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Abstract
In this work, the concept of Apollonian set is explored in the framework of the generalized taxicab plane and
named as the generalized taxicab Apollonian sets. It is determined that these sets do not conform to the
properties of generalized taxicab circles; rather, the closed simple rectilinear figures are composed of line
segments. By examining various configurations based on the positions of given points, the generalized taxicab
Apollonian sets are systematically classified and characterized.
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Article History: Received 22 September 2024; Accepted 6 December 2024

1. Introduction
The distance between two points can be measured in various ways according to different distance functions. Some of the most
popular distance functions comprise the Euclidean distance, the maximum distance, the taxicab distance, and the alpha distance.
Euclidean distance is a measure of the shortest distance between two points. The taxicab distance, maximum distance, alpha
distance are non-Euclidean distances, and the analytical planes equipped with these distance functions are the non-Euclidean
planes. These non-Euclidean geometries have been studied in different aspects by many researchers [1–9]. Taxicab distance
measures the sum of Euclidean lengths of line segments parallel to the coordinate axes between two points. Wallen redefined
the taxicab distance to eliminate potentially misleading symmetry [10]. The generalized taxicab distance between two points is
the sum of the constant multiples of the Euclidean lengths of the horizontal and vertical line segments parallel to the coordinate
axes.

This is the reason why the weighted taxicab distance is also known as the generalized taxicab distance, providing an
alternative approach to computing distances in non-Euclidean geometry. In recent years, metric geometry based on the
generalized taxicab distance has been studied and developed [11–14].

The Apollonian set comprises points in which the ratio of their distances from two points is a constant k. The Apollonian set
in the Euclidean plane takes the form of a circle, except in the instances where k equals 0 or 1. The Apollonian sets are regarded
as the degenerate cases for k = 0 or k = 1. The Apollonian set can be defined in various metric spaces. The Apollonian sets are
studied and characterized in taxicab and maximum planes [15, 16]. And it is obtained that the Apollonian sets in taxicab and
maximum planes are not a taxicab and maximum circles, respectively.

In this work, the Apollonian sets are examined in the generalized taxicab plane and named as the generalized taxicab
Apollonian sets. It is determined that the generalized taxicab Apollonian set is not a generalized taxicab circle, but the simple
closed rectilinear figure. Also, the generalized taxicab Apollonian sets are classified and characterized. In the sequel, some
concepts used throughout this work are mentioned.
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2. Preliminaries
Definition 1. The generalized taxicab distance between points A1 = (x1,y1) and A2 = (x2,y2) in the analytical plane is

dG(A,B) = a |x2 − x1|+b |y2 − y1| ,

where the real numbers a,b > 0 [10].

From the definition, it is seen that the generalized taxicab distance between the points A1 and A2 is equal to the sum of the
positive multiples a and b of the Euclidean lengths of the sides parallel to the coordinates axes in the right triangle with the
hypotenuse A1A2. Indeed, dG is a family of distance functions depending on the positive numbers a and b. In the special case of
a = b = 1, dG is the taxicab distance. Throughout this paper, it will be assumed that a and b are constant values given at the
beginning, unless otherwise stated. The generalized taxicab plane is the analytical plane equipped with the generalized taxicab
distance and symbolized by R2

G. It is almost the same as the Euclidean plane except the distance function.
The classification of lines in the generalized taxicab plane, similar to [6], is as follows:

Definition 2. Let m be the slope of the line l in the generalized taxicab plane. The line l is called the steep line, the gradual
line and the separator line in the cases of |m|> a

b , |m|< a
b and |m|= a

b , respectively. In special cases that the line l is parallel
to the x-axis or y-axis, l is named as the horizontal line or the vertical line, respectively [11].

Every Euclidean translation preserves the generalized taxicab distance. So, it is an isometry in R2
G. Reflections in the

coordinate axes and the separator lines through the origin are isometries in the generalized taxicab plane. The set of axes of
isometric reflections is

{x = 0,y = 0,y =
a
b

x,y =−a
b

x}.

