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Abstract 

 

We present an alternating inertial forward-backward-forward algorithm designed to find 

the zeros of the sum of a maximally monotone operator and a single-valued monotone 

operator that is also Lipschitz continuous.  This study aims to extend Tseng’s forward-

backward-forward algorithm by incorporating alternating inertial effects.  We then apply 

our enhanced algorithm to address convex minimization problems.  Key topics include 

the monotone inclusion problem, forward-backward-forward algorithm, the alternating 

inertial method, and convex minimization problems.  Lastly, we explore the application 

of our proposed approach in image restoration, emphasizing its effectiveness and 

adaptability. 

 

Keywords: Monotone inclusion problem, forward-backward-forward algorithm, 

alternating inertial method, convex minimization problem, image restoration problem. 

 

 

Monoton kapsama problemini çözmek için alternatif eylemsiz 

ileri-geri-ileri ayırma algoritması ve uygulamaları 
 

 

Öz 

 

Maksimum monoton bir operatör ile tek değerli, aynı zamanda Lipschitz sürekli olan 

monoton bir operatörün toplamının sıfırlarını bulmak amacıyla tasarlanmış alternatif 

eylemsiz ileri-geri-ileri algoritmasını sunuyoruz.  Bu çalışma, Tseng'in ileri-geri-ileri 

algoritmasını alternatif atalet etkilerini ekleyerek genişletmeyi amaçlamaktadır. 

Ardından, geliştirilmiş algoritmamızı konveks minimizasyon problemlerini ele almak için 
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uyguluyoruz.  Ana konular arasında monoton kapsama problemi, ileri-geri-ileri 

algoritması, alternatif eylemsiz yöntemi ve konveks minimizasyon problemleri yer 

almaktadır.  Son olarak, önerdiğimiz yaklaşımın görüntü iyileştirme uygulamasını 

inceleyerek etkinliğini ve uygulanabilirliğini vurguluyoruz. 

 

Anahtar kelimeler: Monoton kapsama problemi, ileri-geri-ileri algoritması, alternatif 

eylemsiz metot, konveks minimizasyon problemi, görüntü iyileştirme problemi. 

 

1.  Introduction 

Let 𝐻 be a real Hilbert space with the inner product ⟨. , . ⟩,  𝐶 be a nonempty closed, and 

convex subset of 𝐻 and the induced norm ∥ 𝑥 ∥. This study aims to investigate the 

monotone inclusion problems as follows:  

find 𝑥∗ ∈ 𝐻 such that 0 ∈ (𝐴 + 𝐵)𝑥∗                                                                           (1) 

where 𝐴: 𝐻 → 𝐻 be a single-valued mapping and 𝐵: 𝐻 → 2𝐻 multi-valued mapping.  This 

problem is of significant interest because it is central to various mathematical issues, 

including convex programming, variational inequalities, the split feasibility problem, and 

minimization problems, as discussed in references [1,2, 3, 4, 5].  It also has applications 

in machine learning, image processing, and linear inverse problems, see for detail these 

references [6,7,8,9,10,11,12,13,14,15,16]. 

Proximal point algorithm is a highly effective tool for solving monotone inclusion 

problems.  To enhance its convergence, the literature presents an inertial proximal point 

algorithm.  Among the most widely used methods for addressing monotone inclusion 

problems is the forward-backward algorithm, introduced by Lions and Mercier [17],  

which is formulated as: 

𝑥𝑛+1 = 𝐽𝜆𝑘𝐴(𝐼 − 𝜆𝑘𝐵)𝑥𝑘, 

The forward-backward-forward algorithm was suggested by Tseng [18] and it generates 

an iterative the sequence {𝑥𝑘} via  

{
𝑦𝑘 = 𝐽𝜆𝑘𝐴(𝐼 − 𝜆𝑘𝐵)𝑥𝑘,

𝑥𝑘+1 = 𝑦𝑘 − 𝜆𝑘(𝐵𝑦𝑘 − 𝐵𝑥𝑘), ∀𝑘 ≥ 0
 

where 𝑥0 ∈ 𝐻 is the starting point.  The sequence {𝑥𝑘} converges weakly to a solution of 

if the sequence of stepsizes {𝜆𝑘} is chosen in the interval (0,
1

𝐿
), where 𝐿 > 0 is the 

Lipschitz constant of 𝐵.   In [19], an inertial version of the forward-backward-forward 

primal-dual splitting algorithm was introduced. 

In 2020, Bot et al. [19] introduced a relaxed inertial version of the following forward-

backward-forward algorithm (RIFBF), to solve monotone inclusion problems: 

{

𝑧𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1)

𝑦𝑘 = 𝐽𝜆𝑘𝐴(𝐼 − 𝜆𝑘𝐵)𝑧𝑘

𝑥𝑛+1 = (1 − 𝜌𝑘)𝑧𝑘 + 𝜌𝑘(𝑦𝑘 − 𝜆𝑘(𝐵𝑦𝑘 − 𝐵𝑧𝑘)), ∀𝑘 ≥ 1

 

where 𝑥0, 𝑥1 ∈ 𝐻 are initial point, {𝜆𝑘} and {𝜌𝑘} are sequences of positive numbers, and 

{𝛼𝑘} is a sequence of nonnegative numbers, namely, inertial term.  By taking 𝜌𝑘 = 1 in 

