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ABSTRACT

Main purpose of this research is to present a local scale GIS-based mineral prospectivity model for 
prospecting Cu porphyry mineralization, and to validate the produced model by fi eld observation, 
surface sampling and drilling data. Sonajeel area which is the subject of this study is a part of 
Arasbaran mineralization belt, NW of Iran. Constructing a mathematical exploratory algorithm 
based on a mineralization type is a complicated and interdisciplinary task. For this purpose, results 
from processing and interpreting different data sets including geology, geochemistry and remote 
sensing were considered. A comprehensive exploratory integration model was built up considering 
the exploration stage and the descriptive porphyry mineralization model suggested by Sillitoe (2010). 
In order to prepare inputs for GIS-based exploration model, value assigned grids or evidence layers 
were produced using fuzzy membership curves and then integrated via gamma fuzzy function. In 
addition, for defuzzifi cation and prioritizing the mineral prospectivity map, a Concentration-Area 
(C-A) fractal model was applied on the pixel values of the prospectivity map. Finally, the results 
were confi rmed via fi eld observation, surface sampling and drilling. Borehole logs at the fi rst priority 
displayed a Cu mineralization zone with an average grade of 0.5%.
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1.  Introduction

Mineral prospectivity mapping (MPM) is carried 
out based on integration of evidence layers especially 
at reconnaissance and prospecting scales in mineral 
exploration (Carranza, 2009 a,b; Jafarirad, 2009; 
Porwal and Carranza, 2015; Yousefi  and Carranza, 
2014, 2015a,b). Each scale is characterized based on 
the accuracy of evidence maps, where level of accuracy 
increases with the acceleration of exploration scale. 
An MPM is drawn in a Geospatial Information System 
(GIS) environment by different methods (Agterberg 
et al., 1990; Almasi et al., 2015a,b; Bonham-Carter 
et al., 1989; Bonham-Carter, 1994; Carranza et al., 
2008; Carranza, 2014; Chung and Agterberg, 1980; 
Chung and Moon, 1990; Jafarirad and Busch, 2011; 
Lusty et al., 2012; Magalhaes and Souza Filho, 2012; 
Nykanen et al., 2008; Parsa et al., 2016; Parsa et al., 

2017; Yousefi , 2017). In every scale, data layers are 
collected, processed and integrated using a variety of 
available functions (Abedi et al., 2017; Almasi et al., 
2015a,b; Yazdi et al., 2014). In this research, evidence 
layers including geology, geochemistry, structure 
and alteration have been produced individually and 
then checked using fi eld observation. Subsequently, 
evidence maps were integrated in order to fi nd high 
potential locations of porphyry copper mineralization 
in the Sonajeel system, NW Iran. Finally, the MPM 
has been evaluated and validated by fi eld observation 
and drilling data.

A wide variety of volcanic, sedimentary and 
metamorphic units host porphyry copper deposits 
worldwide, which displays the almost ineffectiveness 
of the host rock in their mineralization (Sillitoe, 2010). 
Cross-cutting faults play a major role in the size, 
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Figure 1- Geological map (1:5000) of the Sonajeel system (after Aghazadeh, 2014)

geometry and setting of the deposits. All the porphyry 
copper deposit models that has been suggested so far 
place the potassic alteration at the core of the porphyry 
system. Moreover, geochemical halo of Zn usually 
engulfs porphyry mineralization systems.

