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ABSTRACT

Energy and Exergy based performetric analysis integrated with deep learning assisted energy 
modelling for grid connected solar PV system, tested to non-trained location is proposed. The 
first objective is to perform an energy and exergy based performetric analysis for a realistic 
380 kWp grid connected roof-top PV system whose performance parameter is used for testing 
the proposed energy prediction models. The second objective is to formulate a simple and 
an improved energy estimation method applicable for 34 locations in South India, without 
change in model-coefficients. So, a long-term annual performance analysis of a 380 kWp PV 
based distributed generator situated at 12.97°N and 77.59°E is performed which estimates the 
characteristic performance indicators like energy efficiency, exergy efficiency, performance 
ratio and capacity factor amounting to 8.49%, 1.03%, 37%, and 8.03% respectively. The perfor-
mance ratio of the plant is less as evident from the least exergy efficiency. The annual average 
losses in the system like thermal capture loss, array capture loss, system loss and miscellaneous 
loss amount to 0.46 (h/d), 2.51(h/d), 0.71 (h/d) and 2.97(h/d) respectively. The annual aver-
age energy generation of 380 kWp is 732.84 kWh/year. Furthermore, for realizing the second 
objective, a total of four models are proposed namely linear, exponential, non-linear and deep 
learning based neural network model resulting in R of 0.933, 0.9071, 0.9386, and 0.9603 re-
spectively is formulated. The proposed models are tested for non-trained locations where the 
R value justifying the closeness between the actual and the predicted value is as high as 0.8. 
The proposed models are then compared upon their performances and benchmarked against 
the reported models.

Cite this article as: Rathore A, Almas, Sundaram S. Energy, exergy and performance analysis 
of a 380 kWP roof-top PV plant assisted with data-driven models for energy generation. J Ther 
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INTRODUCTION

In recent years, several factors have led to enhanced 

inception of renewable energy in the conventional grid 

system which includes, global warming, carbon emissions, 
exhaustion of fossil fuels, soaring conventional fuel price, 
and concerns about rising environmental equivalent poten-
tials. As per the reports of International Energy Agency 
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(IEA), fossil fuels (coal, natural gas and oil) still prevail to 
be a major resource of primary energy generation across 
the globe and occupying 89.8% of the installed capacity 
especially in India, as indicated in Figure 1 [1].

Hydropower and renewable also contributed equally to 
the installed electricity capacity amounting to 4.5%. In the 
year 2020, the overall primary energy consumption for India 
was 31.98 EJ out of which the share of renewable energy was 
1.43 EJ [2]. The increase in renewable installations contrib-
ute to the energy mix thereby delivering improved sustain-
ability index and preserve primary energy resources. If the 
usage of coal, oil and natural gas are left unmonitored, this 
shall lead to economic as well as political conflicts of great 

magnitude [3,4]. Renewable energy resources are present in 
surplus quantity in nature and thus can be easily harnessed 
to extract the required energy. Even a small percentage of 
the available solar energy can meet the current demand 
all over the globe [5]. Among all other technologies, solar 
energy is gaining more momentum these days [3-6]. In the 
year 2018, Solar energy comprised 55% of total renewable 
energy installations-based enhancement followed by Wind 
and Hydro. Among installed renewable energy capacity, 
Solar power installation occupies a larger occupant area of 
around 53%, in comparison with other renewable energy 
installations as seen in Figure 2 [CEA document]. Bio-
energy also occupies a quantifiable fraction of 8.4% towards 
energy installations.

In accordance with the Statistical review of world 
energy, 2021 [2], there has been the largest ever increase in 
renewable energy generation i.e., 358 TWh and there is the 
largest-ever drop in oil production across the globe i.e., -6.6 
Mb/day. There is also the largest ever rise in the share of 
solar in non-conventional energy generation. The share of 
renewable energy has increased in recent years as opposed 
to the reduction in shares of conventional energy resources 
such as oil and nuclear energy as evident from Figure 1. 
Solar has a global contribution of 148 TWh. Solar energy is 
developing as an important alternative to primary energy, 
as it has the property of easier collection, conversion, and 
usage. Solar PV installations are an excellent source of 
decentralized power units even in places where the instal-
lation of conventional electric grid becomes difficult. It is 
made utilizable on creation of integrated system with the 
grid. This improved deployment of renewable generating 
systems has led to a growth in its related research and their 
integration with the grid.

PV Installation though possess benefits on usage, 
its stochastic nature creates certain complexities in the 

Figure 2. Installed capacity of solar and wind power in India.