RIFBF, the inertial forward-backward-forward Algorithm [20] can be obtained as 

follows: 
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{

𝑧𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1)

𝑦𝑘 = 𝐽𝜆𝑘𝐴(𝐼 − 𝜆𝑘𝐵)𝑧𝑘

𝑥𝑛+1 = 𝑦𝑘 − 𝜆𝑘(𝐵𝑦𝑘 − 𝐵𝑧𝑘), ∀𝑘 ≥ 1

 

It is our aim in this study to propose an alternating inertial forward-backward-forward 

splitting algorithm in which Fejer monotonicity of ‖𝑥𝑛 − 𝑥‖, namely, ‖𝑥𝑛+1 − 𝑥‖ ≤
‖𝑥𝑛 − 𝑥‖, 𝑥 ∈ 𝐶 ⊂ 𝐻 is regained to some extent [21,22,23].  The article is structured as 

follows: we begin by recalling some basic definitions and lemmas, followed by the 

presentation and analysis of our algorithms in Section 3.  In Section 4 and section 5, we 

discuss applications of the proposed method. 

 

2.  Preliminaries 

In this part, let 𝐻 be a real Hilbert space and 𝐶 be a nonempty closed, and convex subset 

of 𝐻.  Then, the weak convergence of {𝑥𝑛} to 𝑥 is denoted by 𝑥𝑛 ⇀ 𝑥 as 𝑛 → ∞, and the 

strong convergence of {𝑥𝑛} to 𝑥 is denoted by 𝑥𝑛 → 𝑥 as 𝑛 → ∞. 
 

Definition 1: [24] Let 𝐴: 𝐻 → 𝐻 be a mapping.   𝐴 is said to be, for all 𝑢, 𝑣 ∈ 𝐻, 

1.  Monotone if  

⟨𝐴𝑢 − 𝐴𝑣, 𝑢 − 𝑣⟩ ≥ 0, 

2.  𝐿 −Lipschitz continuous on 𝐻 if there exists a constant 𝐿 > 0 such that 

‖𝐴𝑢 − 𝐴𝑣‖ ≤ 𝐿‖𝑢 − 𝑣‖. 

If 𝐿 = 1, then 𝐴 is called nonexpansive.  

Definition 2: A mapping 𝐵: 𝐻 → 2𝐻 is said to be monotone, if for every 𝑢, 𝑣 ∈ 𝐻, 𝑥 ∈

𝐵𝑢 and 𝑦 ∈ 𝐵𝑣, ⟨𝑥 − 𝑦, 𝑢 − 𝑣⟩ ≥ 0.  Moreover, 𝐵 is said to be maximal monotone if it is 

monotone and  if for every (𝑥, 𝑢) ∈ 𝐻, ⟨𝑥 − 𝑦, 𝑢 − 𝑣⟩ ≥ 0 for every (𝑣, 𝑦) ∈ 𝐺𝑟𝑎𝑝ℎ(𝐵), 

  𝑥 ∈ 𝐵𝑢.  

Lemma 1: [24] Let 𝐴: 𝐻 → 𝐻 be a operator and let 𝐵: 𝐻 → 2𝐻 be a maximal monotone 

operator.  Define for 𝜆 > 0, 𝑇𝜆: = (𝐼 + 𝜆𝐵)−1(𝐼 − 𝜆𝐴). Then we have, for all 𝜆 > 0,  

𝐹(𝑇𝜆) = (𝐴 + 𝐵)−1(0). 

Lemma 2: [24] Let 𝐴: 𝐻 → 𝐻 be a Lipschitz continuous and monotone operator and let 

𝐵: 𝐻 → 2𝐻 be a maximal monotone operator.  Then, 𝐴 + 𝐵 is a maximal monotone 

operator.  

Lemma 3: [25] Let 𝐻 be a real Hilbert space.  Hence, the following properties hold: 

1.  ‖𝑥 ± 𝑦‖2 = ‖𝑥‖2 ± 2⟨𝑥, 𝑦⟩ + ‖𝑦‖2, 

2.  ‖𝑥 + 𝑦‖2 ≤ ‖𝑥‖2 + 2⟨𝑦, 𝑥 + 𝑦⟩, 

3.  ‖𝜆𝑥 + (1 − 𝜆)𝑦‖2 = 𝜆‖𝑥‖2 + (1 − 𝜆)‖𝑦‖2 − 𝜆(1 − 𝜆)‖𝑥 − 𝑦‖2, 



  ALTIPARMAK E. 

657 

 

for all  𝑥, 𝑦 ∈ 𝐻, and 𝜆 ∈ [0,1]. 

Definition 3: A sequence {𝑥𝑛} ⊂ 𝐻 is said to converges weakly to 𝑧 ∈ 𝐻 if 

lim
𝑛→∞

⟨𝑥𝑛, 𝑦⟩ = ⟨𝑧, 𝑦⟩, ∀𝑦 ∈ 𝐻. 

Lemma 4: [1] Let 𝐶 be a nonempty subset of 𝐻 and {𝑥𝑛} be a sequence in 𝐻 such that 

the following two conditions hold: 

1. for every 𝑥 ∈ 𝐶, lim𝑛→∞‖𝑥𝑛 − 𝑥‖ exists, 

2. every sequential weak cluster point of {𝑥𝑛} is in 𝐶,  

Then, the sequence {𝑥𝑛} converges weakly to a point in 𝐶.  