Iran inherited its mineral endowment from the 
processes involved in its lithospheric evolution and 
plate tectonics (Berberian and Kings, 1981; Stocklin 
1974). Subduction zones which host porphyry copper 
mineralization (PCM) constitutes a major part of 
Iran (Afzal et al., 2012; Aghazadeh et al., 2015; 
Hassanpour and Afzal, 2013; Jamali and Mehrabi, 
2015; Richards and Sholeh, 2016). Post collisional 
Neo-Tethys oceanic closure process caused the vast 
and huge magmatism along South to North West of 
Iran (Aghazadeh et al., 2015; Babaie et al., 2001; 
Karimzadeh Somarin, 2005; Pazand et al., 2012). 
This Oligo-Miocene magmatic domain has been 
suggested to be divided in to two main belts (Moritz 
et al., 2015). NW-SE trending Urumieh-Dokhtar 
magmatic arc hosts some well-known deposits namely 
Sarcheshmeh, Meiduk and Kahang (Afzal et al., 2010; 
Aghazadeh et al., 2015; Jafarirad, 2009; McInnes et 
al., 2003; Shahabpour and Keramers, 1987; Yazdi et 
al., 2014). Arasbaran belt, with a WNW-ESE trending 

located in NW of Iran, hosts Iran’s giant Cu porphyry 
mine Sungun, and is considered as a top priority 
potential for fi nding new deposits (Aghazadeh et al., 
2015; Jamali and Mehrabi, 2015). Sonajeel system, 
the area subjected to this study, is located in the east of 
the Arasbaran belt (Figure 1).

Several exploration and geological surveys 
have been done on the Sonajeel mineralization 
(Hezarkhani, 2008; Hosseinzadeh et al., 2009; 2017; 
Karimi et al., 2009; Pazand et al., 2013).

Sonajeel system comprises Oligo-Miocene 
quartz monzodiorite and granodiorite intrusives, 
and is similar to Sungun and other PCM prospects 
of Arasbaran belt. Rock exposures in this prospect 
consist of Eocene volcano-sedimentary units, Oligo-
Miocene intrusives and Quaternary volcanic rocks 
(Figure 1). Eocene volcano-sedimentary units which 
were deposited in the marine and continental areas, 
include andesitic to basaltic lava, basaltic to andesitic 
volcanic rocks, ignimbrite and tuff. Eocene volcano-
sedimentary units were intruded by various Oligo-
Miocene intrusions including Sonajeel porphyry stock. 
This stock caused the percolation of hydrothermal 
fl uids and has been suggested as the main factor in 
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Sonajeel mineralization (Aghazadeh et al., 2015). 
Intrusive units are distributed in the forms of stock, 
sill, dyke and vein in the study area. Quaternary units 
including tracky basalt and basaltic lava fl ows, gravel 
fans and recent alluvium and Eocene volcanic rocks 
with different thicknesses, cover the older units.

Fault systems in this area have been divided into 
two main groups as follows (Aghazadeh, 2014):

1- Old deep fi rst order NW-SE system that is 
related to the Tabriz and Goshadagh faults and 
has been suggested as the controlling factor of the 
emplacement of intrusive units.

2- NE-SW system that infl uenced dykes and 
quaternary volcanism.

Therefore, fault systems have infl uenced intrusions 
and alterations which are major factors for this 
mineralization.

2.  Materials and Methods

Porphyritic igneous bodies are mostly I-type 
metalliferous intrusions. These bodies are typically 
calc-alkaline with medium potassium content or 
rarely alkaline  with  high potassium content. Their 
composition range from calc-alkaline diorite and 
quartz-diorite, to alkaline granodiorite, quartz-

monzonite and diorite, to monzonite and syenite 
(Seedorf et al., 2005).  In Sonajeel area, from 
the alteration and geochemistry perspective, 
mineralization signatures totally obey global porphyry 
genetic models.

Geological and structural map of the study area 
were produced at 1:5000 scale by Coome Madan 
Company in 2014. Furthermore, alteration zones 
were detected using remote sensing techniques from 
ASTER and QuickBird images. Geochemical data 
used in this paper were obtained by lithogeochemical 
samples which were collected by Kavoshgaran 
Company in 2006 (Table 1). 

