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Abstract— Computer vision and deep learning techniques are widely applied in object detection tasks across various 

domains, including defense technologies. Accurate and efficient detection of military aircraft plays a critical role in 

strengthening air defense systems and enabling effective strategic decision-making. This study evaluates the performance 

of YOLOv7, YOLOv8, and RT-DETR models in detecting military aircraft using a dataset consisting of 19.514 images 

spanning 43 aircraft models. The dataset incorporates images captured from various angles and diverse backgrounds, such 

as urban, rural, and coastal areas, ensuring realistic testing conditions. However, class imbalance is observed, with certain 

aircraft models, such as the F14 and F16, being more represented than others, which may affect model generalization. To 

address these challenges, hyperparameters were optimized, and performance metrics, including mean Average Precision 

(mAP) and recall, were analyzed. Experimental results show that YOLOv8 achieved 94% mAP and 88.1% recall, 

YOLOv7 reached 90.2% mAP and 82.7% recall, while RT-DETR demonstrated consistent performance with 92.7% mAP 

and 90.4% recall. These findings highlight the strengths and limitations of the evaluated models and provide inferences 

for improving detection systems in defense applications. 
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Karmaşık Ortamlarda YOLO ve Transformer Tabanlı 

Nesne Tespit Modelleri ile Askeri Uçak Tespiti  
 

Özet— Bilgisayarla görme ve derin öğrenme teknikleri, savunma teknolojileri de dahil olmak üzere çeşitli alanlardaki 

nesne algılama görevlerinde yaygın olarak uygulanmaktadır. Savaş uçaklarının doğru ve verimli bir şekilde tespit 

edilmesi, hava savunma sistemlerinin güçlendirilmesinde ve etkili stratejik karar alma süreçlerinin desteklenmesinde 

kritik bir rol oynamaktadır. Bu çalışmada, 43 uçak modelini kapsayan 19.514 görüntüden oluşan bir veri kümesi 

kullanılarak YOLOv7, YOLOv8 ve RT-DETR modellerinin savaş uçaklarını tespit etme performansı 

değerlendirilmektedir. Veri kümesi, çeşitli açılardan ve kentsel, kırsal ve kıyı alanları gibi farklı arka planlardan çekilen 

görüntüleri içermekte ve gerçekçi test koşulları sağlamaktadır. Bununla birlikte, F14 ve F16 gibi belirli uçak modellerinin 

diğerlerine göre daha fazla temsil edildiği ve model genellemesini etkileyebilecek sınıf dengesizliği gözlemlenmiştir. Bu 

zorlukların üstesinden gelmek için hiperparametreler optimize edilmiş ve ortalama Ortalama Hassasiyet (mAP) ve geri 

çağırma dahil olmak üzere performans ölçütleri analiz edilmiştir. Deneysel sonuçlar, YOLOv8'in %94 mAP ve %88,1 

geri çağırma, YOLOv7'nin %90,2 mAP ve %82,7 geri çağırma değerlerine ulaştığını, RT-DETR'nin ise %92,7 mAP ve 

%90,4 geri çağırma ile tutarlı bir performans sergilediğini göstermektedir. Bu bulgular, değerlendirilen modellerin güçlü 

yönlerini ve kısıtlamalarını vurgulamakta ve savunma uygulamalarında tespit sistemlerinin iyileştirilmesi için çıkarımlar 

sağlamaktadır. 
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1. INTRODUCTION 

Computer vision, a key branch of computer science, has 

rapidly advanced over time. Researchers have 

continually worked to develop more effective and 

efficient systems to tackle the challenges in this field. 

Morphological methods have emerged as significant 

strategies, particularly for addressing core issues in 

computer vision. The expansion of digital platforms has 

led to a substantial increase in visual data, driving 

demand for data processing and information extraction 

[1]. This surge in data has accelerated research in 

computer vision, with the ultimate goal of developing 

algorithms that operate as swiftly and accurately as the 

human eye [2]. The growing need for automation has 

also played a critical role in these advancements, 

enhancing efficiency and safety in high-risk 

environments through autonomous systems [3][4][5]. 

Research in computer vision typically falls into three 

main areas: segmentation, classification, and object 

detection [6]. These areas encompass more specific 

tasks, such as semantic segmentation, scene 

classification, and pixel-based classification. Semantic 

segmentation, for instance, distinguishes object 

boundaries within the same category, while pixel-based 

classification is particularly effective for hyperspectral 

remote sensing images, though it requires significant 

processing power [7][8][9]. Object detection, which 

involves identifying, classifying, and locating objects 

within an image, is particularly challenging in 

applications requiring detailed accuracy [10]. Object 

detection is critical in fields ranging from military 

operations to healthcare diagnostics [11][12][13][14]. 

