗
𝑦𝑦𝑗𝑗

𝑘𝑘−1

𝑗𝑗=1
|
𝑝𝑝

𝑘𝑘
)

1
𝑝𝑝

 

= (∑ |𝑦𝑦𝑘𝑘|𝑝𝑝𝑘𝑘 )
1
𝑝𝑝 = ‖𝑦𝑦‖ℓ𝑝𝑝 < ∞ and 115 

‖𝑥𝑥‖ℓ∞(�̂�𝐸) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 |
𝐿𝐿𝑘𝑘−1
𝐿𝐿𝑘𝑘

𝑥𝑥𝑘𝑘 −
𝐿𝐿𝑘𝑘
𝐿𝐿𝑘𝑘−1

𝑥𝑥𝑘𝑘−1| = 𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘|𝑦𝑦𝑘𝑘| = ‖𝑦𝑦‖ℓ∞ < ∞. 116 

This means that 𝑥𝑥 ∈ ℓ𝑝𝑝(�̂�𝐸), 1 ≤ 𝑠𝑠 ≤ ∞. Hence, we see that 𝑍𝑍 is surjective and 117 

preserves the norm. Therefore, 𝑍𝑍 is a linear bijection and so ℓ𝑝𝑝(�̂�𝐸) and  ℓ𝑝𝑝 are linear 118 

isomorphic.  119 

Theorem 3.3. If 1 ≤ 𝑠𝑠 ≤ ∞, then the inclusion ℓ𝑝𝑝 ⊂ ℓ𝑝𝑝(�̂�𝐸) strictly holds. 120 

Proof. Let 𝑥𝑥 ∈ ℓ𝑝𝑝, 1 < 𝑠𝑠 ≤ ∞. It can be easily seen that the inequalities 𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘
≤ 2 and 121 

𝐿𝐿𝑘𝑘
𝐿𝐿𝑘𝑘−1

≤ 3 hold. By means of these inequalities and equality (3), we have 122 

∑ |�̂�𝐸𝑘𝑘(𝑥𝑥)|𝑝𝑝𝑘𝑘 ≤ ∑ 6𝑝𝑝−1(|2𝑥𝑥𝑘𝑘|𝑝𝑝 + |3𝑥𝑥𝑘𝑘−1|𝑝𝑝)𝑘𝑘 ≤ 62𝑝𝑝−1(∑ |𝑥𝑥𝑘𝑘|𝑝𝑝𝑘𝑘 + ∑ |𝑥𝑥𝑘𝑘−1|𝑝𝑝𝑘𝑘 ), 123 

𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘|�̂�𝐸𝑘𝑘(𝑥𝑥)| ≤ 5𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘|𝑥𝑥𝑘𝑘|. 124 

Hence, for 1 < 𝑠𝑠 ≤ ∞, we obtain  125 
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This means that 𝑥𝑥 ∈ ℓ𝑝𝑝(�̂�𝐸), 1 ≤ 𝑠𝑠 ≤ ∞. Hence, we see that 𝑍𝑍 is surjective and 117 

preserves the norm. Therefore, 𝑍𝑍 is a linear bijection and so ℓ𝑝𝑝(�̂�𝐸) and  ℓ𝑝𝑝 are linear 118 

isomorphic.  119 
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∑ |�̂�𝐸𝑘𝑘(𝑥𝑥)|𝑝𝑝𝑘𝑘 ≤ ∑ 6𝑝𝑝−1(|2𝑥𝑥𝑘𝑘|𝑝𝑝 + |3𝑥𝑥𝑘𝑘−1|𝑝𝑝)𝑘𝑘 ≤ 62𝑝𝑝−1(∑ |𝑥𝑥𝑘𝑘|𝑝𝑝𝑘𝑘 + ∑ |𝑥𝑥𝑘𝑘−1|𝑝𝑝𝑘𝑘 ), 123 

𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘|�̂�𝐸𝑘𝑘(𝑥𝑥)| ≤ 5𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘|𝑥𝑥𝑘𝑘|. 124 
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‖𝑥𝑥‖ℓ𝑝𝑝(�̂�𝐸) ≤ 36‖𝑥𝑥‖𝑝𝑝 and ‖𝑥𝑥‖ℓ∞(�̂�𝐸) ≤ 5‖𝑥𝑥‖∞.                                        (6)                        126 