In this study, SPSS 24, Microsoft offi ce excel 
7, ENVI 5.1 and ArcGIS 10.2.1 software were 
employed for statistical analyzes, image processing, 
producing and integrating evidence maps respectively. 
In this paper, fi rstly data layers were processed 
separately, then controlled via fi eld confi rmations. 
Moreover, evidence maps were generated using 
fuzzy membership functions, then were integrated via 
fuzzy logic method. Finally, the integrated map was 
classifi ed by Concentration-Area (C-A) fractal model 
and results evaluated by fi eld checking. The fi rst two 
priorities were suggested for further exploration at 
1:1000 scale and drilling. These steps are introduced 
briefl y in the form of a fl ow chart in fi gure 2. 

Table 1- Lithogeochemical samples.

Laboratory name Total samples Method Date Number of elements Elements

AMDEL (Australia) 1248

For all samples 
except Gold: ICP 

Mass
Gold: F.A.

2006 44

Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, 
Cr, Cs, Cu, Fe, Hg, K, La, Li, Mg, Mn,

Mo, Na, Nb, Ni, P, Pb, Rb,Re, S, Sb, Sc, Sn, 
Sr, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr

Figure 2- Processing Flowchart.
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Used fuzzy membership functions, and the fuzzy 
operator which was employed for integration, are 
explained in a summarized format below.

2.1. Small Fuzzy Membership Function

The small fuzzifi cation function has been defi ned 
as following equation:

                          
 (1)

Where f1 is the spread of the transition from a 
membership value of 1 to 0 and f2 is the midpoint 
(Tsoukalas and Uhrig, 1997).

2.2. Logistic Fuzzy Membership Function

Logistic function could be generator of fuzzy 
membership for spatially continuous weights (Bishop, 
2006; Nykänen et al., 2008; Yousefi  et al., 2012; 2013; 
2014; Yousefi  and Carranza, 2015a, b; Yousefi  and 
Nykänen, 2016). This function has been detected as 
following equation (Yousefi  and Carranza, 2015a):

                   
(2)

Where i and s are infl exion point and slope of 
the logistic function, which determined as following 
equations (Yousefi  and Nykänen, 2016):

                   
(3)

                   
(4)

Where Xmin and Xmax are the minimum and 
maximum evidential values respectively.

2.3. Gamma Fuzzy Operator

The gamma operator is the general form of 
fuzzy Sum (An increaser function, used when the 
combination of multiple evidences is more important 
or larger than any of the inputs alone) and fuzzy Product 
(A reducer function, used when the combination of 
multiple evidence is less important or smaller than any 
of the inputs alone). This operator has been shown in 
equation 5 (Tsoukalas and Uhrig, 1997):

          
(5)

Where   μCombination = each unit value in output 
map

μi= the weight of ith factor map

2.4. Concentration-Area (C-A) Fractal Model

Cheng et al. (1994) proposed an element 
concentration–area (C–A) model, which may be used 
to defi ne the geochemical background and anomalies. 
The model has the general form:

A(ρ≤υ)∞ ρ –a1 ; A(ρ≥υ) ∞ ρ –a2                       (6)

Where A(ρ) denotes the area with concentration 
values greater than the contour value ρ; υ represents 
the threshold; and a1 and a2 are characteristic 
exponents. Using fractal theory, Cheng et al. (1994) 
derived similar power-law relationships and equations 
in extended form (Afzal et al., 2010; 2012; Almasi et 
al., 2015a,b).

2.5. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a 
multivariate technique that reduced variables by several 
inter-correlated quantitative dependent variables (Abdi 
&Williams, 2010). Among the advantages of PCA can 
cite that it’s possible to determine the correlation of 
each PC with each of the original variables, it enables 
us to fi nd outliers and groups of variables and allows 
us to reduce the dimensionality of the problem by the 
elimination of some variables in the next steps of the 
mineral exploration, if we consider that they are not 
helping to explain the processes interpreted via PCs.