However, the development of effective algorithms often 

encounters challenges such as low spatial resolution and 

complex image data. Additionally, reliance on human 

interpretation can introduce potential errors. Detected 

objects in images typically include a variety of 

structures, both man-made and natural, making object 

detection a complex task. Significant advancements in 

object detection have been driven by deep learning 

techniques, which have improved detection under large 

datasets and complex conditions [15]. The increasing 

computational power of GPUs has also been crucial in 

advancing these technologies, representing a critical 

step towards overcoming the challenges in object 

detection. As imaging technologies have advanced, the 

detection of military aircraft has become increasingly 

critical. Numerous studies have contributed to 

developing methods for accurately identifying military 

aircraft. 

Early efforts focused on creating models for fighter jet 

detection using physical prototypes of aircraft such as 

the P51 Mustang, G1-Fokker, MiG25-F, and Mirage 

2000, achieving a recognition accuracy of 91% and a 

response time of 3 seconds [16]. Building on this 

foundation, subsequent research introduced novel 

approaches, such as a 3D model for carrier-based 

aircraft detection, achieving a detection accuracy of 

99.92% in real reconnaissance images [17]. 

Advancements in remote sensing also enabled methods 

that used Convolutional Neural Networks (CNNs) for 

aircraft classification, achieving an accuracy of 98.29% 

[18]. Further developments included an enhanced 

YOLOv3-based object detection system, which 

improved precision to 91.49%, surpassing the original 

YOLOv3's 85.61% [19]. Real-time fighter jet detection 

was achieved using the YOLOv4 algorithm, with mAP 

and fps improvements to 86.92% and 29.62, 

respectively [20]. Object detection techniques continued 

to evolve with the development of SCMask R-CNN, 

which combined object recognition and segmentation, 

resulting in an AP value of 96.8% [21]. To address the 

challenge of detecting small aircraft, a Multi-Scale 

Detection Network (MSDN) was proposed, achieving 

an F1-score above 96% and an AP value exceeding 90% 

[22]. 

Further advances included the DAFF-Net model for 

detecting fighter jets within remote sensing images, 

which achieved an mAP value of 83.83% [23]. This 

progress continued with the development of YOLOv5-

Aircraft, integrating enhancements that led to a 3.74% 

increase in mAP and a 6.93% improvement in speed 

[24]. The comparative analysis of deep learning-based 

models for aircraft detection provided valuable insights, 

with one study demonstrating that the FNDCNNTL 

model achieved nearly 100% accuracy [25].  

Additionally, the application of R-FCN using Google 

Earth images reached a detection accuracy of 98.01%, 

outperforming SSD and Faster R-CNN models [26]. 

Advances in detection methods continued with the 

development of TransEffiDet, an aircraft detection 

method based on EfficientDet and Transformer 

modules, achieving an mAP value of 86.6% [27]. In 

military vehicle detection, Tiny YOLOv3 and Quantized 

SSD Mobilenet v2 showed superior performance in edge 

devices [28]. Further refinement in military aircraft 

recognition was achieved through the integration of 

VACR techniques with Back Propagation Neural 

Networks (BPNN), leading to a training accuracy of 

95.33% and a testing accuracy of 87% [29]. 

Additionally, the lightweight CNN framework CGC-

NET demonstrated its effectiveness in remote sensing 

images, achieving a 91.06% F-score and outperforming 

other models [30]. 

Continued innovation was evident in the development of 

the YOLOv5-Aircraft model, which achieved a 3.74% 

increase in mAP and a 6.93% speed improvement over 

previous versions [31]. The optimization of YOLOv5 

led to the YOLM model, which reached an mAP score 

of 88.7% on the FAIR1M dataset, outperforming other 

base models [32]. Comparative analyses highlighted the 

effectiveness of Faster R-CNN, which achieved the 

highest mAP value of 97%, making it suitable for high-

precision scenarios [33]. Similarly, the scaled YOLOv4 

model achieved 96% accuracy in practical applications 

using high-resolution Worldview-3 data [34]. The 

YOLO-extract algorithm, optimized from YOLOv5, 
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further enhanced detection capabilities, achieving a 

95.9% mAP value [35]. The CNTR-YOLO algorithm 

improved detection accuracy by 3.3% over YOLOv5, 

reaching a 70.1% average accuracy on the MAR20 

dataset [36]. Finally, the GCD-DETR model for UAV 

detection marked a significant advancement, achieving 

high accuracy rates of 95.6% and 97.8% on UAV 

datasets [37]. The enhancement of YOLOv8 and Faster 

R-CNN further demonstrated the continuous 

improvement in object detection, with YOLOv8 

achieving a general accuracy of 96.7% mAP, surpassing 

Faster R-CNN in overall performance [38]. 