Lemma 5: Let 𝐶 be a nonempty subset of 𝐻, and let {𝑥𝑛} be a sequence in 𝐻. Then 𝑥𝑛 is 

Fejèr monotone with respect to a set 𝐶 if  

‖𝑥𝑛+1 − 𝑥∗‖ ≤ ‖𝑥𝑛 − 𝑥∗‖, ∀𝑥∗ ∈ C. 

3.  Main result 

In this part, we examine an alternating inertial forward-backward-forward splitting 

algorithm, as well as a self-adaptive alternating inertial forward-backward-forward 

splitting algorithm, to address the monotone inclusion problem.  The convergence of 

given algorithms is proven under the following conditions. 

 

Condition 1:  The solution set of monotone inclusion problem is a nonempty closed and 

convex subset of 𝐻, namely, 𝛺: = (𝐴 + 𝐵)−1(0) ≠ ∅.  
 

Condition 2:  𝐴: 𝐻 → 𝐻 is monotone and 𝐿 −Lipchitz continuous, and 𝐵: 𝐻 → 2𝐻 

maximally monotone.  

 

Algorithm 6 Alternating Inertial Forward-Backward-Forward Algorithm   

Initialization: Choose 𝜇 ∈ (0,1), 0 ≤ 𝛼𝑛 ≤ 𝛼 <
1−𝜇

1+𝜇
. 

Iterative Steps: 

Step 1: Compute 

𝑤𝑛 = {
𝑥𝑛, 𝑤ℎ𝑒𝑛 𝑛 is 𝑒𝑣𝑒𝑛

𝑥𝑛 + 𝛼𝑛(𝑥𝑛 − 𝑥𝑛−1), 𝑤ℎ𝑒𝑛 𝑛 is 𝑜𝑑𝑑.
 

 

Step 2: Compute 

𝑦𝑛 = 𝐽𝜆𝑛,𝐵
(𝐼 − 𝜆𝑛𝐴)𝑤𝑛. 

If 𝑤𝑛 = 𝑦𝑛, then stop and 𝑦𝑛 is a solution of problem. Else, go to Step 3. 

Step 3: Compute  

𝑥𝑛+1 = 𝑦𝑛 − 𝜆𝑛(𝐴𝑦𝑛 − 𝐴𝑤𝑛), 
where the stepsize sequence 𝜆𝑛+1 is updated as follows: 

𝜆𝑛+1 = {
𝑚𝑖𝑛 {𝜆𝑛,

𝜇‖𝑦𝑛−𝑤𝑛‖

‖𝐴𝑦𝑛−𝐴𝑤𝑛‖
} , 𝐴𝑦𝑛 ≠ 𝐴𝑤𝑛

𝜆𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                                                                (2) 

Remark 1: Let 𝜇 ∈ (0,1) and 𝜆 > 0.  The sequence {𝜆𝑛} generated by (2) is 𝜆𝑛+1 ≤ 𝜆𝑛 

,namely, nonicreasing and  
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lim
𝑛→∞

𝜆𝑛 = 𝜆 ≥ min {𝜆1,
𝜇

𝐿
}. 

Also,  

‖𝐴𝑦𝑛 − 𝐴𝑤𝑛‖ ≤
𝜇

𝜆𝑛+1

‖𝑦𝑛 − 𝑤𝑛‖, ∀𝑛 ≥ 1. 

Lemma 7:  Assume that Condition 1 and Condition 2 hold and let {𝑥𝑛} is generated by 

Algorithm 6.  Then {𝑥2𝑛} is Fejer monotone with respect to 𝛺 and 𝑙𝑖𝑚𝑛→∞‖𝑥2𝑛 − 𝑝‖ 

exist, where 𝑝 ∈ 𝛺.  

 

Proof: Let 𝑝 ∈ Ω.  Note that, 

‖𝑦2𝑛+1 − 𝑝‖2 = ‖𝑤2𝑛+1 − 𝑝‖2 + 2⟨𝑦2𝑛+1 − 𝑤2𝑛+1, 𝑤2𝑛+1 − 𝑝⟩ 
+‖𝑤2𝑛+1 − 𝑦2𝑛+1‖2 (3) 

From the definition of {𝜆𝑛} and definition of 𝑥𝑛+1, we have that  

‖𝑥2𝑛+2 − 𝑝‖2 = ‖𝑦2𝑛+1 − 𝜆 2𝑛+1
(𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1) − 𝑝‖

2
 

= ‖𝑦2𝑛+1 − 𝑝‖2 − 2𝜆 2𝑛+1
⟨𝑦2𝑛+1 − 𝑝, 𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1⟩ 

+𝜆 2𝑛+1
2 ‖𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1‖2 

= ‖𝑤2𝑛+1 − 𝑝‖2 + 2⟨𝑦2𝑛+1 − 𝑤2𝑛+1, 𝑤2𝑛+1 − 𝑝⟩ 
+‖𝑤2𝑛+1 − 𝑦2𝑛+1‖2 − 2𝜆 2𝑛+1

⟨𝑦2𝑛+1 − 𝑝, 𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1⟩ 

= ‖𝑤2𝑛+1 − 𝑝‖2 − 2⟨𝑦2𝑛+1 − 𝑤2𝑛+1, 𝑦2𝑛+1 − 𝑤2𝑛+1⟩ 
+𝜆 2𝑛+1

2 ‖𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1‖2 

+2⟨𝑦2𝑛+1 − 𝑤2𝑛+1, 𝑦2𝑛+1 − 𝑝⟩ + 𝜆 2𝑛+1
2 ‖𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1‖ 