3. Evidence Maps

3.1. Geological Layer

Sonajeel porphyry intrusive units composed of 
quartz-monzodiortic to granodioritic rocks, which 
were suggested as the key mineralization factor 
are similarly comparable to other porphyry copper 
deposits and prospects in Arasbaran belt (Aghazadeh 
et al., 2015). These intrusive units are in the form 
of stock and apophyse have outcrops around Jangal 
and Esmailkandi villages in the east of the study area 
(Figure 1). Sonajeel porphyry intrusive units has been 
intruded into the Eocene rocks and micromonzosyenite 
rocks (Figure 3a) which indicated Oligo-Miocene age. 
These intrusive rocks contain potassic and phyllic 
alteration in the surroundings of Jangal village and 
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Figure 4- Fuzzy membership of intrusive .

have stockwork mineralization indications (Figure 
3b). The texture of this intrusive is porphyrytic with 
feldspar and phenocrysts of mafi c minerals.

Ten thin sections have been studied from these 
lithologies (Figure 3 c and d).  The sample presented 
here has porphyritic texture with feldspar phenocrysts 
which has been affected by sericitic alteration. These 
phenocrystals are distributed in quartz, sericite and 
secondary biotite background. Sericitic alteration has 
covered the primary potassic alteration meanwhile 
some of its biotite has remained intact.

In order to produce the source rock evidence layer, 
fi rstly, Euclidian distance map of Sonajeel porphyry 
intrusives was built due to importance of proximity 
to these intrusive units in the porphyry models. 
Afterwards, fuzzy membership of this distance map 
has been generated using small function with midpoint 
400 and spread 5 (Figure 4). This evidence map has 
been classifi ed using C-A fractal model which is 
presented in fi gure 5.

3.2. Structural Layer

Structures play a signifi cant role in porphyry 
mineralization (Byron and Berger 2008; Richards, 
2015). In the study area, structural mapping have 
been done at 1:5000 scale which mostly of indicated 
faults is strike-slip and have NW-SE trends (Figure 6). 
Fuzzifi cation algorithm used in this layer is small with 
midpoint and spread 200 and 7 respectively (Figure 7). 

Figure 3- (a) Sonajeel porphyry intrusive (b) distribution of Stock-work in the Sonajeel porphyry intrusive (c) porphyritic texture with feldspar 
phenocyrist in the sample of Sonajeel porphyry intrusive, PPL (d) spreading Quartz and Sericite due to affecting of phyllic alteration, 
XPL.
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3.3. Alteration Layer

Hydrothermal fl uids broadly effect rocks and 
produce specifi c alteration zones including potassic, 
phyllic, argillic and propyllitic in porphyry copper 
systems (Alimohammadi et al., 2015; Beane, 1982; 
Berger et al., 2008; Byron and Berger, 2008; Lowell 
and Guilbert, 1970; Meyer and Hemley, 1967; Silitoe, 
2010; Sillitoe, 2010). Mineralization is related 
to potassic and phyllic alteration in the Sonajeel 

Moreover, thresholds for classifi cation of this evidence 
map have been calculated using Concentration-Area 
fractal method (Figure 8).

Fault concentrations are vastly dispersed in 
Sonajeel porphyry intrusive units (east of Jangal 
valley) which is a basic factor in rising hydrothermal 
fl uids and mineralization. This fact has been confi rmed 
by fi eld evidences in the Sonajeel porphyry system.

Figure 5- Evidence map of intrusive rocks as the mineralization producer.

Figure 6- One of the strike-slip fault in the study area which shifted 
dyke.

Figure 7- Fuzzy membership of faults.
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Figure 8- Evidence map of faults.