Also, the set of isometric reflections in matrix form is{[
1 0
0 −1

]
,

[
−1 0

0 1

]
,

[
0 b

a
a
b 0

]
,

[
0 − b

a
− a

b 0

]}
.

And matrices in the following set{[
1 0
0 1

]
,

[
0 − b

a
a
b 0

]
,

[
−1 0

0 −1

]
,

[
0 b

a
− a

b 0

]}
represent rotations about the origin that preserve the generalized taxicab distance [11–13].

Definition 3. The minimum distance set (the shortest distance set) of the points A1 = (x1,y1) and A2 = (x2,y2) in the generalized
taxicab plane is the set

{X | dG(A1,X)+dG(X ,A2) = dG(A1,A2)} .

This set is a rectangular region determined by the vertical and horizontal lines through the points A1 and A2. In the case that
the points A1 and A2 are on the horizontal or vertical line, it is the line segment A1A2 (Figure 1). 2
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Fig. 1. The minimum distance set

Definition 4. In the generalized taxicab plane, the generalized taxicab midset of the points A1 and A2 is defined by the set

{X | dG(A1,X) = dG(X ,A2)} .
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It is well known that the Euclidean midset is a line passing through the midpoint of the points A1 and A2, and perpendicular
to the line A1A2. Besides, the generalized taxicab midset has different shapes depending on the points A1 and A2 as follows:

i. If the points A1 and A2 are on a horizontal or vertical line, the generalized taxicab midset is the line passing through the
midpoint of them and perpendicular to the line A1A2 as in the Euclidean case (Figure 2 (b)).

ii. If the points A1 and A2 are on a separator line, the generalized taxicab midset consists of two regions and a line segment
connecting these regions. The line segment is the intersection of the minimum distance set of given points and the other
separator line passing through the midpoint of them. And, regions are formed by the horizontal and vertical lines passing
through the points A1 and A2 such that the intersection of regions and the minimum distance set is the endpoints of the
line segment (Figure 2 (a)).

iii. If the points A1 and A2 are on a gradual line or a steep line, the generalized taxicab midset consists of two rays and a line
segment connecting these rays. The line segment is the intersection of the minimum distance set of the given points and
the separator line passing through the midpoint of them and having the opposite sign of the slope of line A1A2. And rays
are parallel to the coordinate axis and have opposite directions such that the initial points of the rays are the endpoints of
the line segment (Figure 2 (c), Figure 2 (d)).
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Fig. 2. (a) (b) (c) (d) The generalized taxicab midsets

3. The generalized taxicab Apollonian sets
In this section, it is explored that the Apollonian set defined by the ratio of generalized taxicab distances to two fixed points is
constant. To put it more clearly, two fixed points A1 and A2 in the generalized taxicab plane and k ∈ [0,∞), the Apollonian set is

A (A1,A2;k)G =

{
X ∈ R2

G | dG(A1,X)

dG(A2,X)
= k

}
.

In Euclidean plane, the Apollonian set is a circle except for k ∈ {0,1,∞} and in the case of k = 1, it is the midset of the
given points such that it is the perpendicular bisector of the line passing through the given points. It is immediately seen from
the definition of the generalized taxicab Apollonian set that the followings hold:

i. When the constant k is equal to 1, the generalized taxicab Apollonian set is the generalized taxicab midset of two fixed
points.

ii. When k approaches zero, the points in the generalized taxicab Apollonian set get closer to the point A1.

iii. When k approaches ∞, the points in the generalized taxicab Apollonian set get closer to the point A2.

Note that the generalized taxicab Apollonian set is never a generalized taxicab circle, unlike the Euclidean case.
When the positions of the points and the constant k are altered, the generalized taxicab Apollonian sets have interesting

shapes. In this study, the conditions related to the constant k are used to classify the generalized taxicab Apollonian sets.
The following lemma states that in the definition of the Apollonian set, it is sufficient to focus only on the value k in the

interval (1,∞).