+‖𝑤2𝑛+1 − 𝑦2𝑛+1‖2 − 2𝜆 2𝑛+1
⟨𝑦2𝑛+1 − 𝑝, 𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1⟩ 

= ‖𝑤2𝑛+1 − 𝑝‖2 − ‖𝑦2𝑛+1 − 𝑤2𝑛+1‖2 + 𝜆 2𝑛+1
2 ‖𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1‖ 

−2⟨𝑦2𝑛+1 − 𝑝, 𝑤2𝑛+1 − 𝑦2𝑛+1 + 𝜆 2𝑛+1
(𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1)⟩ 

= ‖𝑤2𝑛+1 − 𝑝‖2 − ‖𝑦2𝑛+1 − 𝑤2𝑛+1‖2 + 𝜇2
𝜆 2𝑛+1

2

𝜆 2𝑛+2
2

‖𝑦2𝑛+1 − 𝑤2𝑛+1‖2 

−2⟨𝑦2𝑛+1 − 𝑝, 𝑤2𝑛+1 − 𝑦2𝑛+1 + 𝜆 2𝑛+1
(𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1)⟩ 

= ‖𝑤2𝑛+1 − 𝑝‖2 − (1 − 𝜇2
𝜆 2𝑛+1

2

𝜆 2𝑛+2
2

) ‖𝑦2𝑛+1 − 𝑤2𝑛+1‖2 

−2⟨𝑦2𝑛+1 − 𝑝, 𝑤2𝑛+1 − 𝑦2𝑛+1 + 𝜆 2𝑛+1
(𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1)⟩. (4) 

In what follows, we are going to show that 

⟨𝑦2𝑛+1 − 𝑝, 𝑤2𝑛+1 − 𝑦2𝑛+1 + 𝜆 2𝑛+1
(𝐴𝑦2𝑛+1 − 𝐴𝑤2𝑛+1)⟩ ≥ 0. (5) 

Since 𝑦2𝑛+1 = (𝐼 + 𝜆 2𝑛+1
𝐵)

−1
(𝐼 − 𝜆 2𝑛+1

𝐴)𝑤2𝑛+1, we get (𝐼 − 𝜆 2𝑛+1
𝐴)𝑤2𝑛+1 ∈ (𝐼 +

𝜆 2𝑛+1
𝐵)𝑦2𝑛+1 and since 𝐵 maximal monotone there exists 𝜐2𝑛+1 ∈ 𝐵𝑦2𝑛+1 such that  

(𝐼 − 𝜆 2𝑛+1
𝐴)𝑤2𝑛+1 = 𝑦2𝑛+1 + 𝜆 2𝑛+1

𝜐2𝑛+1. 

This means that  

𝜐2𝑛+1 =
1

𝜆 2𝑛+1

(𝑤2𝑛+1 − 𝑦2𝑛+1 − 𝜆 2𝑛+1
𝐴𝑤2𝑛+1)                                                          (6) 

On the other part, we have 0 ∈ (𝐴 + 𝐵)𝑝 and 𝐴𝑦2𝑛+1 + 𝜐2𝑛+1 ∈ (𝐴 + 𝐵)𝑦2𝑛+1.  Since 

𝐴 + 𝐵 is maximal monotone, we also have 

 ⟨𝐴𝑦2𝑛+1 + 𝜐2𝑛+1, 𝑦2𝑛+1 − 𝑝⟩ ≥ 0. (7) 

By equation (6) and inequality (7), we obtain 
1

𝜆 2𝑛+1

⟨𝑤2𝑛+1 − 𝑦2𝑛+1 − 𝜆 2𝑛+1
𝐴𝑤2𝑛+1 + 𝜆 2𝑛+1

𝐴𝑦2𝑛+1, 𝑦2𝑛+1 − 𝑝⟩ ≥ 0. 

This shows that  

⟨𝑤2𝑛+1 − 𝑦2𝑛+1 − 𝜆 2𝑛+1
(𝐴𝑤2𝑛+1 − 𝐴𝑦2𝑛+1), 𝑦2𝑛+1 − 𝑝⟩ ≥ 0. 
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By combining (4) with (5), we get 

‖𝑥2𝑛+2 − 𝑝‖2 ≤ ‖𝑤2𝑛+1 − 𝑝‖2 − (1 − 𝜇2 𝜆 2𝑛
2

𝜆 2𝑛+1
2

) ‖𝑦2𝑛+1 − 𝑤2𝑛+1‖2. (8) 

Now, we observe the following norm,  

‖𝑤2𝑛+1 − 𝑝‖2 = ‖𝑥2𝑛+1 + 𝛼2𝑛+1(𝑥2𝑛+1 − 𝑥2𝑛) − 𝑝‖2 

= ‖(1 + 𝛼2𝑛+1)(𝑥2𝑛+1 − 𝑝) − 𝛼2𝑛+1(𝑥2𝑛 − 𝑝)‖2 

= (1 + 𝛼2𝑛+1)‖𝑥2𝑛+1 − 𝑝‖2 − 𝛼2𝑛+1‖𝑥2𝑛 − 𝑝‖2 + 𝛼2𝑛+1(1 + 𝛼2𝑛+1)‖𝑥2𝑛+1 − 𝑥2𝑛‖2   

(9) 

