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Abstract. The most complex steady-state behaviour known in dynamical systems is that which
is characterised as "chaos". The three-dimensional Lorenz system, which is linear and non-
periodic, is a chaotic system that is used to study the properties of a two-dimensional liquid layer
that is homogeneously heated from below and cooled from above. In this study, the fractional
order Lorenz Chaos model is considered and mathematically analysed. This model consists of
three compartments: x orbit, y orbit and z orbit. The fractional derivative is used in the sense of
Caputo. The numerical results for the fractional Lorenz Chaos model are obtained with the help
of the Euler method, and graphs are drawn.

1. Introduction

Chaos is science that helps to explain non-linear phenomena, defined, in its shortest definition,
as the order of disorder. It is a complex process, but one with its own internal order. It is important
to note that chaos is not randomness. Chaos is a unique "order" that shows complex behavior. The
most complex steady-state behavior known in dynamical systems is "chaos". The study of chaos is
part of the theory of nonlinear dynamical systems [1].
Chaos and chaotic signals are characterized by irregularity in the time dimension, sensitive depen-
dence on initial conditions, an unlimited number of different periodic oscillations, a wide noise-like
power spectrum, a fractal dimension of the limit set, and signals whose amplitude and frequency
cannot be determined but vary in a limited area [2].
The scientific term "chaos" speaks of an interconnectedness that exists within and underlies seem-
ingly random events. Chaos science focuses on hidden patterns of form, subtle differences, the
"sensitivity" of things and the "rules" of how the unpredictable gives rise to the new. Chaos is a
science that seeks to understand the movements that create the complex patterns of form, from
lightning storms, foaming rivers, hurricanes, jagged mountain peaks, jagged coastlines and river
deltas to the nerves and blood vessels in our bodies. Chaos is a pattern of behavior that reaches a
regular state or repeats itself endlessly. In phase space, the state of all the information of a dynamic
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system at a given moment in time is reduced to a single point. This point is the dynamical system
itself at that exact moment. In contrast, in the next state following this moment, the system will
change, albeit very slightly, and the point will be displaced. The strange attractor occurs in phase
space, one of the most important discoveries of modern science. Edward Lorenz was a pioneer of
chaos science. In 1963, M.I.T. scientist E. N. Lorenz, while simulating fluid heat-radiation in the
atmosphere to predict the weather, observed a new type of irregular oscillations and proposed a
model. The mathematics used by Lorenz in his model of the atmosphere was widely investigated
in the 1970s, and over time it became known that a fundamental property of a chaotic system is
that the smallest difference in two different sets of initial conditions can lead to large differences in
the state of the system [3].
The existence of chaos in various branches of engineering and other sciences such as nuclear physics,
solid state physics, laser optics, chemistry, biology, medicine, ecology, astronomy, sociology, econom-
ics, international relations, history, hydraulics, atmospherics, electricity, electronics, machinery, etc.,
intensive studies on the subject and the developments in the field have led to the emergence of many
application areas related to chaos and chaotic systems. The application areas related to chaos and
chaotic systems include; chaotic parallel distributed processing, deterministic nonlinear prediction,
identification and modeling of nonlinear systems, nonlinear filtering, biomedical and medical ap-
plications, dynamic information compression and coding, chaotic reliable communication, precise
pattern recognition, use of chaotic dynamics for music and art, artificial generation of chaotic oscil-
lations, realization of chaotic systems electronically, optically and optoelectronically, detection and
control of chaotic vibrations and oscillations, control of lasers, turbulence control, control of crane
and ship oscillations, weather forecasting [4].
For numerical modeling and simulation of a physical system with block diagrams, a mathematical
model including one or more differential equations and initial conditions on the variables is required.
The system can be of linear or nonlinear type. Block diagrams can be modeled and simulated with
electronic circuit programs using analog operational elements. Again, the same simulation results
can be obtained by setting up the real electronic circuit of the electronic circuit that is numerically
modeled and simulated. The system resulting from the implementation of block diagrams as elec-
tronic circuits can also be called an "analog computer". The mathematical model of the analog
computer created to model a specific physical system is identical to the mathematical model of the
system [5, 6].
This paper consists of four parts. In the first part, information about Chaos science and its ap-
plication area is given. In the second part, the formation of the fractional Lorenz Chaos model,
mathematical analysis of the existence, uniqueness and non-negativity of the system and the Gen-
eralized Euler method are presented. In the third section, the fractional Lorenz model is applied
with the Generalised Euler method and numerical results are obtained and graphs are drawn. In
the fourth section, conclusions are given.