In recent years, various studies have focused on the 

detection of small aerial objects. One such study 

modified the YOLOv8 model by integrating Multi-Scale 

Image Fusion (MSIF) and a P2 layer, achieving an 

Average Precision (AP) of 0.189 in the Drone-vs-Bird 

Detection Challenge, demonstrating effectiveness in 

detecting small and fast-moving objects at 45.7 FPS for 

640x640 resolutions [39]. Another study introduced a 

YOLO-based segmented dataset containing 20,925 

images, including 12,474 drones and 8,451 birds, to 

address the challenge of distinguishing drones from 

birds. The dataset features detailed segmentation and 

diverse environmental conditions, providing a valuable 

resource for training deep learning models in UAV 

detection and classification tasks [40]. Another study 

utilized the YOLOv4 model to develop a drone 

detection system, achieving 85% accuracy by 

classifying military drones under the 'aeroplane' 

category in the COCO dataset [41]. Another study 

evaluated three deep learning approaches in the Drone 

vs. Bird Detection Challenge, with the best model 

achieving an average precision of 80%, demonstrating 

robustness against small object sizes, distant targets, and 

moving cameras [42]. 

Despite significant advancements in military aircraft 

detection, challenges remain, particularly in the reliance 

on satellite images with limited perspectives and the 

need for extensive computational resources. This study 

addresses these gaps by evaluating the performance of 

state-of-the-art object detection models, including 

YOLOv7, YOLOv8, and RT-DETR, across diverse and 

complex scenarios. By analyzing the effects of different 

hyperparameters, this research provides insights into the 

strengths and limitations of these models, contributing 

to their potential application in defense technology.  

2. MATERİAL AND METHODS 

This section examines the dataset utilized in this 

manuscript, explaining the theoretical foundations 

relevant to the topics covered. The methods applied in 

this study and the experiments conducted are also 

detailed. 

 

2.1. Dataset  

The dataset utilized in this study is centered on the 

detection of military aircraft and consists of 43 classes 

of visual data, available as an open-source resource on 

Kaggle. It includes 19.514 images, covering a broad 

spectrum of military aircraft types and models. Each 

class represents a specific type or model of military 

aircraft, with images taken from various angles and set 

against diverse backgrounds, enhancing the model’s 

adaptability to real-world conditions. The images 

capture jets under different seasonal and temporal 

conditions, with varying weather and background 

settings, promoting the development of more robust 

algorithms. This variety ensures that the model is 

effective across multiple scenarios, from snowy 

landscapes to tropical islands, thereby broadening its 

applicability. However, the dataset is not evenly 

distributed across all classes, as illustrated in Figure 1. 

Classes such as the F14 and F16 are more heavily 

represented, with over 1,000 images each, while others, 

like the F35 and Rafale, have fewer images. This 

imbalance could cause some classes to be more easily 

recognized, while others might be underrepresented, 

posing challenges in developing a balanced detection 

model. 

This dataset is a valuable resource for research on the 

automatic detection of military aircraft, commonly used 

in academic studies to evaluate algorithm performance 

on real-world data. Experiments conducted with images 

from various backgrounds and angles improve the 

algorithms' adaptability and effectiveness, which is 

critical in military and defense applications. Accurate 

detection of military aircraft can enhance air defense 

systems, monitor enemy aircraft, and ensure civilian air 

traffic safety. 

 

Figure 1. Dataset Distribution 
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Object detection has become a pivotal research area due 

to its increasing importance across various fields, 

aiming to automatically identify and localize specific 

objects within visual data. This technology underpins 

critical applications ranging from autonomous vehicles 

and security surveillance to medical diagnostics and 

retail analytics. Object detection involves classifying 

objects within an image and localizing them with 

bounding boxes, thereby providing information about 

the object's identity and location [43]. 

The implementation of object detection is primarily 

based on deep learning models, which learn features 

from large volumes of labeled image data. Early models 

utilized techniques like sliding windows followed by 

feature extraction, but recent deep learning approaches 

offer more direct and efficient detection. CNN-based 

models, for example, provide faster and more accurate 

results compared to traditional machine learning 

algorithms [44]. In this study, advanced object detection 

methods, particularly RT-DETR and various versions of 

the YOLO algorithm, are employed for their 

effectiveness in overcoming challenges in object 

detection and contributing to advancements in the field.  