By using a similar line of reasoning as in the derivation of (9), one can demonstrate that 

‖𝑥2𝑛+1 − 𝑝‖2 ≤ ‖𝑤2𝑛 − 𝑝‖2 − (1 − 𝜇2
𝜆 2𝑛

2

𝜆 2𝑛+1
2

) ‖𝑦2𝑛 − 𝑤2𝑛‖2 

= ‖𝑥2𝑛 − 𝑝‖2 − (1 − 𝜇2 𝜆 2𝑛
2

𝜆 2𝑛+1
2

) ‖𝑦2𝑛 − 𝑤2𝑛‖2. (10) 

By using (9) and (10), we obtain 

‖𝑤2𝑛+1 − 𝑝‖2 ≤ (1 + 𝛼2𝑛+1) [‖𝑥2𝑛 − 𝑝‖2 − (1 − 𝜇2
𝜆 2𝑛

2

𝜆 2𝑛+1
2

) ‖𝑦2𝑛 − 𝑤2𝑛‖] 

−𝛼2𝑛+1‖𝑥2𝑛 − 𝑝‖2 + 𝛼2𝑛+1(1 + 𝛼2𝑛+1)‖𝑥2𝑛+1 − 𝑥2𝑛‖2 

≤ ‖𝑥2𝑛 − 𝑝‖2 − (1 + 𝛼2𝑛+1) (1 − 𝜇2
𝜆 2𝑛

2

𝜆 2𝑛+1
2

) ‖𝑦2𝑛 − 𝑤2𝑛‖ 

+𝛼2𝑛+1(1 + 𝛼2𝑛+1)‖𝑥2𝑛+1 − 𝑥2𝑛‖2. (11) 

 It follows from (11) that 

‖𝑥2𝑛+2 − 𝑝‖2 ≤ ‖𝑥2𝑛 − 𝑝‖2 − (1 + 𝛼2𝑛+1) (1 − 𝜇2
𝜆 2𝑛

2

𝜆 2𝑛+1
2

) ‖𝑦2𝑛 − 𝑤2𝑛‖2 

+𝛼2𝑛+1(1 + 𝛼2𝑛+1)‖𝑥2𝑛+1 − 𝑥2𝑛‖2 − (1 − 𝜇2
𝜆 2𝑛+1

2

𝜆 2𝑛+2
2

) ‖𝑦2𝑛+1 − 𝑤2𝑛+1‖2. 

Observe that 

‖𝑥2𝑛+1 − 𝑥2𝑛‖ = ‖𝑦2𝑛 − 𝜆 2𝑛
(𝐴𝑦2𝑛 − 𝐴𝑤2𝑛) − 𝑥2𝑛‖ 

≤ ‖𝑦2𝑛 − 𝑥2𝑛‖ + 𝜆 2𝑛
‖𝐴𝑦2𝑛 − 𝐴𝑤2𝑛‖ 

≤ (1 + 𝜇
𝜆 2𝑛

𝜆 2𝑛+1

) ‖𝑦2𝑛 − 𝑥2𝑛‖. (12) 

By (12) we have 

‖𝑥2𝑛+2 − 𝑝‖2 ≤ ‖𝑥2𝑛 − 𝑝‖2 − (1 + 𝛼2𝑛+1) (1 − 𝜇2
𝜆 2𝑛

2

𝜆 2𝑛+1
2

) ‖𝑦2𝑛 − 𝑤2𝑛‖2 

+𝛼2𝑛+1(1 + 𝛼2𝑛+1) (1 − 𝜇
𝜆 2𝑛

𝜆 2𝑛+1

)

2

‖𝑦2𝑛 − 𝑤2𝑛‖2 

− (1 − 𝜇2
𝜆 2𝑛+1

2

𝜆 2𝑛+2
2

) ‖𝑦2𝑛+1 − 𝑤2𝑛+1‖2 

= ‖𝑥2𝑛 − 𝑝‖2 − (1 + 𝛼2𝑛+1) [(1 − 𝜇2
𝜆 2𝑛

2

𝜆 2𝑛+1
2

) 

−𝛼2𝑛+1 (1 − 𝜇
𝜆 2𝑛

𝜆 2𝑛+1

)
2

] ‖𝑦2𝑛 − 𝑤2𝑛‖2 − (1 − 𝜇2 𝜆 2𝑛+1
2

𝜆 2𝑛+2
2

) ‖𝑦2𝑛+1 − 𝑤2𝑛+1‖2. (13) 

 Since 𝜆𝑛 → 𝜆 > 0, 𝜇 ∈ (0,1), and 0 ≤ 𝛼𝑛 ≤ 𝛼 <
1−𝜇

1+𝜇
  we have 

lim
𝑛→∞

[(1 − 𝜇2
𝜆2𝑛

2

𝜆2𝑛+1
2 ) − 𝛼 (1 + 𝜇

𝜆2𝑛

𝜆2𝑛+1
)

2

] = (1 − 𝜇2) − 𝛼(1 + 𝜇)2 > 0, 

  (14) 
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 and  

lim
𝑛→∞

[(1 − 𝜇2 𝜆2𝑛
2

𝜆2𝑛+1
2 )] = (1 − 𝜇2) > 0.                                                                         (15) 

 Let 𝜖 be fixed such that  

0 < 𝜖 < (1 − 𝜇2) − 𝛼(1 + 𝜇)2 ≤ (1 − 𝜇2). 
Consequently, based on equations (14) and (15) there exists 𝑛0 ∈ ℕ such that  

(1 − 𝜇2 𝜆 2𝑛+1
2

𝜆 2𝑛+2
2

) > (1 − 𝜇2 𝜆𝑛
2

𝜆𝑛+1
2 ) − 𝛼 (1 + 𝜇

𝜆𝑛
2

𝜆𝑛+1
2 )

2

≥ 𝜖 > 0, ∀𝑛 ≥ 𝑛0. 