2. Fractional Derivation and Fractional Lorenz Chaos Model

The most commonly used definitions of the fractional derivative are Riemann-Liouville, Caputo,
Atangana-Baleanu and the Conformable derivative. In this study, because the classical initial
conditions are easily applicable and provide ease of calculation, the Caputo derivative operator was
preferred and modeling was created. The definition of the Caputo fractional derivative is given
below.

Definition 2.1. ([4]) Let f(t) be a function. It can be continuously differentiable n times. The
value of the function f(t) for the value of α that satisfies the condition n− 1 < α < n. The Caputo
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fractional derivative of α−th order f(t) is defined by Dα
t f(t)=

1
Γ(n−α)

∫ t

a
(t− x)(n−α−1)fn(x)dx.

These comparisons show that the Caputo fractional-order model presented is more representative
of the system than its integer-ordered form. Mathematical modelling based on enhanced models
naturally leads to differential equations of fractional order and to the necessity of the formulation
of initial conditions to such equations. The main advantage of Caputo’s approach is that the initial
conditions for fractional differential equations with Caputo derivatives take on the same form as for
integer-order differential equations, contain the limit values of integer-order derivatives of unknown
functions at the terminal t = α.

Definition 2.2. [4] The Riemann-Liouville (RL) fractional-order integral of a function A(t) ∈ Cn

(n ≥ −1) is given by

(2.1) JγA(t)= 1
Γ(α)

∫ t

0
(t− s)(γ−1)A(s)ds, J0A(t) = A(t).

Definition 2.3. [4] The series expansion of two-parametrized form of Mittag-Leffler function for
a, b > 0 is given by

(2.2) Ea,b(t) =
∑∞

t=0
ti

Γ(ai+b) .

2.1. The Fractional Lorenz Chaos Model. The chaotic Lorenz system is the most famous
chaotic system for two-dimensional fluid behavior. The chaotic Lorenz system is described by the
following system of equations:

(2.3)

dαX

dtα
= δ(X − Y )

dαY

dtα
= X(γ − Z)− Y

dαZ

dtα
= XY − ϵZ.

Here dα

dtα is the Caputo fractional derivative of α-th order with respect. The initial values are
defined as,

X(0)=X0, Y (0) = Y0, Z(0) = Z0

0 < α ≤ 1 time t.
Since fractional order models have a memory feature in time-dependent events, they produce more
realistic and accurate results than integer order models. For this reason, the established model was
created as fractional order. By taking α=1 in system (2.3), the differential equation of fractional
order is reduced to a differential equation of full order.
Here δ, γ and ϵ are system parameters, X, Y and Z are dynamic variables. As can be seen from the
equations, this chaotic system is a 3rd order system where nonlinearity is ensured by linear product
terms. The system is characterized by the generation of non-periodic oscillations whose spectrum
is spread over a wide frequency region. Since these oscillations resemble noise and depend on initial
conditions in an unpredictable way, it has been realized that they can be used in covert communi-
cations [5-23]. Chaotic systems are characterized by "extreme sensitivity to initial conditions". If
two chaotic systems of similar structure start to operate with a small difference in initial values,
they will soon drift apart.
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2.2. Existence, Uniqueness and Non-Negativity of the System. We investigate the exin-
tence and uniqueness of the solutions of the fractional-order system (2.3) in the region B × [t0, T ]
where

(2.4) B = {(X,Y, Z) ∈ R3
+ : max{| X |, | Y | , | Z |} ≤ Ψ,min{| X |, | Y | , | Z | ≥ Ψ0}

and T < +∞.

Theorem 2.4. For each H0 = (X0, Y0, Z0) ∈ B there exists a unique solution H(t) ∈ B of the
fractional-order system (2.3) with intial condition H0, which is defined for all t ≥ 0.

Proof: We denote H = (X,Y, Z) and H̄ = (X̄, Ȳ , Z̄). Consider a mapping
M(H) = (M1(H),M2(H),M3(H))

(2.5)

M1(H) = δ(X − Y )

M2(H) = X(γ − Z)− Y

M3(H) = XY − ϵZ.

