JOURNAL OF UNIVERSAL MATHEMATICS Vol.1 No.1 pp.17-23 (2018) ISSN-2618-5660

SOME CHARACTERISTICS OF INTUITIONISTIC FUZZY MODAL OPERATORS WITH USING MATRIX REPRESENTATIONS

MEHMET ÇITIL

ABSTRACT. In this study, we discuss the some properties of intuitionistic fuzzy modal operators with matrix interpretations of the IFMOs.

1. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [13] as an extension of crisp sets by expanding the truth value set to the real unit interval [0, 1]. Let X be a fixed set. Function $\mu : X \to [0, 1]$ is called a fuzzy set over X. The class of the fuzzy sets over X is denoted by FS(X). For $x \in X$, $\mu(x)$ is the membership degree of x and the non-membership degree is $1 - \mu(x)$. Intuitionistic Fuzzy Sets (IFSs) have been introduced in [1], as an extension of fuzzy sets.

Definition 1.1. [2] L et L = [0, 1] then

(1.1)
$$L^* = \{(x_1, x_2) \in [0, 1]^2 : x_1 + x_2 \le 1\}$$

is a lattice with

(1.2)
$$(x_1, x_2) \le (y_1, y_2) :\iff "x_1 \le y_1 \text{ and } x_2 \ge y_2"$$

For $(x_1, y_1), (x_2, y_2) \in L^*$, the operators \wedge and \vee on (L^*, \leq) are defined as following;

(1.3)
$$(x_1, y_1) \land (x_2, y_2) = (\min(x_1, x_2), \max(y_1, y_2)),$$

(1.4)
$$(x_1, y_1) \lor (x_2, y_2) = (\max(x_1, x_2), \min(y_1, y_2)).$$

Definition 1.2. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object of the form

(1.5)
$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

Date: December 1, 2017, accepted December 27, 2017.

Key words and phrases. Intuitionistic Fuzzy Sets, Intuitionistic Fuzzy Modal Operators, Matrix Representation.

Thanks Prof. Gokhan Cuvalcoglu for his support.

where $\mu_A(x), (\mu_A : X \to [0, 1])$ is called the "degree of membership of x in A", $\nu_A(x), (\nu_A : X \to [0, 1])$ is called the "degree of non-membership of x in A", and where μ_A and ν_A satisfy the following condition:

(1.6)
$$\mu_A(x) + \nu_A(x) \le 1, \text{ for all } x \in X.$$

The hesitation, indeterminacy, or uncertainty degree of x is defined by $\pi_A(x) = 1 - \mu_A(x) - \nu_A(x)$

Definition 1.3. [1]An IFS A is said to be contained in an IFS B (notation $A \sqsubseteq B$) if and only if for all $x \in X : \mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$.

It is clear that A = B if and only if $A \sqsubseteq B$ and $B \sqsubseteq A$.

Definition 1.4. [1]Let $A \in IFS$ and let $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ then the above set is called the complement of A

(1.7)
$$A^{c} = \{ \langle x, \nu_{A}(x), \mu_{A}(x) \rangle : x \in X \}$$

The intersection and the union of two IFSs A and B on X is defined by

(1.8)
$$A \sqcap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}$$

(1.9)
$$A \sqcup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \}$$

The notion of Intuitionistic Fuzzy Operators (IFO) was discussed in [1, 6]. After than new Intuitionistic Fuzzy Operators were defined by several autors [3, 5, 8, 9, 11, 12] and some properties of these operators were studied.

Definition 1.5. [1] Let X be a set and $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \} \in$

IFS(X).

(1)
$$\Box A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X \}$$

(2) $\Diamond A = \{ \langle x, 1 - \nu_A(x), \nu_A(x) \rangle : x \in X \}$

Definition 1.6. [6] Let X be a set and $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \} \in IFS(X),$ for $\alpha, \beta \in I$