From (12) we get,   

‖𝑥2𝑛+2 − 𝑝‖2 ≤ ‖𝑥2𝑛 − 𝑝‖2 − (1 + 𝛼2𝑛+1)𝜖‖𝑦2𝑛 − 𝑤2𝑛‖2 

−𝜖‖𝑦2𝑛+1 − 𝑤2𝑛+1‖2, (16) 

which implies  
‖𝑥2𝑛+2 − 𝑝‖ ≤ ‖𝑥2𝑛 − 𝑝‖. 
Therefore, lim𝑛→∞‖𝑥2𝑛 − 𝑝‖ exists and this implies that {‖𝑥2𝑛 − 𝑝‖} and {𝑥2𝑛} are 

bounded.  Consequently, we have from (16), 

lim
𝑛→∞

‖𝑦2𝑛 − 𝑥2𝑛‖ = 0                                                                                                 (17) 

and  

lim
𝑛→∞

‖𝑦2𝑛+1 − 𝑤2𝑛+1‖ = 0.                                                                                           (18) 

 Also, from (11) we conclude that 

lim
𝑛→∞

‖𝑥2𝑛+1 − 𝑥2𝑛‖ = 0.                                                                                               (19) 

Lemma 8: Suppose that Condition 1 and Condition 2 hold, and {𝑥𝑛} is generated by 

Algorithm 6.   Let 𝑥∗ ∈ 𝐻 denote the weak limit of the subsequence {𝑥2𝑛𝑗
} of  {𝑥2𝑛}.   

Then 𝑥∗ ∈ 𝛺.  

Proof: Given that {𝑥2𝑛} is bounded, there exists a subsequence {𝑥2𝑛𝑗
} of {𝑥2𝑛} such that 

𝑥2𝑛𝑗
⇀ 𝑥∗.   In view of (16) we can choose a subequence {𝑦2𝑛𝑗

} of {𝑦2𝑛} such that 𝑦2𝑛𝑗
⇀

𝑥∗.  Let (𝑢, 𝑣) ∈ 𝐺𝑟𝑎𝑝(𝐴 + 𝐵) that is, 𝑢 − 𝐴𝑣 ∈ 𝐵𝑣 and we have  

𝑦2𝑛𝑗
= (𝐼 + 𝜆 2𝑛𝑗

𝐵)
−1

(𝐼 − 𝜆 2𝑛𝑗
𝐴) 𝑥2𝑛𝑗

 

also we have 

(𝐼 − 𝜆 2𝑛𝑗
𝐴) 𝑥2𝑛𝑗

∈ (𝐼 + 𝜆 2𝑛𝑗
𝐵) 

which implies that  
1

𝜆 2𝑛𝑗

(𝑥2𝑛𝑗
− 𝑦2𝑛𝑗

− 𝜆 2𝑛𝑗
𝐴𝑥2𝑛𝑗

) ∈ 𝐵𝑦2𝑛𝑗
. 

By the maximal monotonicity of 𝐵 we have  

⟨𝑣 − 𝑦2𝑛𝑗
, 𝑢 − 𝐴𝑣 −

1

𝜆 2𝑛𝑗

(𝑥2𝑛𝑗
− 𝑦2𝑛𝑗

− 𝜆 2𝑛𝑗
𝐴𝑥2𝑛𝑗

)⟩ ≥ 0 

thus 

⟨𝑣 − 𝑦2𝑛𝑗
, 𝑢⟩ ≥ ⟨𝑣 − 𝑦2𝑛𝑗

, 𝐴𝑣 −
1

𝜆 2𝑛𝑗

(𝑥2𝑛𝑗
− 𝑦2𝑛𝑗

− 𝜆 2𝑛𝑗
𝐴𝑥2𝑛𝑗

)⟩ 

= ⟨𝑣 − 𝑦2𝑛𝑗
, 𝐴𝑣 − 𝐴𝑥2𝑛𝑗

⟩ + ⟨𝑣 − 𝑦2𝑛𝑗
,

1

𝜆 2𝑛𝑗

(𝑥2𝑛𝑗
− 𝑦2𝑛𝑗

)⟩ 

= ⟨𝑣 − 𝑦2𝑛𝑗
, 𝐴𝑣 − 𝐴𝑦2𝑛𝑗

⟩ + ⟨𝑣 − 𝑦2𝑛𝑗
, 𝐴𝑦2𝑛𝑗

− 𝐴𝑥2𝑛𝑗
⟩ 
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+ ⟨𝑣 − 𝑦2𝑛𝑗
,

1

𝜆 2𝑛𝑗

(𝑥2𝑛𝑗
− 𝑦2𝑛𝑗

)⟩ 

≥ ⟨𝑣 − 𝑦2𝑛𝑗
, 𝐴𝑦2𝑛𝑗

− 𝐴𝑥2𝑛𝑗
⟩ + ⟨𝑣 − 𝑦2𝑛𝑗

,
1

𝜆 2𝑛𝑗

(𝑥2𝑛𝑗
− 𝑦2𝑛𝑗

)⟩. 