For any H, H̄ ∈ B it follows from equation (2.5) that

(2.6) ∥ M(H)−M(H̄) ∥=| M1(H)−M1(H̄) | + | M2(H)−M2(H̄) | + | M3(H)−M3(H̄) |

| M1(H)−M1(H̄) |=| δ(X − Y )− δ(X̄ − Ȳ ) |

=| δ(X − X̄)− δ(Y − Ȳ ) |

≤ δ | X − X̄ | +δ | Y − Ȳ |

| M2(H)−M2(H̄) |=| X(γ − Z)− Y − X̄(γ − Z̄) + Ȳ |

=| γ(X − X̄)− (XZ − X̄Z̄)− (Y − Ȳ ) |

≤ γ | X − X̄ | +Ψ | X − X̄ | +Ψ | Z − Z̄ | + | Y − Ȳ |

| M3(H)−M3(H̄) |=| XY − ϵZ − X̄Ȳ + ϵZ̄ |

=| (XY − X̄Ȳ )− ϵ(Z − Z̄) |

≤ Ψ | X − X̄ | +Ψ | Y − Ȳ | +ϵ | Z − Z̄ |
Then equation (2.6) becomes,

∥ M(H)−M(H̄) ∥≤ δ | X − X̄ | +δ | Y − Ȳ | +γ | X − X̄ | +Ψ | X − X̄ |
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+Ψ | Z − Z̄ | + | Y − Ȳ | +Ψ | X − X̄ | +Ψ | Y − Ȳ | +ϵ | Z − Z̄ |

≤ (δ + γ + 2Ψ) | X − X̄ | +(1 + δ +Ψ) | Y − Ȳ | +(Ψ + ϵ) | Z − Z̄ |

∥ M(H)−M(H̄) ∥≤ L ∥ H − H̄ ∥

where L = max(δ + γ + 2Ψ, 1 + δ +Ψ,Ψ+ ϵ).

Therefore M(H) obeys Lipschitz condition which implies the existence and uniqueness of solution
of the fractional-order system (2.3).

Theorem 2.5. ∀ t ≥ 0, X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0, Z(0) = Z0 ≥ 0, the solutions of the
system in (2.3) with initial conditions (X(t), Y (t), Z(t)) ∈ R3

+ are not negative.

Proof: (Generalized Mean Value Theorem) Let f(x) ∈ C[a, b] and Dαf(x) ∈ C[a, b] for 0 < α ≤
1. Then we have

(2.7) f(x) = f(α) +
1

Γ(α)
Dαf(ϵ)(x− a)α

with 0 ≤ ϵ ≤ x, ∀x ∈ (a, b].
The existence and uniqueness of the solution (2.3) in (0,∞) can be obtained via Generalized Mean
Value Theorem. We need to show that the domain R3

+ is positively invariant. Since

DαX = δ(X − Y ) ≥ 0

DαY = X(γ − Z)− Y ≥ 0

DαZ = XY − ϵZ ≥ 0

on each hyperplane bounding the nonnegative orthant, the vector field points into R3
+.

2.3. Generalized Euler Method. In this paper, we used the Generalized Euler method to solve
the initial value problem with the Caputo fractional derivative. Many of the mathematical models
consist of nonlinear systems, and finding solutions to these systems can be quite difficult. In most
cases, analytical solutions cannot be found and a numerical approach should be considered for this.
One of these approaches is the Generalized Euler method [15].
Dαy(t) = f(t, y(t)), y(0) = y0, 0 < α ≤ 1, 0 < t < α for the initial value problem, h = a

n impending
[tj , tj+1] is divided into n sub with j = 0, 1, .., n − 1. Suppose that y(t), Dαy(t) and D2αy(t) are
continuous in range [0, a] and using the generalized Taylor’s formula, the following equation is ob-
tained [15].

y(t1) = y(t0) +
hα

Γ(α+ 1)
f(t0, y(t0)).

This process will be repeated to create an array. Let tj = tj+1 + h such that

y(tj+1) = y(tj) +
hα

Γ(α+ 1)
f(tj , y(tj)
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(2.8)

DαX(t) = δ(X(0)− Y (0))

DαY (t) = X(0)(γ − Z(0))− Y (0)

DαZ(t) = X(0)Y (0)− ϵZ(0).

j = 0, 1, .., n − 1 the generalized formula in the form is obtained. For each k = 0, 1, ..., n − 1 with
step size h. For t ∈ [0, h), t

h ∈ [0, 1) we have

(2.9)

DαX(t) = δ(X(0)− Y (0))

DαY (t) = X(0)(γ − Z(0))− Y (0)

DαZ(t) = X(0)Y (0)− ϵZ(0).

The solution of (2.9) reduces to

(2.10)

X(1) = X(0) +
hα

Γ(α+ 1)
(δ(X(0)− Y (0)))

Y (1) = Y (0) +
hα

Γ(α+ 1)
(X(0)(γ − Z(0))− Y (0))

Z(1) = Z(0) +
hα

Γ(α+ 1)
(X(0)Y (0)− ϵZ(0)).

For t ∈ [h, 2h), t
h ∈ [1, 2), we get

(2.11)

X(2) = X(1) +
hα

Γ(α+ 1)
(δ(X(1)− Y (1)))

Y (2) = Y (1) +
hα

Γ(α+ 1)
(X(1)(γ − Z(1))− Y (1))

Z(2) = Z(1) +
hα

Γ(α+ 1)
(X(1)Y (1)− ϵZ(1)).