Figure 9- a) potassic alteration in Sonajeel porphyry intrusives (b) gray sample of potassic alteration (c) Thin section of potassic alteration 
which contains secondary biotite and feldspar in the microgranoular background (d) XRD report of one of the potassic sample.

system which was outlined using remote sensing. 
For this purpose, Thermal Emission and Refl ection 
Radiometer (ASTER) multispectral image has been 
geometrically corrected using QuickBird image with 
pixel width of about 0.5 m as a reference image in order 

to improve the rectifi cation process. Alteration zones 
have then been detected using Relative Absorption 
Band-Depth grids (RBD) method. Afterwards, the 
image processing results have been evaluated by fi eld 
evidences (Figure 9). Finally, distance map of potassic 
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and phyllic alterations have been produced and fuzzy 
memberships have been individually created using 
small fuzzy function with midpoint of 300 and spread 
of 5 (Figure 10, 11 and 12). Potassic and phyllic 
alterations were directly observed and are distributed 
in the east of Jangal velley similar to the faults and 
intrusive units.

3.4. Lithogeochemical Layer

Multivariate principal component analysis method 
is used for determining elemental correlations and 
elemental paragenesis (Afzal et al., 2010; Davis, 
2002; Deng et al., 2007, 2008). PCA method has 
reduced dimensions and is commonly used in the 
geochemical studies (Carranza and Hale, 2002; 
Carranza, 2010; Wang et al., 2011, 2012, 2013, 
2014). In this paper, lithogeochemical samples (with 
100 m*100m cells) have been processed using PCA 
method and resulted in 2 factors including Cu- Zn 
and Mo- As- Pb. Afterwards, fuzzifi cation was on 
Cu- Zn performed using Logistic method in order to 
produce geochemical evidence layer. Inverse Distance 
Weighted (IDW) technique was used for interpolation 
and gridding. As mentioned in the methodology part, 
copper and zinc have a high correlation coeffi cient. 
An observable evidence of that is their overlapping 
anomalies in the east of Jangal valley (Figure 13).

Figure 10- Fuzzy membership of alteration.

Figure 11- Evidence map of potassic alteration.
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Figure 12- Evidence map of phyllic alteration.

Figure 13- Evidence map of geochemistry.
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4. Integration

In knowledge-driven methods, experts (with 
different fi elds and levels of expertise) integrate 
different pieces of information for mineral 
prospectivity mapping. Assigning integers to different 
geological features or to several intervals of a grid 
(e.g. geophysical or geochemical), is a procedure that 
has been practiced in a voluminous studies of this 
kind. In this method, a major issue is the controversies 
which arouse over assigning discrete values to 
the intervals. To overcome this issue, more recent 
studies focused on applying functions and curves for 
preparing integration input grids or evidence layers. 
These functions commonly situate in the paradigm of 
the fuzzy theory and convert a set of data into a grid 
ranging from ~0.01 to ~0.99. Fuzzy operators such as 
fuzzy and, fuzzy or and fuzzy gamma are among the 
techniques used for integrating evidence maps.

The fuzzy logic method as one of the knowledge-
driven methods is widely accepted for producing 
MPM. It was fi rstly used by An et al. (1991) and is still 
employed in mineral exploration (Ford et al., 2015; 
Joly et al., 2012; Porwal and Kreuzer, 2010; Lisitsin 
et al., 2013; Lusty et al., 2012; Nykänen et al., 2008; 
Parsa et al., 2016; Parsa et al, 2017). In this paper 
gamma (0.8) operator has been used for combining 
evidence maps. It is a combination of both sum and 

product algorithms. Subsequently, the created fuzzy 
logic MPM has been prioritized using Concentration-
Area (C-A) fractal model (Figure 14: Almasi et al., 
2015a,b, 2017).

5.  Results and Discussion

Data analysis proves that Sonajeel porphyry system 
has the adequate potential for becoming a PCM. Its 
surface indications are: potassic alteration zone, wide 
stock-work system, and Sonajeel porphyry intrusive 
units. The produced MPM has been validated via fi eld 
observations and sampling (Figure 15). Samples were 
mainly studied using two techniques 1) ICPMS and 
2) polished sections. The average Cu grade received 
from ICPMS analysis was 0.4 percent, a satisfactory 
grade for surface samples in this scale of exploration. 
Maximum grade was 2 and Minimum grade of the 
samples was 0.1 percent.