Figure 1. Global share of primary consumption of different 
energy resources.
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aspects of power distribution. These include power qual-
ity disturbances, supply-demand balance, load scheduling 
and generation scheduling impacting grid system opera-
tors to ensure reliability [7]. As the present revamped elec-
tric grid encompassing DES (distributed energy sources) 
is not a constant producer-controlled network, the grid 
operators should ensure a tenacious balance of supply and 
demand. Furthermore, a solar design Engineer must prac-
tically ensure the technical feasibility of a solar power plant 
before installation [8]. These deliverables can be achieved 
only when the knowledge on energy yield is priorly and 
accurately known by the system operator / control cen-
tre for controlling the grid [9-11]. So, a tool for accurate 
estimation of power output for a distributed energy net-
work will enable reliability of power supply and creates 
convenience for the grid operator to optimally schedule 
the operating system. Therefore, the review of literature 
as cited below involves mathematical tools applicable for 
estimation of energy/ power generated by a Solar PV sys-
tem on-field. 

Recent research on formulation and development of 
predictive and accurate energy prediction models were 
reported by a few researchers as examined below. Huang et 
al. [12] proposed a short-term day ahead forecasting model 
for PV power prediction using a Convolutional Artificial 
neural network (CNN) based approach. The features con-
sidered encompass historical PV power, direct normal irra-
diance, ambient temperature and ambient humidity. Meng 
et al. [13] analysed extreme-short-term forecasting for PV 
power under clouded/ shaded conditions using neural net-
work approach. The model also encompassed the speed 
and direction of the moving cloud, to depict the PV power. 
Yan et al. [14] attempted extreme-short-term forecasting 
model for estimating the power produced. A frequency 
domain-decomposition-based neural network model was 
formulated for trained locations. The study enabled predic-
tion of the response variable 15 minutes ahead. Ahmed et al. 
[15] reviewed many past works of literature which provided 
significant update of forecasting techniques for solar PV 
power prediction and compared them based on the value of 
RMSE as well as forecasting horizon. Out of all the consid-
ered techniques, ANN and CNN proves to be more accurate 
in terms of forecast accuracy, especially for short-term fore-
cast [16-19]. In addition, case studies of harnessing Solar 
energy are depicted by Bhowmik et al. [17,18]. Kim et al. 
[20] formulated a model based on regression approach after 
successful identification of significant factors affecting the 

PV power output, for the location of Korea. Statistical error 
comparison for the reported models was also discussed. 
Sheng et al. [21] formulated a forecasting model for Solar 
PV output using a weighted gaussian regression model for 
a training location of Nanyang Technological University 
Singapore. Smithsonet al. [22] also justified the importance 
of employing neural network-based approach for intermit-
tently varying system inputs. The major limitations of the 
reported investigations are précised in Table 1.

These limitations resulted in the present objective 
involving development of a robust and generalized model 
which estimates the long-term monthly average daily 
value of energy generation by a PV system. The tool is for-
mulated for 34 locations of South India coupled with real-
istic system-based performance analysis. The locations 
considered for training and testing are entirely different, 
covering major of south Indian locations. The presented 
research investigation is carried out in two different stages 
as seen in Figure 3. The first stage is on on-field perfor-
mance investigation of the distributed PV plant and the 
other is on formulation of accurate energy prediction 
model. The detailed specifications of equipment employed 
are provided in Table 2.

Table 1. Major Limitations of the reported investigations

S. No Major Limitations of the reported energy prediction models
1 The reported models as discussed were majorly formulated and validated only for a single location.
2 The trained location for model formulation and tested location for model validation were the same.
3 Consideration of truly significant factors affecting desired response (energy generation) remains majorly unreported

Figure 3. Stages of investigation.
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PERFORMETRIC ANALYSIS

In order to determine the operational characteristics 
for PV system over a long-term perspective in an area, 
performance assessment should be carried out inevitably. 
The evaluated performance indicators are employed as 
testing data for formulation of energy prediction model/
design tool. The total losses that occur in the plant are also 
quantified with the help of detailed performance analysis. 
Furthermore, exhaustive technical analysis provides infor-
mation on the annual operational characteristics of dis-
tributed PV system on a monthly average daily basis. The 
information obtained helps the policy makers, interested 
individuals and organization to understand and compare 
the actual performance of PV system as the installed local-
ity. This analysis is traditionally carried out by measur-
ing and monitoring the actual AC and DC energy output 
of the PV plants. These dynamically measured variables 
are employed for estimation of performance indicators 
as described in IEC standard 611724 [23]. The evaluated 

parameters are employed as training/ testing data set for 
our proposed energy model formulation. Figure 4 describes 
the single line diagram of a roof-top grid connected 380 
kWp PV plant situated with co-ordinates of 12.970N and 
77.590E. The system under consideration encompasses a 
380 kWp grid connected PV system located inside NITTE 
Meenakshi Institute of Technology Bengaluru the capital of 
Karnataka, India.