Repeating the process n times, we obtain

(2.12)

X(n+ 1) = X(n) +
hα

Γ(α+ 1)
(δ(X(n)− Y (n)))

Y (n+ 1) = Y (n) +
hα

Γ(α+ 1)
(X(n)(γ − Z(n))− Y (n))

Z(n+ 1) = Z(n) +
hα

Γ(α+ 1)
(X(n)Y (n)− ϵZ(n)).

3. Numerical Simulation of Fractional Lorenz Chaos Model

In the chaotic Lorenz system, the weather at a given instant is represented by a point in the
three-dimensional phase space and the course of the weather over time is represented by a trajec-
tory passing through these points. This trajectory represents the history of the dynamical system.
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Since chaotic systems are nonlinear, their trajectories are very complex but not random. As time
progresses, trajectories begin to fill the phase space and never close over; they repeat. This kind of
behavior is a sign of chaos. The set of possible weather states obtained by running the system is
called the Lorenz attractor. The Lorenz attractor does not occupy any volume in three-dimensional
space.

Let X = 0, 001, Y = 0, 0, Z = 0, 0, γ = 28, δ = 10, ϵ = 8
3 and let’s take size of step h = 0.1. Hence

we get the following results and tables. Using the Euler method, we obtain the following tables.

Table 1. The values of X, Y and Z at the moment t for α = 1.
t X(t) Y (t) Z(t)
0 0,001 0,00 0,00
1 0,0015 0,0028 0,00
2 0,0028 0,00252 0,00
3 0,0025 0,0101 0,0000007
4 0,0101 0,0161 0,000003
5 0,0161 0,0428 0,0000182
6 0,0428 0,0837 0,0000828
7 0,0837 0,1950 0,000419
8 0,1950 0,4100 0,0019
9 0,4100 0,9160 0,00944

10 0,9160 1,9730 0,0445
11 1,9730 4,3370 0,2130
12 4,3370 9,3870 1,0120
13 9,3870 20,1550 4,8150
14 20,1500 39,9000 22,4500
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Table 2. The values of X, Y and Z at the moment t for α = 0.9.
t X(t) Y (t) Z(t)
0 0,001 0,00 0,00
1 0,0020 0,00366 0,00
2 0,00489 0,00205 -0,0000001
3 0,00117 0,0197 0,00000121
4 0,0254 0,0214 0,00000382
5 0,0202 0,1110 0,0000739
6 0,1402 0,1710 0,000344
7 0,1809 0,6620 0,00336
8 0,8110 1,2390 0,01780
9 1,3710 4,0500 0,1430

10 4,8770 8,5190 0,8200
11 9,6440 24,7500 5,9740
12 29,4280 49,3200 35,1500
13 55,4700 15,3100 212,910
14 2,9100 -132,4000 250,00

Table 3. The values of X, Y and Z at the moment t for α = 0.8.
t X(t) Y (t) Z(t)
0 0,001 0,00 0,00
1 -0,0007 0,00476 0,00
2 0,0086 0,00061 0,000000568
3 -0,00499 0,0414 0,000000582
4 0,0740 0,0106 -0,0000349
5 -0,0330 0,3610 0,000114
6 0,6390 0,1380 -0,00212
7 -0,2120 3,1620 0,0139
8 5,5300 1,6110 -0,106
9 -1,1380 27,7800 1,458

10 48,0800 17,9100 -4,585
11 -3,2480 281,500 144,110
12 481,300 297,790 -76,740
13 169,030 882,770 243,470
14 148,800 -692,170 267,184
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Figure 1. Graph of X phase plane change with time.

Figure 2. Graph of Y phase plane change with time.
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Figure 3. Graph of Z phase plane change with time.

Table 3, Table 4 and Table 5 show the changes of x, y and z for different cases of α .

4. Conclusions and Comments

Chaos-based reliable communication systems have become an alternative to the standard spread
spectrum communication systems in the literature because they can spread the spectrum of informa-
tion signals over a wide area, have a noise-like structure and can be realized with simple, inexpensive
chaotic circuitry. In this study, the existence, uniqueness and non-negativity of the fractional order
Lorenz Chaos model system were mathematically analysed. In the obtained graphs, it is observed
that while the x phase plane is constant for α=1 and α=0.9, it starts to decrease after reaching a
maximum value at a certain point for α=0.8. While the Y phase plane is constant for α=1 and
α=0.9, it is observed that for α=0.8 it starts to decrease rapidly after taking the maximum value
at a certain point. In the Z phase plane, it is observed that it progresses steadily for α=1, increases
rapidly after a certain point for α=0.9, and increases rapidly after taking the minimum value at a
certain point for α=0.8.
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