$$\begin{array}{l} (1) \quad (A) = \left\{ \left\langle x, \frac{\mu_A(x)}{2}, \frac{\nu_A(x)+1}{2} \right\rangle : x \in X \right\} \\ (2) \quad (A) = \left\{ \left\langle x, \frac{\mu_A(x)+1}{2}, \frac{\nu_A(x)}{2} \right\rangle : x \in X \right\} \\ (3) \quad _{\alpha}(A) = \left\{ \left\langle x, \alpha \mu_A(x), \alpha \nu_A(x)+1-\alpha \right\rangle : x \in X \right\} \\ (4) \quad _{\alpha}(A) = \left\{ \left\langle x, \alpha \mu_A(x), \alpha \nu_A(x) \right\rangle : x \in X \right\} \\ (5) \quad \text{for max} \{\alpha, \beta\} + \gamma \in I, \quad _{\alpha,\beta,\gamma}(A) = \left\{ \langle x, \alpha \mu_A(x), \beta \nu_A(x) + \gamma \rangle : x \in X \right\} \\ (6) \quad \text{for max} \{\alpha, \beta\} + \gamma \in I, \quad _{\alpha,\beta,\gamma}(A) = \left\{ \langle x, \alpha \mu_A(x) + \gamma, \beta \nu_A(x) \rangle : x \in X \right\} \end{array}$$

Definition 1.7. [6] Let X be a set and $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \} \in IFS(X), \alpha, \beta, \alpha + \beta \in I$

(1)
$$_{\alpha,\beta}(A) = \{ \langle x, \alpha \mu_A(x), \alpha \nu_A(x) + \beta \rangle : x \in X \}$$

(2) $_{\alpha,\beta}(A) = \{ \langle x, \alpha \mu_A(x) + \beta, \alpha \nu_A(x) \rangle : x \in X \}$

The operators $_{\alpha,\beta,\gamma,\alpha,\beta,\gamma}$ areanextensions of $_{\alpha,\beta,\alpha,\beta}$ (resp.).

In 2007, the author[8] defined a new operator and studied some of its properties. This operator is named $E_{\alpha,\beta}$ and defined as follows:

Definition 1.8. [8]Let X be a set and $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \} \in IFS(X), \alpha, \beta \in [0, 1].$ We define the following operator:

 $(1.10) \qquad E_{\alpha,\beta}(A) = \{ \langle x, \beta(\alpha\mu_A(x) + 1 - \alpha), \alpha(\beta\nu_A(x) + 1 - \beta) \rangle : x \in X \}$

If we choose $\alpha = 1$ and write α instead of β we get the operator. Similarly, if $\beta = 1$ is chosen and write n instead of β , we get the operator α .

In2007, Atanassov introduced the operator

 $boxdot_{\alpha,\beta,\gamma,\delta}$ which is a natural extension of all these operators in [6].

Definition 1.9. [6]Let X be a set, $A \in IFS(X)$, $\alpha, \beta, \gamma, \delta \in [0, 1]$ such that

(1.11)
$$\max(\alpha,\beta) + \gamma + \delta \mathbf{1}$$

then the operator $_{\alpha,\beta,\gamma,\delta}$ defined by

(1.12)
$$\alpha_{,\beta,\gamma,\delta}(A) = \{ \langle x, \alpha \mu_A(x) + \gamma, \beta \nu_A(x) + \delta \rangle \colon x \in X \}$$

In 2010, the author [8] defined a new operator which is a generalization of $E_{\alpha,\beta}$.

Definition 1.10. [8]Let X be a set and $A \in IFS(X)$, $\alpha, \beta, \omega \in [0, 1]$. We define the following operator:

(1.13)
$$Z^{\omega}_{\alpha,\beta}(A) = \{ \langle x, \beta(\alpha\mu_A(x) + \omega - \omega.\alpha), \alpha(\beta\nu_A(x) + \omega - \omega.\beta) \rangle : x \in X \}$$

We have defined a new OTMO on IFS, that is generalization of the some OTMOs. $Z_{\alpha,\beta}^{\omega,\theta}$ defined as follows:

Definition 1.11. [8]Let X be a set and $A \in IFS(X)$, $\alpha, \beta, \omega, \theta \in [0, 1]$. We define the following operator:

(1.14)
$$Z^{\omega,\theta}_{\alpha,\beta}(A) = \{ \langle x, \beta(\alpha\mu_A(x) + \omega - \omega.\alpha), \alpha(\beta\nu_A(x) + \theta - \theta.\beta) \rangle : x \in X \}$$

The operator $Z_{\alpha,\beta}^{\omega,\theta}$ is a generalization of $Z_{\alpha,\beta}^{\omega}$, and also,

 $E_{\alpha,\beta\,\alpha,\beta},_{\alpha,\beta}$.

Intuitionistic Fuzzy Operators with matrices were examined in [7] as following; Let us define that $(\max)(\min)\{a,b\}$ has property P if and only if $(\max\{a,b\}$ has property P and $\wedge(\min\{a,b\}$ has property P.