2.2.1. Convolution-Based Object Detection Models 

Convolution-based object detection is a foundational 

technique in computer vision systems, enabling the 

detection, identification, and classification of objects 

within images. This process is built upon deep learning 

methodologies, particularly Convolutional Neural 

Networks (CNNs), which have revolutionized the field 

of image processing. Object detection algorithms are 

designed to locate and categorize objects within images 

by leveraging the layered structure of CNNs and their 

capacity for learning complex visual features [45]. The 

initial stage of convolution-based object detection 

involves feature extraction within convolutional layers. 

These layers apply filters and activation functions to 

progressively abstract visual features from raw pixel 

values, such as edges, textures, and shapes [46]. 

Typically, activation functions like ReLU enhance the 

model's learning capability, allowing for more complex 

function modeling [47]. Once features are extracted, 

models like the Region Proposal Network (RPN) 

identify potential object regions, predicting bounding 

boxes that define the approximate location and size of 

objects within the image [48]. 

Subsequently, the extracted regions are resized and 

classified using Region of Interest (RoI) Pooling, 

transforming them into fixed-size vectors for further 

processing. The final stages involve classification and 

regression layers, which assign class labels and refine 

the placement of bounding boxes using techniques such 

as softmax classification and linear regression. This 

allows the model to accurately predict both the class and 

location of each object in the image. The success of 

these techniques depends significantly on well-

constructed training datasets and the use of data 

augmentation and regularization methods to prevent 

overfitting. These practices ensure the model's 

robustness and its ability to make accurate predictions 

under varying conditions. Convolution-based object 

detection is widely used across industries like 

automotive, healthcare, security, and retail, enabling 

automated and precise task execution without human 

intervention. This continuous evolution of AI and 

computer vision technologies leads to increasingly 

innovative applications across these sectors. 

2.2.2. YOLO (You Only Look Once) 

YOLO (You Only Look Once) is a pioneering deep 

learning architecture developed for real-time object 

detection, introduced by Joseph Redmon and colleagues 

in 2016 [49]. Unlike traditional methods, YOLO 

performs detection in a single pass through the network, 

dividing the image into grids and predicting bounding 

boxes and class probabilities simultaneously. This 

approach allows YOLO to achieve both speed and 

accuracy, making it ideal for real-time applications. 

YOLO's architecture is based on convolutional neural 

networks (CNNs), comprising multiple convolutional 

layers, pooling layers, and fully connected layers. These 

layers are designed to extract features, learn 

relationships, and make predictions necessary for object 

detection. By processing the entire image at once, 

YOLO leverages global information to reduce false 

positives and enhance accuracy [49]. The evolution of 

YOLO has seen the development of various versions, 

each improving upon the last. YOLOv2 and YOLOv3 

introduced enhancements in accuracy and the ability to 

detect objects at multiple scales [50]. This study focuses 

on YOLOv7 and YOLOv8, the latest advancements in 

the YOLO series, selected for their improved 

architectures and performance. 

2.3.3. YOLOv7 and YOLOv8 

YOLOv7 features a deeper and wider CNN structure, 

utilizing multi-scale feature maps and improved 

bounding box regression techniques to enhance 

accuracy. It incorporates advanced data augmentation 

and custom cross-connection modules, optimizing the 

model for real-time applications with complex 

backgrounds. YOLOv8, the most innovative in the 

series, adopts a multi-layer perceptron architecture that 

excels in detecting complex geometric structures and 

textures. This model is particularly effective in low-light 

and noisy environments, with optimized feature 

extraction and information flow. 

Both YOLOv7 and YOLOv8 are designed for real-time 

applications, but YOLOv8's more complex architecture 

offers superior performance in handling intricate tasks. 

Table 1 details the hyperparameters used for these 

models, which were carefully tuned to achieve optimal 

results during training and testing. 
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Table 1. Hyperparameters and Descriptions for YOLO 

Models 

Parameter Value Description 

lr0 0,0002 
Initial speed for weight 

updates in the model 

lrf 0,001 
Learning rate used in the 

final stages of training 

Momentum/Beta1 0,937 
Cumulative effect of 

previous gradient updates 

Weight Decay 0,0005 Prevents model overfitting 

Box 0,05 
Weight of bounding box 

loss 

Cls 0,3 Weight of class loss 

Obj 0,7 Weight of object loss 

Iou_t 0,20 IoU training threshold 

Anchor_t 4.0 
Anchor box alignment 

threshold 

Fl_gamma 0,0 Focal loss gamma 

In this study, YOLOv7 and YOLOv8 models were 

employed for object detection and classification, with 

hyperparameters meticulously adjusted to maximize 

performance. The selected hyperparameters, as 

outlined in Table 1, were determined through extensive 

experimentation to achieve the best possible results 

under various conditions. 