Additionally, the sequence 𝑥𝑥 = (𝑥𝑥𝑘𝑘) = (𝐿𝐿𝑘𝑘2 ) = (1, 32, 42, 72, … ) is in ℓ𝑝𝑝(�̂�𝐸) − ℓ𝑝𝑝. This 127 

gives that the inclusion ℓ𝑝𝑝 ⊂ ℓ𝑝𝑝(�̂�𝐸) is strict in the case 1 < 𝑝𝑝 ≤ ∞. Also, the inequality 128 

(6) holds for 𝑝𝑝 = 1.  129 

Theorem 3.4. ℓ𝑝𝑝(�̂�𝐸) ⊂ ℓ𝑠𝑠(�̂�𝐸) for 1 ≤ 𝑝𝑝 < 𝑠𝑠. 130 

Proof. Let 𝑦𝑦 be the sequence given by equality (3). If we take 𝑥𝑥 ∈ ℓ𝑝𝑝(�̂�𝐸), then we have 131 

𝑦𝑦 ∈ ℓ𝑝𝑝. Since the inclusion ℓ𝑝𝑝 ⊂ ℓ𝑠𝑠 holds, we obtain that 𝑦𝑦 ∈ ℓ𝑠𝑠. This yields us 132 

𝑥𝑥 ∈ ℓ𝑠𝑠(�̂�𝐸) and so, the inclusion ℓ𝑝𝑝(�̂�𝐸) ⊂ ℓ𝑠𝑠(�̂�𝐸) holds. 133 

Theorem 3.5. The sequence (𝑏𝑏(𝑘𝑘))𝑘𝑘=1
∞

 which is established by 134 

 (𝑏𝑏(𝑘𝑘))𝑛𝑛 = {
𝐿𝐿𝑛𝑛2

𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘
,      𝑛𝑛 ≥ 𝑘𝑘

0        ,      𝑛𝑛 < 𝑘𝑘
                                                          (7) 135 

forms a basis for ℓ𝑝𝑝(�̂�𝐸) in the case 1 ≤ 𝑝𝑝 < ∞. Also, every 𝑥𝑥 ∈ ℓ𝑝𝑝(�̂�𝐸) has a unique 136 

representation of the form 137 

𝑥𝑥 = ∑ �̂�𝐸𝑘𝑘(𝑥𝑥)𝑏𝑏(𝑘𝑘)
𝑘𝑘 .                                                                      (8) 138 

Proof. From equality (7), �̂�𝐸(𝑏𝑏(𝑘𝑘)) = 𝑒𝑒(𝑘𝑘) ∈ ℓ𝑝𝑝 and this means that 𝑏𝑏(𝑘𝑘) ∈ ℓ𝑝𝑝(�̂�𝐸). Now, 139 

let’s take 𝑥𝑥 ∈ ℓ𝑝𝑝(�̂�𝐸) and put 𝑥𝑥(𝑚𝑚) = ∑ �̂�𝐸𝑘𝑘(𝑥𝑥)𝑏𝑏(𝑘𝑘)𝑚𝑚
𝑘𝑘=1  for every non-negative integer 𝑚𝑚. 140 

Thus, it is obtained that 141 

�̂�𝐸(𝑥𝑥(𝑚𝑚)) = ∑�̂�𝐸𝑘𝑘(𝑥𝑥)�̂�𝐸(𝑏𝑏(𝑘𝑘))
𝑚𝑚

𝑘𝑘=1
= ∑�̂�𝐸𝑘𝑘(𝑥𝑥)𝑒𝑒(𝑘𝑘)

𝑚𝑚

𝑘𝑘=1
 

and also 142 
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�̂�𝐸𝑛𝑛(𝑥𝑥 − 𝑥𝑥(𝑚𝑚)) = {�̂�𝐸𝑛𝑛(𝑥𝑥),     𝑚𝑚 < 𝑛𝑛
0,     𝑚𝑚 ≥ 𝑛𝑛 ≥ 0. 143 

So, there is a non-negative integer 𝑚𝑚0 such that ∑ |�̂�𝐸𝑛𝑛(𝑥𝑥)|𝑝𝑝∞
𝑛𝑛=𝑚𝑚0+1 ≤ (𝜀𝜀2)