Since lim𝑛→∞‖𝑦2𝑛 − 𝑥2𝑛‖ = 0 and 𝐴 is Lipchitz continuous, we obtain  

lim
𝑗→∞

‖𝐴𝑦2𝑛𝑗
− 𝐴𝑥2𝑛𝑗‖ = 0 

which together with lim𝑛→∞𝜆𝑛 = 𝜆 we have  

⟨𝑣 − 𝑝, 𝑢⟩ = lim
𝑗→∞

⟨𝑣 − 𝑦2𝑛𝑗
, 𝑢⟩ ≥ 0. 

Since the maximal monotonicity of 𝐴 + 𝐵, we obtain 𝑥∗ ∈ (𝐴 + 𝐵)−1(0).  

Theorem 9: Suppose that Conditions 1 and 2 hold and {𝑥𝑛} is generated by Algorithm 6. 

Then, {𝑥𝑛} converges weakly to a element in 𝛺.  

 

Proof: From Lemma 7, since {𝑥2𝑛} is bounded, hence {𝑥2𝑛} has weakly convergent 

subsequences.  Assume 𝑥∗ ∈ 𝐻 denotes the weak limit of such a subsequence {𝑥2𝑛𝑗
} of 

{𝑥2𝑛}.  By Lemma 8, we have 𝑥∗ ∈ Ω.  Also, by Lemma 7, we get lim𝑛→∞‖𝑥2𝑛 − 𝑝‖. 
This indicates that, based on Lemma 4, the weak convergence of the sequence {𝑥2𝑛} to 

some element in the set Ω has been established.  Moreover, from (17) we have for all 𝑥 ∈
𝐻, 
|⟨𝑥2𝑛+1 − 𝑥, 𝑦⟩| = |⟨𝑥2𝑛+1 − 𝑝 + 𝑥2𝑛 − 𝑥2𝑛, 𝑥⟩| 
≤ |⟨𝑥2𝑛 − 𝑝, 𝑥⟩| + |⟨𝑥2𝑛+1 − 𝑝, 𝑥⟩| 
≤ |⟨𝑥2𝑛 − 𝑝, 𝑥⟩| + ‖𝑥2𝑛+1 − 𝑥2𝑛‖‖𝑥‖ → 0, 𝑛 → ∞. 

Therefore, {𝑥2𝑛+1} converges weakly to 𝑥∗ in Ω.  Hence, the sequence {𝑥𝑛} converges 

weakly to a element 𝑥∗ ∈ (𝐴 + 𝐵)−1(0).  
 

4.  Application to convex minimization problem 

Let us consider the convex minimization problem as follows: 

 

𝑓(𝑥∗) + 𝑔(𝑥∗) = 𝑚𝑖𝑛
𝑥∈𝐻

{𝑓(𝑥) + 𝑔(𝑥)}         

 

Let 𝑔: 𝐻 → 𝑅 be a proper, convex, and lower semi-continuous function, 𝑓: 𝐻 → 𝑅 be 

convex and differentiable with a gradient 𝛻𝑓 that has an L-Lipschitz constant.  According 

to the Baillon-Haddad theorem, 𝛻𝑓 is cocoercive with respect to 𝐿−1, and the 

subdifferential of 𝑔, 𝜕𝑔 is maximally monotone.  A point 𝑥∗ is a solution of the convex 

minimization problem if and only if 0 ∈ 𝛻𝑓(𝑥∗) + 𝜕𝑔(𝑥∗).  By setting 𝐴 = 𝛻𝑓 and 𝐵 =
𝜕𝑔 in Algorithm 6, we can derive the following algorithm and corresponding theorem. 

Algorithm 10   

Initialization: Choose 𝜇 ∈ (0,1), 0 ≤ 𝛼𝑛 ≤ 𝛼 <
1−𝜇

1+𝜇
. 

Iterative Steps: 

 

Step 1: Compute 
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𝑤𝑛 = {
𝑥𝑛, 𝑤ℎ𝑒𝑛 𝑛 is 𝑒𝑣𝑒𝑛

𝑥𝑛 + 𝛼𝑛(𝑥𝑛 − 𝑥𝑛−1), 𝑤ℎ𝑒𝑛 𝑛 is 𝑜𝑑𝑑.
 

 

Step 2: Compute 

𝑦𝑛 = 𝐽𝜆𝑛,𝜕𝑔
(𝑤𝑛 − 𝜆𝑛𝛻𝑓(𝑤𝑛)). 

If 𝑤𝑛 = 𝑦𝑛, then stop and 𝑦𝑛 is a solution of problem. Else, go to Step 3. 