The modules were Poly-crystalline manufactured by 
GERMAN SOLAR. The total number of PV modules 
installed were 1170 with each having a rating of 325 Wp 
equally contributing to a total rating of 380.2 kWp. There 
are 6 inverters each having a capacity of 60 kW. Each string 
comprised of 18 panels and 11 strings were connected to a 
single inverter. The orientation of the panels was perma-
nently facing south with a tilt angle of 13°.

An exhaustive performance analysis is carried out annu-
ally for duration of the measured inputs between January 
2021 to December 2021 with evaluation of characteristic 

Figure 4. Single line diagram of 380 kWp PV array installed at NMIT, Bangalore with 1170 panels.

Table 2. Specification of the instruments used in experiment

S.No Name of 
instrument

Open 
circuit 
voltage 
Voc

Short 
circuit 
current 
Isc

Operating 
Current

DC 
Power

Irradiance Temperature Compass 
Bearing

Inclinometer

1 I-V Curve 
Tracer

1000V DC 15A DC 40A 40kW - - -

2 Solar 
Survey(200R)

- - - - 100-1250 W/m2 -30o C to +1250 C 00 to 900 00 to 900

3 PV module 
Temperature

- - 4-20 mA - - 0 to 100o C - -
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indicators like final yield (YF), capacity factor (CF) and per-
formance ratio (PR) [23]. These parameters act as compar-
ators among other PV systems which states the operating 
index of the plant. 

The measured input parameters for the location are 
global horizontal irradiance at tilt, PV module and ambient 
temperature. These are measured employing an Irradiance 
meter, Pt 100 temperature sensor and back surface vacu-
um-based temperature sensor which comes integrated to 
PV200 Solar I-Vcurve analyser as shown in Figure 5. The 
measured inputs showing the annual variation of irradi-
ance, ambient temperature and module temperature for the 
monitored duration is illustrated in Figure 6.

As seen from Figure 6, the average ambient temperature 
for the monitored period January 2021 to December 2021 is 
28.10°C. The value of the module temperature is observed 
to be higher than the ambient as heat energy is generated 
with simultaneous generation of electrical power output, 
due to photovoltaic effect. The average module temperature 
for the monitored period is 43.4°C. The module tempera-
ture is higher during the period of March 2021 to June 2021 
as the solar insolation is correspondingly higher for these 
periods ranging from 2.9 kWh/m2/day to 6.4 kWh/m2/day.

AC Energy Output (Eac)
The A.C energy generated by the PV system is mea-

sured across the inverter end at instants of recording time 
interval. The data is recorded for every 10 minutes. The 
daily and monthly net energy generated by the PV systems 
are obtained as [24]:

  (1)

RT represents the meter recording time interval and Rtp 
is the reporting duration; Np is the total operating days of 

the system in a month. Vac and Iac represent the voltage and 
resulted current appearing across inverter.

As seen from Figure 7, the monthly average energy 
generated by the PV system at the inverter end, is at its 
maximum in the month of March 2021 i.e. 1317.9438 
kWh/month. The energy generation measured across the 
inverter varies synchronously with the irradiation incident 
on-field. The output AC energy is also affected by factors 
like average module temperature, tilt angle and orientation, 
manufacturing tolerance of modules and effect of accumu-
lated dirt on modules.

Array Yield (Ya)
As per IEC 61724, array yield represents the operational 

hours of the PV module per day to produce DC energy 
equivalent to its rated output power. It is expressed as 

Figure 5. PV200 I-V curve tracer.

Figure 6. Solar insolation, PV module and ambient tem-
perature for the monitored period.

Figure 7. AC energy generated and solar insolation for the 
monitored period.
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  (2)

where EA.DC is the total energy output of PV array and 
Eo is installed watt peak capacity. The array yield for the 380 
kWp PV plant under consideration is 2.64 h/day whose vari-
ation is as seen in Figure 8. The array yield is higher for the 
period of February and March. This is due to the fact that the 
average irradiance is high as 925 W/m2 during February and 
March in comparison to other months. Similarly, the array 
yield is lower for the months of August to December since 
the corresponding average irradiance is low as 415.37 W/m2.

Reference Yield (Yr)
Reference yield represents the maximum potential 

available at a particular location. It is provided by the ratio 
of in-plane irradiance (HT) to the standard test conditions 
of irradiance [25]. The reference yield provides a value nor-
malized to the value of irradiance corrected to standard test 
conditions. For the current study Yr ranges from an aver-
age of 4.8 to 6.4 h/d whose monthly average variation is 
expressed in Figure 8.