2.2.4. RT-DETR 

The RT-DETR (Real-Time Detection Transformer) 

method introduces significant innovations in object 

detection by utilizing a transformer-based architecture, 

particularly effective in complex visual environments 

[51]. Unlike CNN-based approaches, RT-DETR 

employs a global prediction approach, simplifying the 

detection process by predicting objects collectively 

rather than individually. This method reduces training 

complexity and improves model efficiency, making it 

capable of handling overlapping and multi-scale objects 

[52]. The RT-DETR architecture comprises three main 

components: a backbone, a transformer, and a feed-

forward network (FFN). Typically using ResNet for 

feature extraction, the transformer processes these 

features through multiple attention layers, capturing 

relationships between objects [53][54]. The final 

predictions for object classification and localization are 

produced by the FFN, utilizing cross-attention 

mechanisms to combine object queries with image 

features, resulting in accurate and scalable detection 

outcomes [55]. RT-DETR's transformer component 

represents a key innovation, allowing for global context 

understanding by linking different parts of the feature 

map through attention mechanisms. This capability is 

particularly advantageous in complex scenarios, where 

overlapping objects are detected with higher accuracy 

[56]. The model outputs a set of predicted classes and 

bounding boxes, optimized using bipartite matching and 

the Hungarian algorithm to align predictions with 

ground truth efficiently [57]. The performance of RT-

DETR has been demonstrated on datasets like MS 

COCO, with significant improvements in object 

detection accuracy, particularly in challenging 

categories [58]. Modifications such as deformable 

attention mechanisms have further enhanced its 

capabilities, particularly in dense and complex scenes 

[59]. Despite its advantages, the model's training process 

can be computationally intensive, a challenge addressed 

in subsequent research focusing on optimization [60]. 

For this study, RT-DETR was employed with carefully 

selected hyperparameters to optimize performance 

during training and testing. The choice of parameters 

like the optimizer, learning rates, and cost weights 

played a crucial role in achieving accurate and efficient 

object detection [55]. Data augmentation techniques 

such as HSV adjustments and geometric transformations 

were also applied to enhance the model's robustness 

[59]. 

Table 2. Hyperparameters and Descriptions for RT-

DETR Models 

Parameter Value Description 

optimizer AdamW 
The optimization algorithm 

of the model 

base learning 

rate 
0,0001 

The initial learning rate of 

the model 

learning rate 

of backbone 
0,00001 

Learning rate for the 

backbone network 

weight decay 0,0001 
Weight decay to prevent 

overfitting 

number of 

AIFI layers 
1 

Number of Adaptive 

Addition and Subtraction 

Layers 

number of 

RepBlocks 
3 Number of repeating blocks 

embedding 

dim 
256 

The dimension of 

embedding vectors 

feedforward 

dim 
1024 

The dimension of the 

feedforward network 

nheads 8 

Number of heads in the 

multi-head attention 

mechanism 

number of 

feature scales 
3 

Number of different feature 

scales 

number of 

decoder layers 
6 

Number of layers in the 

decoder 

number of 

queries 
300 

Maximum number of 

objects the model can 

process simultaneously 

bbox cost 

weight 
5.0 

Weight of the bounding box 

cost function 

GIoU cost 

weight 
2.0 

Weight of the Generalized 

IoU cost function 

class loss 

weight 
1.0 Weight of the class loss 

bbox loss 

weight 
5.0 

Weight of the bounding box 

loss 

GIoU loss 

weight 
2.0 

Weight of the Generalized 

IoU loss 
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Each parameter was fine-tuned to ensure optimal model 

performance in real-world conditions. Understanding 

these adjustments is key to improving future 

implementations. 

2.3. Performance Metrics 

To evaluate the performance of object detection models, 

the most commonly used metrics include Precision, 

Recall, and mean Average Precision (mAP). These 

metrics are based on fundamental concepts such as True 

Positive (TP), False Positive (FP), True Negative (TN), 

and False Negative (FN), which are typically organized 

in a confusion matrix. Precision, measures the ratio of 

correctly identified positive examples to the total 

number of examples predicted as positive. High 

precision indicates that the model produces few false 

positives, and it is calculated using Equation (1). 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

Recall, calculates the ratio of correctly identified 

positive examples to the total number of actual positive 

examples. High recall suggests that the model 

successfully detects most of the positive instances, as 

shown in Equation (2). 

𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

mean Average Precision (mAP), evaluates the balance 

between precision and recall across different classes. It 

is computed as the average of the precision-recall curve 

areas for each class, as detailed in Equations (3) and 

Equations (4). 