 

Step 3: Compute 

𝑥𝑛+1 = 𝑦𝑛 − 𝜆𝑛(𝛻𝑓(𝑦𝑛) − 𝛻𝑓(𝑤𝑛)), 
where the stepsize sequence 𝜆𝑛+1 is updated as follows: 

 

𝜆𝑛+1 = {
𝑚𝑖𝑛 {𝜆𝑛,

𝜇‖𝑦𝑛 − 𝑤𝑛‖

‖𝛻𝑓(𝑦𝑛) − 𝛻𝑓(𝑤𝑛)‖
} , 𝛻𝑓(𝑦𝑛) ≠ 𝛻𝑓(𝑤𝑛)

𝜆𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Theorem 11: Let 𝑓: 𝐻 → 𝑅 be a convex, differentiable with L −Lipschitz constant of 𝛻𝑓 

and let 𝑔: 𝐻 → 𝑅 be a proper convex and lower semi-continuous function.  Suppose that 

the solution set of convex minimization problem is nonempty.  The parameters are subject 

to the same conditions as those stated in Theorem 9.   Let {𝑥𝑛} be a sequence generated 

by Algorithm 10.  Hence, {𝑥𝑛} converges weakly to 𝑥∗, which is a solution of the convex 

minimization problem. 

 

5.  Application to image restoration problem 

This section demonstrates the application of the alternating inertial forward-backward-

forward algorithm (Alternating Inertial FBF Algorithm) to the image restoration problem.  

Moreover, a comparative analysis is carried out between Alternating Inertial FBF 

Algorithm and Tseng’s Algorithm. 

The inverse problem in the following form serves to define a image restoration problem: 

 

𝑧 = 𝐴𝑥 + 𝜅                                                                                                                   (20) 

 

where 𝑥 ∈ ℝ𝑑 is original image, 𝐴: ℝ𝑑 → ℝ𝑚 is a linear operator, 𝑧 ∈ ℝ𝑚 is observed 

image and 𝜅 is the additive noise. It is widely recognized that problem (20) is 

approximately equivalent to several different optimization problems.  Moreover, the 𝑙1-

norm is frequently employed as a regularization technique to address such problems. 

Consequently, the image restoration problem (20) can be reformulated as an 𝑙1-

regularization problem, expressed as follows:  

min
𝑥∈ℝ𝑑

{
1

2
‖𝐴𝑥 − 𝑧‖2 + 𝜎‖𝑥‖1}.                                                                                      (21) 

where 𝜎 > 0 is a regularization parameter. On the other hand, For 𝑓(𝑥) =
1

2
‖𝐴𝑥 − 𝑧‖2 

and 𝑔(𝑥) = 𝜎‖𝑥‖1, the convex minimization problem can be reduced to 𝑙1- regularization 

problem.   Based on this selection, the gradient of 𝑓, which is Lipschitz continuous, takes 

the form ∇𝑓(𝑥) = 𝐴𝑇(𝐴𝑥 − 𝑏), where 𝐴𝑇 denotes the transpose of 𝐴. 
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Now, we show that Alternating Inertial FBF Algorithm is used to solve the image 

restoration problem (20) and also that this algorithm is compared to Tseng’s Algorithm.  

In all comparison, we consider the motion blur functions and add random noise to the test 

Lena image.  To evaluate the quality of the restored images, we use the signal-to-noise 

ratio (SNR), which is defined as follows: 

𝑆𝑁𝑅 = 20log
‖𝑥‖2

‖𝑥−𝑥𝑛‖2
 , 

 

where 𝑥 and 𝑥𝑛 are the original image and the estimated image at iteration 𝑛, respectively. 

All algorithms were implemented in MATLAB R2024b on an Asus computer equipped 

with an Intel(R) Core(TM) i9-14900HX 2.20 GHz processor and 32.0 GB of RAM.  We 

compare Alternating Inertial FBF Algorithm with Tseng’s Algorithm.  We set 𝛼𝑛 = 0.01, 

𝜆𝑛 = 0.1, maximum iteration=25000 and the regularization parameter 𝜎 = 0.0001. 
Figure 1 and Table 1 display the visual and numerical results corresponding to these 

selections 

 

       

(a)                                      (b)                                           (c) 

                                              

                                                               (d) 

Figure 1. (a) Lena Image (b) Degraded image (c) Restorated Image by the Tseng’s 

Algorithm (d) Restorated Image by the Alternating Inertial FBF Algorithm. 
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Table 1. Table of SNR values for the Lena image 

 Alternating Inertial FBF Algorithm Tseng’s Algorithm 

1 15.827333792615972 15.830448675610187 

100 17.938677723877210 17.936446662849352 

250 19.295244901185410 19.276080054466462 

500 20.560027898189340 20.544342728972160 

750 21.311493957050523 21.301216323622512 

1000 21.825211913004175 21.817680738151750 

2000 22.911456629047414 22.906426728660062 

2500 23.203808851323588 23.183338688201420 

 

As seen from the above table, the SNR value of Alternating Inertial FBF Algorithm is 

better than the Tseng’s Algorithm, meaning it demonstrates better performance in image 

restoration. 

 

6.  Conclusion 

In this study, we establish weak convergence results for the alternating forward-

backward-forward splitting algorithm in Hilbert spaces, demonstrating its effectiveness 

in solving monotone inclusion problems.  Furthermore, we apply our proposed algorithm 

to address convex minimization problems, showing that it can handle composite 

optimization tasks where the objective function is a sum of a differentiable function with 

a Lipschitz continuous gradient and a proper, convex, lower semi-continuous function. 

The numerical results demonstrate that the Alternating Inertial FBF Algorithm restores 

images with a higher SNR value than Tseng’s Algorithm, suggesting it outperforms 

Tseng's Algorithm in image restoration. Also, our findings can be extended algorithm’s 

applicability to a wide range of practical optimization problems in various fields, such as 

machine learning, and signal recovery. 
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