Several polished section samples have been studied 
from the identifi ed priorities. SJP011PS sample which 
represent the supergene zone contains chalcocite 
(Cu2S) and covellite (CuS). These minerals display 
the replacement of the primary sulfi de minerals such as 
bornite (Figure 16). SJP06PS sample contains bornite 
and chalcopyrite primary and secondary sulfi de 
minerals which had been altering to chalcocite and 
covellite iron hydroxide. Iron oxide (magnetite) has 

Figure 14- Ranking MPM using C-A fractal method.
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Figure 15- Location of sampling in the fi eld checking.

primary occurrence in the background of this sample. 
This sample displays the boundary of the hypogene 
and supergene zones (Figure 17).

After positive results from the samples’ analysis, 
two boreholes were drilled in the fi rst identifi ed 
priority, east of the study area (Jangal valley). Core 
sample analysis of the boreholes SP01 and SP06 
contain average Cu concentrations of 2267 and 2959 
ppm respectively. Lithological, alteration and Cu 
concentration logs are presented in fi gure 18. Borehole 
SP01 with the depth of the 400 meters, contain 
lithological units from quartzdiorite, granodiorite 
to andesite and andesite-basalt with mainly potassic 

Figure 16- SJP011PS sample (a) replacement of bornite by chalcocite, PPL (b) spread of chalcocite and covellite.

Figure 17- SJP06PS replacement of chalcopyrite and bornite by 
iron oxide and hydroxide.
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and phyllic alterations. A direct relation between Cu 
concentrations and alterations are displayed. Borehole 
SP06 with the depth of 200 meters, shows alternation 
of potassic and phyllic quartzmonzonite. High grades 
of Cu are recorded at phyllic and especially potassic 
alteration zones (Figure 18). 

6. Conclusion

In this research, the results from the analysis of the 
datasets (remote sensing and geochemical sampling) 
and the outcomes of the MPM were validated via fi eld 
observation. Outlined prospects overlap with all the 
other anomalies in Jangal valley where the porphyry 
intrusive unit is exposed to the surface. Statistical 
analysis of the geochemical dataset displays a high 
elemental correlation between Cu and Zn which is 
compatible with global and regional porphyry deposit 
models.

Two exploratory boreholes which were drilled in 
the prospects (with the depth of 200 and 400 meters) 
explicitly displayed 200 to 300 meter porphyry 
mineralization with average copper concentration 
of 0.5 percent. A thorough drilling project with the 
purpose of reserve estimation is now active in the area.

Sonajeel porphyry intrusive units, which are 
suggested to be the main mineralization factor in 
the area, are comprised of quartz monzodiorite to 
granodiorite from Oligo-Miocene age. The outcomes 
of this paper displayed that, integration of the evidence 
layers is a valuable technique for determining and 
prioritizing surface priorities at every scale of mineral 
exploration. Moreover, validating the outcomes via 
fi eld observations, sampling and sample analyzing 
is a necessity. It is a useful method for determining 
parameters the fuzzy function’s midpoint and spread. 
Remote sensing results showed that one of the most 
important data layers in porphyry copper exploration 
is delineated alterations. They can be determined 
using ASTER multispectral image. In addition, 
correcting the ASTER image via QuickBird image 
helped raising the geometrical accuracy. In processing 
geochemical data exploration, PCA method is suitable 
for decreasing the elemental variety and is very 
effective for fi nding elemental correlations.

Also, Concentration-Area (C-A) fractal method is 
suggested to be very effective for classifi cation of the 
created MPM in different types of mineralization in 
any scale

Figure 18- (a) SP01 log (b) SP06 log.

The two boreholes (with about 300 m depth) which 
was drilled on the fi rst priority displayed 25 m copper 
mineralization with more than 0.5 percent Cu (BH013 
& BH014).
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