  (3)

Final Yield (Yf)
The net energy output (EAC) observed daily, monthly, or 

annually of the PV plant per watt peak of installed output 
power (E0) at standard test conditions is denoted as final 
yield [25].

  (4)

The final yield for the 380 kWp PV plant under con-
sideration is 1.92 h/d as represented in Figure 8. As there 
exist a linear correlation between array yield and final 
yield, the final yield is also found higher for the period of 
February and March and lower for the months of August to 
December. 

Performance Ratio (PR)
Performance ratio has no dimension as it quantifies 

the total losses in the system. PR is a critical parameter, 
which is used to assess the operational quality. It acts as a 
unique performance comparator irrespective of the watt 
peak capacity of the power plant. This comparator plays 
a major role in ranking the operational characteristics of 
the system. Higher the PR good is the operation of the PV 
plant. The performance ratio provides an idea on the total 
losses that occur in the plant. The losses in the plant can 
be attributed to tripping of circuit breaker, failures due to 
solder-bonds in junction boxes, snow, soiling, shading, 
diode failures, failure in inverter operation, degradation 
of PV systems etc. It is given expressed as a ratio of Yf toYr. 
The reported value of PR for Indian Conditions varies 
from 0.6 to 0.9 [26, 27].

  (5)

The closer the value to unity, the best is the operational 
performance of the plant. For the current investigation, 
the PR ranges from 0.37 to 0.56 as shown in Figure 9. This 
indicates that there occurs major power loss due to degra-
dation-based aspects which shall form the scope for future 
work.

Figure 8. Evaluated reference yield (Yr.), final yield (Yf) and 
array yield (Ya) for the monitored period.

Figure 9. Performance ratio, capacity utilization factor vs. 
monitored period.
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Capacity Utilization Factor (CUF)
CUF depends on the effective operational time period 

of the PV plant. It also depends on other location-based 
parameters like plane of array irradiance and total number 
of sunny days. It signifies the usage factor of the PV plant to 
generate the required AC power output. It is expressed in% 
and is given by

  (6)

For the current analysis, the capacity utilization factor is 
8.03%, as seen in Figure 9. CUF is at its peak in the month 
of February which varies in accordance with the PR.

Losses and Efficiency
The occurrence of energy losses in a PV system can be 

attributed to inherent changes experienced in the meteoro-
logical parameters and component-based degradation loss 
factors that occur in the system. Under on-field conditions 
the following losses affect the performance of a PV system.
• Thermal losses occur due to higher module temperature.
• Optical reflection loss and losses attributed to shadow-

ing effects.
• Intermittent inverter operation intermittency at the 

inverter end. 
The monthly average array loss, thermal capture loss, 

miscellaneous loss and system loss depend upon the array 
yield, final yield and the operating temperature. This is 
quantified for the system under investigation as repre-
sented in Figure 10. The average thermal capture loss, 
miscellaneous ca loss and system loss amounts to 0.46 (h/
day), 2.97 (h/day) & 0.71 (h/day). Figure 11 presents the 
evaluated PV module efficiency and system efficiency 
during the monitored period. System efficiency depends on 
the operational efficiency of all the components. It is the 

product of PV module efficiency and inverter efficiency 
computed on the evaluated time horizon. However, the PV 
module efficiency depends on the in-plane solar irradiance 
and the energy generation. The system efficiency is better 
when the module performs better. As seen from Figure 11, 
system efficiency is at its minimum (2%) in the month of 
September as the solar radiation is only about 4.71(kWh/
m2/day). The system efficiency varies from 2% to 10%. The 
system efficiency is considerably higher for the month of 
March to May, where the solar insolation is higher. The 
performance of an operating PV system is also affected 
by losses due to convection and radiation modes in power 
generation of a PV cell. 

Exergy Efficiency of the PV System
Exergy Efficiency of a distributed generator is derived 

from the second law of thermodynamics and is quantified 
as the ratio of output exergy to input system exergy [28].

  (7)

Ts represents the sun’s temperature; v is wind speed 
(m/s); A represents the area of the PV module; H is the irra-
diance; Ppv is the instantaneous power output generated by 
PV system and Ta and Tm represent the ambient and mod-
ule temperature respectively. 

  
(8)

Figure 11. Module efficiency and system efficiency vs. 
monitored period.