𝑝𝑝
 for any 144 

𝜀𝜀 > 0. Hence, we have that 145 

‖𝑥𝑥 − 𝑥𝑥(𝑚𝑚)‖ℓ𝑝𝑝(�̂�𝐸) = ( ∑ |�̂�𝐸𝑛𝑛(𝑥𝑥)|𝑝𝑝
∞

𝑛𝑛=𝑚𝑚+1
)
1/𝑝𝑝

≤ ( ∑ |�̂�𝐸𝑛𝑛(𝑥𝑥)|𝑝𝑝
∞

𝑛𝑛=𝑚𝑚0+1
)
1/𝑝𝑝

≤ 𝜀𝜀
2 < 𝜀𝜀 

for every 𝑚𝑚 ≥ 𝑚𝑚0, that is,  146 

lim𝑚𝑚→∞‖𝑥𝑥 − 𝑥𝑥(𝑚𝑚)‖ℓ𝑝𝑝(�̂�𝐸) = 0. 147 

Last, let’s assume that 𝑥𝑥 = ∑ 𝛽𝛽𝑘𝑘(𝑥𝑥)𝑏𝑏(𝑘𝑘)
𝑘𝑘  to demostrate the uniqueness of equality (8) 148 

for 𝑥𝑥 ∈ ℓ𝑝𝑝(�̂�𝐸). By using the continuity of the linear transformation 𝑍𝑍, we have  149 

�̂�𝐸𝑛𝑛(𝑥𝑥) = ∑ 𝛽𝛽𝑘𝑘(𝑥𝑥)�̂�𝐸𝑛𝑛(𝑏𝑏(𝑘𝑘))𝑘𝑘 = ∑ 𝛽𝛽𝑘𝑘(𝑥𝑥)𝛿𝛿𝑛𝑛𝑘𝑘𝑘𝑘 = 𝛽𝛽𝑛𝑛(𝑥𝑥). 150 

Therefore, the proof is completed. 151 

Theorem 3.6. The spaces ℓ𝑝𝑝(�̂�𝐸) and 𝑏𝑏𝑏𝑏𝑝𝑝 do not include each other for 1 ≤ 𝑝𝑝 < ∞. 152 

Proof. If we take  𝑥𝑥 = (𝑥𝑥𝑘𝑘) = (𝐿𝐿𝑘𝑘2 ) = (1, 32, 42, 72, … ) and 𝑒𝑒 = (1,1,1, … ), then we 153 

result that 𝑥𝑥 ∈ ℓ𝑝𝑝(�̂�𝐸) and 𝑥𝑥 ∉ 𝑏𝑏𝑏𝑏𝑝𝑝 by reason of �̂�𝐸𝑥𝑥 = (2,0,0, … ) ∈ ℓ𝑝𝑝 and Δ𝑥𝑥 =154 

(1, 𝐿𝐿0𝐿𝐿3, 𝐿𝐿1𝐿𝐿4, … , 𝐿𝐿𝑘𝑘−2𝐿𝐿𝑘𝑘+1, … ) ∉ ℓ𝑝𝑝. Now, we take the equation 155 

|𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘
− 𝐿𝐿𝑘𝑘
𝐿𝐿𝑘𝑘−1

| =
|𝐿𝐿𝑘𝑘−12 − 𝐿𝐿𝑘𝑘2 |
𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘

=
|(−5)(−1)𝑘𝑘 − 𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘|

𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘
 

into consideration. If 𝑘𝑘 is even, then 𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘 < |(−5)(−1)𝑘𝑘 − 𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘|. Hence, the 156 

series ∑ |𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘
− 𝐿𝐿𝑘𝑘

𝐿𝐿𝑘𝑘−1
|
𝑝𝑝

𝑘𝑘  is not convergent for 1 ≤ 𝑝𝑝 < ∞. Thus, �̂�𝐸𝑒𝑒 = (𝐿𝐿𝑘𝑘−1𝐿𝐿𝑘𝑘
− 𝐿𝐿𝑘𝑘

𝐿𝐿𝑘𝑘−1
) ∉157 
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ℓ𝑝𝑝 in the case 1 ≤ 𝑝𝑝 < ∞ and it is clear that 𝑒𝑒 ∈ ℓ𝑝𝑝. In conclusion, the spaces ℓ𝑝𝑝(�̂�𝐸) 158 