Let for brevity $(a_{i,j})$ denote a matrice with elements, denoted also by a and let $M_{3\times 3}(\mathbb{R})$ be the set of (3×3) -matrices with elements – real numbers.

Let X be a fixed set. Then Ω and Γ are defining as following;

(1.15)
$$\Omega = \{\Theta \mid \Theta : IFS(X) \to IFS(X) \text{ is an IFMO} \}$$

(1.16)

$$\Gamma = \{(a_{i,j}) : (a_{i,j}) \in M_{3 \times 3}(\mathbb{R}) \& 0 \le (\max)(\min)\{a_{1,1} + a_{1,2}, a_{2,1} + a_{2,2}\} \le 1$$
(1.17)
$$\& 0 \le a_{3,1} + a_{3,2} \le 1\}.$$

Definition 1.12. [7]Let X be a set and $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\} \in IFS(X).$

The mapping $\varphi_A : \Gamma \to \Omega$,

$$\begin{aligned} &(1.18)\\ &\varphi_A((a_{i,j})) = \{ \langle x, a_{1,1} \mu_A(x) + a_{2,1} \nu_A(x) + a_{3,1}, a_{1,2} \mu_A(x) + a_{2,2} \nu_A(x) + a_{3,2} \rangle : \\ &(1.19)\\ &x \in X \& 0 \le (\max)(\min)\{a_{1,1} + a_{12}, a_{2,1} + a_{2,2}\} + a_{3,1} + a_{3,2} \le 1 \& 0 \le a_{3,1} + a_{3,2} \le 1 \} . \end{aligned}$$

After this we show the second type of IFMOs with matrices as follows. Let
$$a_{1,1}, a_{2,1}, a_{3,1}, a_{1,2}, a_{2,2}, a_{3,2} \in [0, 1]$$
 satisfy inequalities

(1.20)
$$0 \le (\max)(\min)\{a_{1,1} + a_{12}, a_{2,1} + a_{2,2}\} + a_{3,1} + a_{3,2} \le 1$$
 and

$$(1.21) 0 \le a_{3,1} + a_{3,2} \le 1$$

Then

(1.22)

$$\Theta(A) = \left\{ \left\langle x, a_{1,1} \ \mu_A \ (x) + a_{2,1} \ \nu_A(x) + a_{3,1}, \ a_{1,2} \ \mu_A \ (x) + a_{2,2} \ \nu_A \ (x) + a_{3,2} \right\rangle : x \in X \right\}$$
(1.20)

(1.23)
$$= \begin{bmatrix} \mu_A(x) & \nu_A(x) & 1 \end{bmatrix} \begin{bmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{bmatrix}$$

It is clear that for the present case, sets

(1.24)
$$M_1 = \{ (a_{i,j}) : (a_{i,j}) \in M_{3 \times 2}(\mathbb{R}) \& (a_{i,j}) = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{bmatrix} \}$$

and

(1.25)
$$M_1 = \{ (a_{i,j}) : (a_{i,j}) \in M_{3 \times 2}(\mathbb{R}) \& (a_{i,j}) = \begin{bmatrix} a_{1,1} & a_{1,2} & 0\\ a_{2,1} & a_{2,2} & 0\\ a_{3,1} & a_{3,2} & 1 \end{bmatrix} \}$$

are equal.

For shortly, in this paper, if $\varphi_A((a_{i,j})) = \Theta$, then we will use the notation

(1.26)
$$\Theta = \begin{bmatrix} a_{1,1} & a_{1,2} & 0\\ a_{2,1} & a_{2,2} & 0\\ a_{3,1} & a_{3,2} & 1 \end{bmatrix}.$$

Example 1.13. [7]Let X be universe and $A \in IFS(X)$. Let $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta \in [0, 1]$,

(1.27)
$$\max (\alpha \zeta, \beta \varepsilon) + \gamma + \delta 1,$$

(1.28)
$$\min (\alpha - \zeta, \beta - \varepsilon) + \gamma + \delta \ge 0$$

Then

$$\begin{cases} \alpha & -\zeta & 0\\ \{\operatorname{circle}_{\alpha,\beta,\gamma,\delta,\varepsilon,\zeta} = \begin{bmatrix} \alpha & -\zeta & 0\\ -\varepsilon & \beta & 0\\ \gamma & \delta & 1 \end{bmatrix}$$

Thanks to this property we can show whether the discussed type of IFMOs satisfy conditions or not.