Figure 10. Monthly average losses for the monitored pe-
riod.
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The estimated annual average value of energy and 
exergy efficiency of the 380kWp system quantifies to 8.49% 
and 1.83% respectively as shown in Figure 12. The energy 
efficiency is relatively higher for the period of summer 
quantifying to an average of 8.94% in comparison to 6.91% 
in winter. This occurs due to the impact of global solar irra-
diance measuring 755W/m2 for the duration of summer 
than 650 W/m2 for the winter season. The thermal energy 
destruction encompassing thermal capture and array cap-
ture loss is 0.46 (h/day) & 2.51 (h/day) which causes reduc-
tion in the exergy efficiency than energy efficiency.

Table 3 shows a comparative analysis of the presented 
investigation with previous reported literature pertaining 
to the performance analysis of solar photovoltaic system. It 
is evident from the comparison that the 380 kWp PV system 
has more power loss attributed due to environmental con-
ditions and degradation failures making the average value 
of performance ratio to be as less 0.3.

Model Formulation
The energy modelling process begins with consider-

ation of location-based inputs influencing the energy out-
put of the Solar PV system. Initially, factors pertaining to 
a location as indicated in Table 4 were considered for the 
model formulation. The developed model acts as an objec-
tive function consisting of decision variables as indicated in 
Table 4, for estimating the energy generation of a realistic 
Solar PV plant. However, re-formulation of the proposed 
model was attempted towards accurate results. The pro-
posed model considers only the significant inputs which 
affect the predicted response. The dependence between the 
input and output is statistically realized through the p-value. 
The computed p-value is as shown in Table 4. Generally, the 
p-value should be below 0.05, which represents a signifi-
cance of 95% for the selection of the considered input.

 As inferred from Table 4, the variables with a p-value 
of less than 0.05 are Incident irradiance (H), ambient tem-
perature (Ta), and Windspeed (w). This reveals that they 
contribute significantly to energy estimation and thus are 
included for the improved model formulation.

The training data is acquired from RETSCREEN soft-
ware by National Renewable Energy Laboratory (NREL). A 
total of 10 locations in Southern India were designated for 

Figure 12. Monthly average energy and exergy efficiency.

Table 3. Comparative analysis of current work with previous literature

S.No Plant Location only in India Plant Capacity PR% CUF% Reference number
 1 Sivagangai, Tamil Nadu 5 MWp 89.15 22.9 [23]
2 Lucknow, Uttar Pradesh 5 kWp 76.97 16.39 [24]
3 Kaveripallayam, Tamil Nadu 1 MWp 40  ____ [29]
4 Ramagundam, Andhra Pradesh 10 MWp 86.12 17.68 [30]
5 Karnataka 3 MWp 78 15 [31]
6 Bengaluru, Karnataka 380 kWp 37 8.03 Present study

Table 5. Forms of proposed models

Type of Model Name
Linear Model Model-1
Exponential Model Model-2
Non-linear Model Model-3
ANN Model-4

Table 4. Selection of input parameters based on p-value

Input parameter p-value
Global Horizontal Irradiance (GHI) 1.5784x10-5

Ambient temperature 0.0386
Precipitation 0.9512
Pressure 0.5789
Windspeed 0.0273
Earth temperature 0.2904
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formulation of the proposed model. They are Bengaluru, 
Coimbatore, Hyderabad, Calicut, Thiruvananthapuram, 
Tiruchirappalli, Anantapur, Sholapur, Ratnagiri, and 
Pune. The locations are selected based on the availabil-
ity of ground-based solar radiation resource assessment 
(SRRA) stations. As the model is formulated from SRRA, 
it is believed to be accurate and adaptable to several other 
ground-based locations majorly covering regions of South 
India. The present research investigation proposes four 
independent models and provides an exhaustive compari-
son among them. Table 5 shows the terminology of the pro-
posed models used in this paper.

Before approaching model formulation, it is important 
to normalize the training dataset such that it becomes inde-
pendent of its standard international units. Generalization 
of model co-efficient cannot be made if the training data set 
is not normalized.

A multiple–linear regression model is firstly proposed 
incorporating statistically significant inputs like global hor-
izontal irradiance, ambient temperature, and wind speed as 
shown in equation (9), typically applicable for South Indian 
Locations. The training of data or model formulation was 
performed in MATLAB employing error minimization 
approach. The R-value during training was found to be 
0.933 with a root mean square error of 0.0751 and mean 
absolute error of 0.0602. The comparison of the actual 
and the formulated model for all the training locations is 
shown in Figure 13. The linear model formulated is given 
in equation (9). As observed from Figure 13, there lies a dis-
crepancy between the estimated and the actual /observed 
values, which resulted in the formulation of subsequent 
models described as follows.