𝑃 =  ∑ (𝑅(𝑛) − 𝑅(𝑛 − 1)) 𝑃(𝑛) 
𝑛

 
(3) 

  

𝑚𝐴𝑃 =  
1

𝑁
 ∑ 𝐴𝑃𝑖

𝑁

𝑖=1
 

(4) 

These metrics are crucial for understanding how well a 

model performs in real-world scenarios and for 

comparing different models. Precision and recall often 

exhibit a trade-off, where improving one may decrease 

the other. Therefore, balancing these metrics is essential 

for developing an effective object detection model. 

Additionally, the F1 Score is frequently used to balance 

precision and recall. It is the harmonic mean of precision 

and recall, as defined in Equation (5). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃 ∗ 𝑅

𝑃 + 𝑅 
) 

(5) 

 

The Confusion Matrix, as shown in Table 3, provides a 

detailed breakdown of the model's predictions, 

illustrating the relationship between actual and predicted 

classifications. It includes True Positives (TP), False 

Positives (FP), True Negatives (TN), and False 

Negatives (FN), offering insight into specific types of 

errors made by the model.  

Table 3. Confusion Matrix 

Actual / 

Predicted 
Positive 

Prediction 
Negative 

Prediction 
Actual 

Positive 
True Positive 

(TP) 
False Negative 

(FN) 
Actual 

Negative 
False Positive 

(FP) 
True Negative 

(TN) 
 

These metrics and the confusion matrix are essential 

tools for analyzing model performance in-depth and 

guiding the model development process. 

3. RESULTS and DISCUSSION  

In this study, the performance of the object detection 

model was evaluated using commonly accepted metrics 

such as F1 score, precision, recall, and mean average 

precision (mAP). These metrics, explained in detail in 

Section 3, were used to analyze the model's 

effectiveness in accurately detecting and classifying 

objects. 

 3.1. YOLOv7  

YOLOv7 is a prominent object detection model known 

for its real-time detection capabilities and high accuracy. 

The model's performance was thoroughly assessed using 

various metrics and graphs to determine its strengths and 

areas for improvement. Figure 1 presents the F1 score-

confidence curve, where the F1 score, a harmonic mean 

of precision and recall, is plotted against different 

confidence levels. The average F1 score across all 

classes was 0.86 at a confidence level of 0.563, 

indicating the model's ability to balance precision and 

recall. The variation in F1 scores among different 

classes suggests that while the model performs 

consistently well for certain classes, its performance 

fluctuates depending on the confidence threshold.  
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Figure 1. F1 Score-Confidence Curve for YOLOv7 

Model 

Figure 2 illustrates the precision-recall curve for the 

YOLOv7 model, showing the trade-off between 

precision and recall across different classes. The model 

achieved a mean average precision (mAP) of 0.902 at an 

IoU threshold of 0.5, indicating a strong balance 

between precision and recall in detecting objects with a 

significant overlap. Figure 3 depicts the precision-

confidence curve, highlighting the model's precision 

across varying confidence levels. The model reached a  

precision of 1.00 at a confidence level of 0.982, 

demonstrating its capability to produce highly accurate 

detections at near-perfect confidence levels. However, 

the curve also indicates that precision varies across 

classes, emphasizing the model's strong performance in 

certain categories and room for improvement in others. 

 

Figure 2. Precision-Recall Curve for YOLOv7 Model 

 

Figure 3. Precision-Confidence Curve for YOLOv7 

Model 

Figure 4 shows the confusion matrix for YOLOv7, 

displaying the accuracy of the model's predictions across 

different classes. The diagonal elements represent 

correctly classified instances, while off-diagonal 

elements indicate misclassifications. High accuracy 

rates in classes such as AG600 and Mig31 reflect the 

model's reliability, whereas lower accuracy in classes 

like F117 suggests areas where further model refinement 

is needed. The experimental results indicate that the 

YOLOv7 model can effectively detect and classify 

various aircraft types with high accuracy across different 

conditions. These findings are supported by the visual 

examples provided in Figure 1 and Figure 2 , 

showcasing the model's robust detection capabilities in 

real-world scenarios. 

 

Figure 4. Confusion Matrix for YOLOv7 



92                                                                                                                                                                                              BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 

 

Figure 5. Sample Detection Results Using YOLOv7 

The visual results presented in Figure 5 provide a 

tangible representation of YOLOv7's detection 

capabilities, aligning well with the quantitative metrics 

discussed earlier. The model successfully identifies and 

localizes various aircraft, including those with 

overlapping features or challenging backgrounds, 

reaffirming its effectiveness in real-world applications. 