20

Theorem 1.14. [7] $(\Gamma, .)$ is a monoid with multiplication operation over matrices.

Theorem 1.15. Let X be a fixed set and $A \in IFS(X)$. If $(a_{i,j}), (b_{i,j}) \in \Gamma$. Then

(1.30)
$$\varphi_A((a_{i,j})(b_{i,j})) = \varphi_A((b_{i,j})) \circ \varphi_A((a_{i,j})).$$

Lemma 1.16. $[7](\Omega, \circ)$ is a monoid.

2. Main Results

In this paper, we will discuss the some properties of intuitionistic fuzzy modal operators can be prove using matrices or not.

Lemma 2.1. Let $A \in IFS(X)$ then, for every $\alpha, \beta \in I$, $(E_{\alpha,\beta}(A))^c = E_{\beta,\alpha}(A^c)$. *Proof.* For every $\alpha, \beta \in I$,

(2.1)
$$E_{\alpha,\beta} = \begin{bmatrix} \alpha\beta & 0 & 0\\ 0 & \alpha\beta & 0\\ \beta(1-\alpha) & \alpha(1-\beta) & 1 \end{bmatrix}^{c}$$

(2.2)
$$= \begin{bmatrix} 0 & \alpha\beta & 0\\ \alpha\beta & 0 & 0\\ \alpha(1-\beta) & \beta(1-\alpha) & 1 \end{bmatrix}$$

$$(2.3) = E_{\beta,\alpha}(A^c) =$$

Theorem 2.2. Let $\alpha, \beta, \omega, \theta \in I$ and $A \in IFS(X)$ then

(2.4)
$$Z^{\omega,\theta}_{\alpha,\beta}(A^c) = Z^{\theta,\omega}_{\beta,\alpha}(A)^c$$

Proof. If we use definition of A^c it is clear that

(2.5)
$$Z^{\theta,\omega}_{\beta,\alpha}(A)^c = \begin{bmatrix} \alpha\beta & 0 & 0\\ 0 & \alpha\beta & 0\\ \beta\omega(1-\alpha) & \alpha\omega(1-\beta) & 1 \end{bmatrix}^c$$

(2.6)
$$= \begin{bmatrix} 0 & \alpha\beta & 0\\ \alpha\beta & 0 & 0\\ \alpha\omega(1-\beta) & \beta\omega(1-\alpha) & 1 \end{bmatrix}$$

(2.7)
$$= Z^{\omega,\theta}_{\alpha,\beta}(A^c)$$

Theorem 2.3. Let $\alpha, \beta, \omega, \theta \in I, \alpha\beta\theta = \omega$ and let $A \in IFS(X)$ then

(2.8)
$$Z^{\omega}_{\alpha,\beta}(Z^{\theta}_{\beta,\alpha}(A)) = Z^{\omega}_{\beta,\alpha}(Z^{\theta}_{\alpha,\beta}(A))$$

Proof. If $\alpha = \beta$ then the statement is clear. Let $\alpha \neq \beta$ and $\alpha\beta\theta = \omega$.

$$Z_{\alpha,\beta}^{\omega}(\mathbb{Z}_{\beta}^{d})_{\alpha}(A)) = \begin{bmatrix} \alpha\beta & 0 & 0\\ 0 & \alpha\beta & 0\\ \beta\omega(1-\alpha) & \alpha\omega(1-\beta) & 1 \end{bmatrix} \begin{bmatrix} \alpha\beta & 0 & 0\\ 0 & \alpha\beta & 0\\ \alpha\theta(1-\beta) & \beta\theta(1-\alpha) & 1 \end{bmatrix}$$
$$(2.10) = \begin{bmatrix} \alpha^{2}\beta^{2} & 0 & 0\\ 0 & \alpha^{2}\beta^{2} & 0\\ \alpha^{2}\beta\theta - \alpha^{2}\beta^{2}\theta + \beta\omega - \alpha\beta\omega & \alpha\beta^{2}\theta - \alpha^{2}\beta^{2}\theta + \alpha\omega - \alpha\beta\omega & 1\\ \alpha\beta & 0 & 0\\ 0 & \alpha\beta & 0\\ \alpha\omega(1-\beta) & \beta\omega(1-\alpha) & 1 \end{bmatrix} \begin{bmatrix} \alpha\beta & 0 & 0\\ 0 & \alpha\beta & 0\\ \beta\theta(1-\alpha) & \alpha\theta(1-\beta) & 1 \end{bmatrix}$$

therefore

(2.12)
$$Z^{\omega}_{\alpha,\beta}(Z^{\theta}_{\beta,\alpha}(A)) = Z^{\omega}_{\beta,\alpha}(Z^{\theta}_{\alpha,\beta}(A))$$