  (9)

The second model (Model -2) is the exponential model 
as shown in equation (10). It yields an R value of 0.9071 
at the time of training but gives better performance in 
the case of test and validation. The RMSE of this model is 
0.0873 with mean absolute error of 0.0710. The comparison 
between actual and predicted values is given in Figure 14. 
As seen in the figure, the closeness between the observed 
and the modelled value improves.

  (10)

The third design tool is a non-linear model proposed 
for energy prediction, named model-3. The value of R with 
training data set is 0.9386 rendering an RMSE of 0.2143 and 
MAE of 0.1782. The formulated model function is given in 
equation (11). It gives by far the best performance among 
the previously formulated models as in equations (9) and 
(10). The same is reflected in Figure 15.

  (11)

An additional model based on deep-learning neural 
network-based structure has been formulated in MATLAB 
as shown in Figure 16. A neural network is a powerful tool 
for the prediction of time-series response which is dynamic 
in nature. The input variables for the proposed model as 
suggested from p-value analysis are global irradiance, mod-
ule temperature and wind speed at the time instant ‘t’. These 
act as inputs for estimating the energy generated at the 

Figure 13. Comparison of actual vs. predicted values of energy for the linear model.
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corresponding time. This behavior is truly adopted to neu-
ral network-based algorithms than machine learning algo-
rithms whose function is essentially forecasting, based on 
previous time stamp output. The neural network is trained 
with different layers as shown in Table 6. It is clear from 
the table that the neural network trained with 11 hidden 
layers provides the finest R value (percentage of closeness) 
among others. This justifies the consideration of a proposed 
11-layer based feed-forward back-propagation deep neural 
network-based architecture. This comprises an input layer, 

11 hidden layers, and an output layer. The input layer pos-
sesses 3x12 neurons, hidden layers hold 12x12 neurons, and 
the output layer holds 1 neuron as shown in Figure 17. The 
neurons in the hidden layers are processed through hyper-
bolic tangential activation function achieving normalized 
outputs while the output neuron is processed through a 
linear activation function. The data is split into a ratio of 
70:15:15 for training: validation: test. The value of R for 
the training, validation and testing are 0.9611, 0.9567 and 
0.9638 respectively. The overall with Mean Squared Error 

Figure 14. Comparison of actual and predicted values for the exponential model.

Figure 15. Calculated vs. actual model comparison for the non-linear model.
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(MSE) is as least as 0.003. Figure 18 shows the compari-
son of normalized energy generation against the actual as 
obtained through ANN model for training locations. The 
error for the proposed ANN model lies between the range 
of +0.19 to -0.18 as inferred from Figure 19.

An overall comparison among the four proposed 
models is represented in Figure 20 whose subplot for 
respective location is shown in Figure 21. The degree of 

closeness between the observed and the modelled out-
come as represented in Figure 22, is quantified with the 
value of R as tabulated in Table 6. It is clear from Table 6 
that the R for the proposed deep-learning based model for 
the trained locations is closer to unity, reflecting higher 
prediction capability. Furthermore, the closeness of the 
deep-learning model with the actual output is reflected 
in Figure 20 and 21 respectively where the predicted out-
come lies in line with the actual value. The value of R is 
higher for deep-learning based model which involves suc-
cessive training of weights.

RESULTS AND DISCUSSION

The process of evaluation of model parameters during 
validation occurs for two conditions
1. Application of the proposed model for non-trained 

locations where ground assessment stations exist.
2. Employing the proposed energy estimation models for 

380 kWp PV plant at Bengaluru.

Table 6. R-value at different number of hidden layers

Varying Hidden layers-based ANN models R-value
1 0.9475
2 0.9507
4 0.9517
7 0.9435
10 0.9525
11 0.9603
12 0.9512
14 0.9546

Figure 16. ANN trained on MATLAB.

Figure 17. ANN used for model formulation having 11 hidden layers, 1 input layer, and one output layer.
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The applicability of the formulated model is justified 
on validation of the proposed model for non-trained loca-
tions. The proposed models as in equation (9)-(11) and the 
deep-learning based ANN are validated for 15 non-trained 
locations with global irradiance, wind speed and module 
temperature. It is to highlight that the model co-efficient of 
the proposed models remains unchanged during the vali-
dation process.

A new data set for non-trained locations of 15 in num-
ber encompassing ground monitoring and satellite-based 
stations from RETSCREEN were considered. The over-
all comparison is shown in Table 7. The overall R for the 
validation set was found to be 0.9324, 0.8649, 0.9249 and 
0.9274 for the linear model, exponential model, non-lin-
ear model, and ANN model respectively. The value of R of 
0.9274 is reflected through Figure 23 which shows the com-
parison between the target /actual value and the predicted 

Figure 18. Variation of predicted output employing deep-learning based neural network model with the actual input for 
energy generated at 19 training locations with errors.