3.2. YOLOv8 

The YOLOv8 model's performance was rigorously 

analyzed through a variety of metrics and visual 

representations. This evaluation emphasized its 

strengths in accuracy and reliability, while also 

identifying specific areas where further enhancements 

could be made. Figure 6 presents the F1 score-

confidence curve, where the relationship between F1 

scores and confidence levels is illustrated. The average 

F1 score across all classes reached 0.90 at a confidence 

level of 0.695, indicating the model's strong 

performance at this level. The variability in F1 scores 

among different classes suggests that while the model 

performs well for certain classes, its performance varies 

depending on the confidence threshold. Figure 7 shows 

the precision-recall curve, which highlights the model's 

ability to balance precision and recall. The model 

achieved a mean average precision (mAP) of 0.940 at an 

IoU threshold of 0.5, reflecting its high accuracy and 

reliability across different classes. 

 

Figure 6. F1 Score-Confidence Curve for YOLOv8 

Model 

 

Figure 7. Precision-Recall Curve for YOLOv8 Model 

Figure 8 depicts the precision-confidence curve, 

demonstrating that the model reached a precision of 1.00 

at a confidence level of 1.00, indicating near-perfect 

accuracy at high confidence levels. This suggests that 

the model is highly reliable in making accurate 

predictions when it operates at maximum confidence. 

 

Figure 8. Precision-Confidence Curve for YOLOv8 

Model 
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Figure 9. Confusion Matrix for YOLOv8 

Figure 9 displays the confusion matrix, which illustrates 

the accuracy of the model's predictions across various 

classes. The matrix highlights the model's strong 

performance in distinguishing between different classes, 

with high accuracy rates for many classes. However, it 

also reveals areas where the model could benefit from 

further refinement. 

The experimental results confirm that the YOLOv8 

model is highly effective in detecting and classifying 

various types of aircraft with remarkable accuracy, even 

under diverse and challenging environmental 

conditions. This effectiveness is not only evident in the 

quantitative metrics, such as the high mean Average 

Precision (mAP) and precision-recall balance, but also 

in the qualitative assessment of the model's detection 

capabilities. Figure 6 and Figure 7 illustrate the F1 

score-confidence and precision-recall curves, 

respectively, highlighting the model's ability to maintain 

strong performance across varying confidence 

thresholds and object scales. Furthermore, Figure 10 

presents visual examples of the YOLOv8 model’s 

successful detections across different scenarios, 

showcasing its robustness and reliability in real-world 

applications. These examples underscore the model's 

proficiency in accurately identifying and localizing 

aircraft, even in complex scenes with varied 

backgrounds and lighting conditions. 

 

Figure 10. Sample Detection Results Using YOLOv8 

3.3. RT-DETR 

The RT-DETR model, known for its effective use of 

attention mechanisms and real-time detection 

capabilities, was subjected to an extensive performance 

analysis. The study utilized a range of metrics and visual 

tools to assess its accuracy across various confidence 

levels and classes, highlighting both its robust 

performance and areas needing refinement. 

Figure 11 illustrates the F1 score-confidence curve for 

the RT-DETR model, showing the relationship between 

F1 scores and confidence levels. The model achieved a 

high F1 score of 0.93 at a confidence level of 0.637, 

indicating a strong balance between precision and recall 

at this confidence level. 

 

Figure 11. F1 score-Confidence curve for the RT-

DETR model 
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Figure 12 presents the precision-recall curve for the RT-

DETR model. The model attained a mean Average 

Precision (mAP) of 0.927 at an IoU threshold of 0.5, 

demonstrating its reliable performance in detecting and 

correctly identifying most objects. 

 

Figure 12. Precision-Recall Curve for RT-DETR 

Model 

Figure 14 shows the precision-confidence curve, where 

the model achieved a precision of 1.00 at a confidence 

level of 1.000, indicating that at this level, all predicted 

objects were correctly classified, highlighting the 

model's high reliability at maximum confidence. 

 

Figure 13. Precision-Confidence Curve for RT-DETR 

Model 

Figure 14 displays the confusion matrix for the RT-

DETR model, showing the model's accuracy in 

distinguishing between various classes. The matrix's 

diagonal shows high accuracy for several aircraft 

classes, but also highlights areas where the model 

struggled, particularly with visually similar aircraft. 

 

Figure 14. Confusion Matrix for RT-DETR 

In addition to these performance metrics, Figure 16 

provides visual examples of the RT-DETR model’s 

successful detections across different scenarios, further 

demonstrating its effectiveness in real-world 

applications. 

 

Figure 15. Sample Detection Results Using RT-DETR 

The RT-DETR model, despite its architectural 

differences from traditional CNN-based models like 

YOLO, demonstrated commendable performance in 

detecting and classifying various types of aircraft across 

diverse environmental conditions. Figure 11 and Figure 

12 highlight the model's robust F1 score and precision-

recall performance, respectively, while Figure 13 

emphasizes the model's high precision at maximum 

confidence levels. The model's ability to accurately 

distinguish between various classes is further illustrated 

in Figure 14 through the confusion matrix. Finally, 

Figure 15 showcases the model's strong detection 

capabilities with visual examples of successful aircraft 

detections in real-world scenarios. 
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YOLOv7 demonstrated strong performance with a 

mAP@.5 score of 0.902, achieving precision values 

above 0.90 for classes like A400M, AG600, and Be200, 

alongside high recall rates in these categories. However, 

the model exhibited lower recall for certain classes, such 

as F117, indicating areas for potential improvement. 