Theorem 2.4. Let $\alpha, \beta, \omega, \theta \in I$, $\omega = \theta, \omega.\theta = \alpha.\beta$ and let $A \in IFS(X)$ then

(2.13)
$$Z_{\omega,\theta}^{\beta,\alpha}(A) = Z_{\alpha,\beta}^{\omega,\theta}(A)$$

Proof. If we use $\omega = \theta$ and $\omega \cdot \theta = \alpha \cdot \beta$ then

(2.14)
$$Z_{\alpha,\beta}^{\omega,\theta}(A) = \begin{bmatrix} \alpha\beta & 0 & 0\\ 0 & \alpha\beta & 0\\ \beta\omega(1-\alpha) & \alpha\theta(1-\beta) & 1 \end{bmatrix}$$

(2.15)
$$= \begin{bmatrix} \omega & 0 & 0 \\ 0 & \omega \theta & 0 \\ \theta \beta (1-\omega) & \omega \alpha (1-\theta) & 1 \end{bmatrix}$$

$$(2.16) \qquad \qquad = \quad Z^{\beta,\alpha}_{\omega,\theta}(A)$$

References

- Atanassov, K., Intuitionistic fuzzy sets, VII ITKR's Session, Sofia, June 1983 (Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
- [2] Atanassov K.T., On Intuitionistic Fuzzy Sets Theory, Springer, Heidelberg, 1999.
- [3] Atanassov K.T., The most general form of one type of intuitionistic fuzzy modal operators, Notes on Intuitionistic Fuzzy Sets, Vol.12, 2006, No. 2, 36–38.
- [4] Atanassov K.T., Some Properties of the operators from one type of intuitionistic fuzzy modal operators, Advanced Studies on Contemporary Mathematics, Vol.15, 2007, No. 1, 13–20.
- [5] Atanassov K.T., The most general form of one type of intuitionistic fuzzy modal operators, Part 2, Notes on Intuitionistic Fuzzy Sets, Vol.14, 2008, No. 1, 27–32.
- [6] Atanassov K.T., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
- [7] Çuvalcıoğlu, G.,, Yılmaz S., Matrix representation of the second type of intuitionistic fuzzy modal operators, NIFS, 20(5), 9-16.
- [8] Çuvalcı
oğlu, G., Some Properties of $E_{\alpha,\beta}$ operator, Advanced Studies on Contemporary Mathematics, Vol. 14, 2007, No. 2, 305–310.
- [9] Çuvalcıoğlu, G., "On the Diagram of One Type Modal Operators on Intuitionistic Fuzzy Sets: Last Expanding with Z^{ω,θ}_{α,β}, Iranian J. of Fuzzy Systems, Vol. 10, 2013, No.1, 89–106
- [10] Çuvalcıoğlu, G., "The Extension of Modal Operators' Diagram with Last Operators", Notes on Intuitionistic Fuzzy Sets, Vol. 19, 2013, No. 3, 56–61.
- [11] Dencheva K., Extension of intuitionistic fuzzy modal operators and ,Proc.of the Second Int. IEEE Symp. Intelligent systems, Varna, June 22-24, (2004), Vol. 3, 21–22.

SOME CHARACTERISTICS OF INTUITIONISTIC FUZZY MODAL OPERATORS WITH USING MATRIX REPRESENTATIONS \mathbf{MS}

- $\left[12\right]$ Doycheva B., Inequalities with intuitionistic fuzzy topological and Gökhan Çuvalcıoğlu's op-
- erators, Notes on Intuitionistic Fuzzy Sets, Vol. 14, 2008, No. 1, 20-22.
- [13] Zadeh L.A., Fuzzy Sets, Information and Control, Vol. 8, 1965, 338-353.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KAHRAMANMARAŞ SÜTÇÜ İMAM, TURKEY Current address: KSU,46016, Kahramanmaras E-mail address: citil@ksu.edu.tr