Figure 19. Error in values of calculated energy against the 
observed value.

Figure 20. Comparison between all the proposed models with the actual training dataset.
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energy (response). Higher value of R implies the agreement 
of closeness between the estimated and the predicted value. 
The robustness of the proposed model is also justified 
through higher value of R rendered also during validation. 

Though linear model possesses similar degree of closeness 
as deep-learning based ANN, the neural network model 
meets the uncertainties by successively changing the value 
of weights and biases for training cycles or epochs yielding 

Figure 21. Subplot for training data set considering all models.

Table 7. Value of R for all the models against the training set

Location R (Linear) R (Exponential) R (Non-linear) R (ANN)
Bangalore 0.9035 0.8684 0.9198 0.9390
Coimbatore 0.9710 0.9619 0.9644 0.9765
Hyderabad 0.9802 0.9367 0.9675 0.9872
Calicut 0.9308 0.8971 0.9321 0.9553
Thiruvananthapuram 0.8811 0.9028 0.8720 0.8089
Tiruchirappalli 0.7691 0.7803 0.8592 0.8630
Anantapur 0.8499 0.8456 0.8679 0.9244
Sholapur 0.8789 0.8837 0.9126 0.9709
Ratnagiri 0.8781 0.8296 0.8954 0.9277
Pune 0.9311 0.9010 0.9254 0.9463
Cuddalore 0.9595 0.9577 0.9238 0.9685
Madras 0.9657 0.9401 0.9410 0.9816
Mangalore 0.9443 0.8769 0.9508 0.9711
Chitradurga 0.9350 0.9283 0.9475 0.9836
Nellore 0.9157 0.9420 0.9126 0.9650
Kurnool 0.9592 0.9331 0.9499 0.9721
Belgaum 0.9550 0.9028 0.9749 0.9664
Goa 0.9049 0.8504 0.9040 0.9342
Machilipatnam 0.9444 0.9066 0.9341 0.9638
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better accuracy as seen in Figure 24. The comparison 
among the estimated and the actual energy generation for 
all the 15 non-trained locations is represented in Figure 25. 
The comparison among the estimated and actual energy for 
the proposed models for all the locations are represented as 
parity plots in Figure 26 (a)-(d).

The second set of validation has also been carried out 
from realistic testing inputs acquired from the operational 
data pertaining to 380 kWp at NMIT, Bengaluru, whose 

performance analysis is as reported above. A compari-
son of the proposed models with benchmark models like 
PVWATTS is also attempted. As seen in Table 9, the pro-
posed model, Model-1, holds good and delivers R, MAE 
and RMSE of 0.8370, 0.1715, and 0.1389 respectively during 
validation proving its applicability. A bar plot of actual irra-
diance and estimated energy for all the locations is illus-
trated in Figure 27. The minimum value of GHI is seen at 
426 W/m2 corresponding to minimum energy generation, 

Table 8. Validation results for proposed models at additional locations

Location R (Linear) R (Exponential) R (Non-linear) R (ANN)
Mysore 0.9234 0.8482 0.8783 0.8547
Vellore 0.9330 0.9346 0.8928 0.8946
Warangal 0.9578 0.9329 0.9605 0.9561
Madurai 0.8942 0.9526 0.8581 0.5843
Satara 0.9484 0.9187 0.9629 0.9419
Kolar 0.9113 0.8547 0.8980 0.9276
Selam 0.9092 0.8927 0.8540 0.8177
Vijayawada 0.9440 0.9409 0.9276 0.9617
Nalgonda 0.9490 0.9386 0.9473 0.9590
Gulbarga 0.9097 0.9002 0.9191 0.9497
Bajipur 0.9013 0.8962 0.9191 0.9286
Karwar 0.9258 0.7072 0.8915 0.9281
Kolhapur 0.9423 0.8974 0.9556 0.9423
Udipi 0.9111 0.5556 0.9163 0.9418
Tumakuru 0.9027 0.8032 0.8971 0.9422

Figure 22. Value of R2 for all the considered models during training.
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Figure 25. Subplot for test data considering all the proposed models for 15 non-trained locations.

Figure 24. Comparison of test data set with observed values for all the proposed models for 15 non-trained locations.

Figure 23. Validation results for proposed deep-learning based neural network model for 15 non-trained locations.
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while the maximum value of GHI of 930 W/m2 resulted in 
maximum energy generation as indicated.