YOLOv8 surpassed YOLOv7 in several metrics, 

achieving a mAP@.5 of 0.94 and maintaining precision 

values above 0.90 for most classes, with particularly 

high performance for classes like Tu160 and Tu95. The 

model also excelled in recall for classes such as C2 and 

US2, likely due to algorithmic optimizations and 

potentially more extensive training data.  

The RT-DETR model outperformed the previous two, 

with a mAP@.5 of 0.93, and exhibited high precision 

and recall across nearly all classes. Notably, it achieved 

excellent results in EF2000, F35, and Rafale classes, as 

well as in P3 and E7, demonstrating its effectiveness 

across a broad range of classes. 

As shown in Table 4. Model Performance Comparison, 

the RT-DETR model consistently delivered higher 

precision (0.952) and recall (0.904) compared to 

YOLOv8 (precision: 0.924, recall: 0.881) and YOLOv7 

(precision: 0.907, recall: 0.827). Although YOLOv8 

achieved the highest mAP@50 value at 0.94, RT-DETR 

excelled in overall precision and recall, indicating its 

superior performance in object detection tasks across a 

wide dataset. YOLOv7, while trailing behind, still 

produced effective results in specific classes. 

Table 4. Model Performance Comparison 

Model Instances P R 
mAP@

50 
mAP 

YOLOv7 3578 0.907 0.827 0.902 0.829 

YOLOv8 3578 0.924 0.881 0.940 0.877 

RT-

DETR 
3578 0.952 0.904 0.927 0.879 

This comparison highlights the RT-DETR model's 

superior accuracy and consistency in object detection 

tasks, particularly when high precision and recall are 

critical. 

4. CONCLUSION AND RECOMMENDATIONS  

This study has explored the potential of deep learning-

based models for the automatic detection of military 

aircraft, a critical task in modern warfare and strategic 

surveillance operations. The study utilized an extensive 

dataset comprising 19.514 images across 43 different 

military aircraft classes. The primary objective was to 

accurately classify and detect these classes using 

YOLOv7, YOLOv8, and RT-DETR models. The 

evaluation of each model was conducted using metrics 

such as Precision, Recall, and mean Average Precision 

at IoU threshold 0.5 (mAP@.5). 

Performance analyses revealed varying results across 

models, highlighting each model’s strengths and 

weaknesses. The YOLOv7 model demonstrated 

impressive overall performance but struggled with 

lower-than-expected Recall rates in classes like F117. 

The YOLOv8 model built upon the performance of 

YOLOv7, achieving higher overall mAP values and 

displaying superior Precision in most classes, 

particularly in the Tu160 and Tu95 classes. Meanwhile, 

the RT-DETR model provided more consistent and 

superior results across Precision and Recall metrics, 

proving highly reliable across almost all classes. 

However, all three models exhibited a need for 

improved performance in certain classes. Low recall 

rates in some classes suggest that the models may not 

adequately recognize objects within these classes, 

possibly due to insufficient training data for those 

categories. Additionally, high false positive rates in 

some cases indicate limitations in the models' 

generalization capabilities or imbalances in the dataset. 

This highlights the potential benefit of augmenting the 

dataset with additional samples from underperforming 

classes. To enhance model performance, several 

strategies are recommended. First, additional data 

should be collected for classes with lower performance, 

and efforts should be made to balance the dataset. 

Employing data augmentation techniques can also help 

improve model robustness. This study has demonstrated 

the significant potential of deep learning models for 

military aircraft detection. By implementing these 

recommendations, it is expected that model performance 

can be further enhanced, enabling broader and more 

effective applications. 

Future studies are intended to enhance model 

performance by addressing class imbalance and 

improving generalization capabilities. Specifically, 

optimizing model architectures, increasing data 

diversity, and employing advanced data augmentation 

techniques could lead to significant performance 

improvements. Recent data augmentation methods, such 

as MixUp, CutMix, Mosaic, and Copy-Paste, can be 

utilized to address class imbalance and improve 

robustness. Moreover, it is essential to evaluate models 

in terms of speed and efficiency for real-time 

applications. Such advancements are expected to 

provide more reliable and effective solutions for the 

automatic detection of military aircraft, contributing 

significantly to both military and civilian applications. 
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