and 𝑏𝑏𝑏𝑏𝑝𝑝 coincide but they do not contain one another.  159 

A Banach space 𝑌𝑌 possess Banach-Saks property if any bounded sequence in 𝑌𝑌 160 

approves a subsequence whose arithmetic mean converges in norm. Similarly, a Banach 161 

space 𝑌𝑌 holds weak Banach-Saks property if any weakly null sequence in 𝑋𝑋 admits a 162 

subsequence whose arithmetic mean strongly converges in norm.  163 

Let 𝑋𝑋 be a Banach space. (Garcia-Falset, 1994) defined the coefficient 𝑅𝑅(𝑋𝑋) as: 164 

𝑅𝑅(𝑋𝑋) = 𝑠𝑠𝑠𝑠𝑝𝑝 ( lim
𝑛𝑛→∞

𝑖𝑖𝑖𝑖𝑖𝑖‖𝑥𝑥𝑛𝑛 + 𝑥𝑥‖) 

He also proved that a Banach space 𝑋𝑋 with 𝑅𝑅(𝑋𝑋) < 2 has the weak fixed point property. 165 

Of late years, some studies about geometrical properties of a sequence space can be 166 

seen in (Et and Karakaya, 2014), (Karakaya and Altun, 2014), (Mursaleen et al., 2007). 167 

Theorem 3.7.  ℓ𝑝𝑝(�̂�𝐸) holds the Banach-Saks property of type 𝑝𝑝.  168 

Proof. It can be proved by standard technic which is available in (Karakaş et al., 2013). 169 

Remark 3.1. As ℓ𝑝𝑝(�̂�𝐸) is linearly isomorphic to space ℓ𝑝𝑝, we take in consideration 170 

𝑅𝑅 (ℓ𝑝𝑝(�̂�𝐸)) = 𝑅𝑅(ℓ𝑝𝑝) = 21/𝑝𝑝. 171 

Since 𝑅𝑅 (ℓ𝑝𝑝(�̂�𝐸)) < 2, it can be given the below theorem: 172 

Theorem 3.9. The space ℓ𝑝𝑝(�̂�𝐸) possess the weak fixed point property for 1 < 𝑝𝑝 < ∞. 173 

REFERENCES 174 

Kara EE, 2013. Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. 175 

Appl., 38: 15 pp. 176 
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approves a subsequence whose arithmetic mean converges in norm. Similarly, a Banach 161 

space 𝑌𝑌 holds weak Banach-Saks property if any weakly null sequence in 𝑋𝑋 admits a 162 

subsequence whose arithmetic mean strongly converges in norm.  163 

Let 𝑋𝑋 be a Banach space. (Garcia-Falset, 1994) defined the coefficient 𝑅𝑅(𝑋𝑋) as: 164 

𝑅𝑅(𝑋𝑋) = 𝑠𝑠𝑠𝑠𝑝𝑝 ( lim
𝑛𝑛→∞

𝑖𝑖𝑖𝑖𝑖𝑖‖𝑥𝑥𝑛𝑛 + 𝑥𝑥‖) 

He also proved that a Banach space 𝑋𝑋 with 𝑅𝑅(𝑋𝑋) < 2 has the weak fixed point property. 165 

Of late years, some studies about geometrical properties of a sequence space can be 166 

seen in (Et and Karakaya, 2014), (Karakaya and Altun, 2014), (Mursaleen et al., 2007). 167 

Theorem 3.7.  ℓ𝑝𝑝(�̂�𝐸) holds the Banach-Saks property of type 𝑝𝑝.  168 

Proof. It can be proved by standard technic which is available in (Karakaş et al., 2013). 169 

Remark 3.1. As ℓ𝑝𝑝(�̂�𝐸) is linearly isomorphic to space ℓ𝑝𝑝, we take in consideration 170 

𝑅𝑅 (ℓ𝑝𝑝(�̂�𝐸)) = 𝑅𝑅(ℓ𝑝𝑝) = 21/𝑝𝑝. 171 

Since 𝑅𝑅 (ℓ𝑝𝑝(�̂�𝐸)) < 2, it can be given the below theorem: 172 

Theorem 3.9. The space ℓ𝑝𝑝(�̂�𝐸) possess the weak fixed point property for 1 < 𝑝𝑝 < ∞. 173 
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