The fitness parameters of the proposed and PVWATSS 
models like R- value, RMSE and MAE rendered during 
validation for 380kWp PV plant is graphically illustrated 
in Figure 28. This clearly justifies the prominence and 
accuracy of the proposed linear model in comparison 
with PVWATTS. Validation of the proposed model is also 
performed against the benchmark PVWATTS calculator 
whose estimations among the actual is as seen in Figure 
29. The proposed model estimates better than the com-
monly utilized benchmark software PVWATSS where the 
RMSE and MAE is as least as 0.1715 and 0.1389 respec-
tively. The operational performance of the proposed mod-
els varies with respect to locations. 

(a) (b)

(c) (d)

Figure 26. The parity plots for locations stated in Table 8 for (a) Linear, (b) Exponential, (c) Non-Linear, and (d) ANN models.

Figure 27. Irradiance and energy generated bar plot for all 
the considered locations in this study.
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Figure 29. Comparative analysis for validation against PVWATTS for all proposed models for location of Bengaluru from 
NMIT data.

Figure 28. Error based performance parameters during validation for the proposed and the PVWATT model.

Table 9. Validation results in comparison with real-time data and its benchmark against PVWATTS

Validation Benchmark Model R RMSE MAE
NMIT 380kWp PV Linear model 0.8370 0.1715 0.1389

Exponential model 0.7836 0.1946 0.1599
Non-linear model 0.8077 0.1847 0.1477
ANN 0.7551 0.2054 0.1746
PVWATTS 0.79 0.1907 0.1396
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CONCLUSION

A performance analysis for an annual monitored dura-
tion of 2021 -22 is performed for a 380 kWp grid connected 
PV system. Exergy analysis is also carried out where the 
annual average exergy efficiency is evaluated as 1.83%. The 
capacity factor and performance ratio for the plant under 
investigation are 8.03% and 37% respectively. The reduced 
performance ratio is due to the fact of least exergy efficiency 
of the system quantified to 1.83%. This indicates emission 
of heat during power generation quantified by annual ther-
mal capture losses of 0.46 (h/day). The performance loss 
rate can also be attributed due to the degradation-based 
failure modes occurring in the system.

Secondly, the parameters obtained from performance 
analysis are employed as training and testing data sets for 
proposed energy prediction models. Models like linear, 
non-linear and deep learning neural network-based mod-
els applicable for locations of South India are proposed as 
against a model for a location. The deliverable of the pro-
posed model is to estimate energy generation from a dis-
tributed generator if the energy meter fails to perform. 
The models considered in this study are validated for 15 
different non-trained locations with varying latitudinal 
angles ranging from 8.5° to 18.5°. The proposed models 
are also benchmarked against PVWATTS which is a widely 
accepted design tool.

The distinct performance-based advantages of the pro-
posed models include 
1. All of the proposed models have an R value ranging 

from 0.75 to 0.84 during validation with no change in 
model co-efficients for non-trained locations. 

2. The proposed linear model (Model-1) gives better per-
formance with an R value of 0.8370 as compared to 
PVWATTS with an R value of 0.79 for the current loca-
tion of Bengaluru.
Though the proposed models are trained with a sim-

ulation database, the validation of the model is limit-
edly carried out at two conditions including a realistic 
plant. The proposed models can thus serve as a realistic 
pre-estimator-based design tool for Solar Engineers and 
Solar Entrepreneurs. This will promote the Installation 
of renewable energy sources leading towards sustainable 
development.

Through performance analysis of the 380.2 kWp solar 
PV system, it is clear that the plant is working nowhere near 
its maximum capability. A visual inspection was done for 
all the panels at the site location, and it revealed that the 
module as well as the system efficiency was so low due to 
following reasons.
1. Poor to no maintenance for a longer duration has led to 

accumulation of dust on the glass cover of the panels, 
leading to soiling losses.

2. Snail trails were found in many panels.
3. Cracks were found in few panels due to mishandling of 

equipment.

4. Discoloration and hot spots were found in several 
panels.
These inferences create a scope in near future for accu-

rate quantification of failure effects in commercial Solar PV 
systems.

NOMENCLATURE 

PR Performance Ratio
Yf Final yield (h/day)
Yr  Referenece yield(h/day)
ηinv Inverter efficiency (%)
ηsys System efficiency (%)
Eac AC energy generated (kWh/day)
ηpv PV module efficiency 
Tm Module temperature (°C)
Ta Ambient temperature (°C)
Ts Suns temperature (K)
w Wind speed (m/s)
CUF Capacity Utilization Factor
H Solar irradiance(kWh/m2/day)
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