Theorem 5. Let any two distinct points be A1 and A2 in the generalized taxicab plane and k > 0. Then A (A1,A2;k)G is equal
to A (A2,A1; 1

k )G.

In special cases, the Apollonian sets A (A1,A2;0)G and A (A1,A2;∞)G are equal to A (A2,A1;∞)G and A (A2,A1;0)G,
respectively.
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Theorem 6. Let A1 and A2 be any two points in the generalized taxicab plane and k > 0. If the map ϕ is an isometry in the
generalized taxicab plane, then

ϕ(A (A1,A2;k)G) = A (ϕ(A1),ϕ(A2);k)G.

Since the generalized taxicab isometries preserve the properties of Apollonian sets, throughout this study, choosing one of
two points at the origin and the other in the first quadrant of the coordinate plane will simplify the analysis and will not affect
the generality.

Theorem 7. Let A1 and A2 be any two points in the generalized taxicab plane and k > 0. If ϕ is the rotation by π-angle at the
midpoint M of the points A1 and A2, then

ϕ(A (A1,A2;k)G) = A (A1,A2;
1
k
)G.

The proofs of the above three theorems are similar to the proofs of the propositions and lemmas given in [14–16].
Now, the generalized Apollonian set, defined by two points and a positive constant, is examined based on the position of the

line passing through these points and is presented as follows.
The following theorem outlines the characteristic properties of the generalized taxicab Apollonian set in the case where two

fixed points lie on the same axis:

Theorem 8. Let A1 and A2 be two distinct points on the same coordinate axis in the generalized taxicab plane and k ∈ (1,∞).
The generalized taxicab Apollonian set A (A1,A2;k)G has the following properties :

i. It consists of four line segments. The slopes of the two line segments are ± a(1+k)
b(1−k) and the other two line segments are on

separator lines.

ii. It has four vertices such that two of them lie on the coordinate axis passing through the point A2 and the other two are on
the vertical or horizontal line passing through the point A2.

iii. It is symmetric about the line A1A2.

iv. When the opposite sides are extended to the lines, the intersection points of them are on the line passing through the point
A1 and perpendicular to the line A1A2.

v. The point A2 divides the diagonals internally in the ratios k−1
k+1 and 1.
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Fig. 3. A (A1,A2;k)G (on the right) and A (A2,A1;k)G (on the left) when A1 and A2 on the same coordinate axis

Proof. Suppose that the points A1 and A2 are on the x-axis. Let the coordinates of the points A1 and A2 be (0,0) and (x0,0)
where x0 > 0. The generalized taxicab Apollonian set A (A1,A2;k)G has the equality

a |x|+b |y|
a |x− x0|+b |y| = k, (1)

where k > 1.
Where the value x is negative, there is no point that satisfies the equality (1).
If 0 ≤ x < x0, the equality (1) means that the line segment with the equation a(1+ k)x+b(−1+ k)y = kax0 joining the

points V1 = ( k
k+1 x0,0) and V4 = (x0,

ax0
b(1−k) ) when y < 0, and the line segment with the equation a(1+ k)x+b(1− k)y = kax0

joining the points V1 = ( k
k+1 x0,0) and V2 = (x0,

ax0
b(k−1) ) when y ≥ 0. In the case where x ≥ x0, the equality (1) implies that

the line segment with the equation a(1− k)x+b(−1+ k)y =−kax0 joining the points V3 = ( k
k−1 x0,0) and V4 = (x0,

ax0
b(1−k) )

when y < 0, and the line segment with the equation a(1− k)x+ b(1− k)y = −kax0 joining the points V3 = ( k
k−1 x0,0) and
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V2 = (x0,
ax0

b(k−1) ) when y ≥ 0. Thus, the generalized taxicab Apollonian set A (A1,A2;k)G, corresponding to equation (1)
consists of the line segments ViVj i = 1,3, j = 2, 4 (Figure 3).

The intersection points of the opposite sides V1V2 and V3V4 ; V1V4 and V2V3 in A (A1,A2;k)G are the points (0,± akx0
b(1−k) ). It

is observed that these intersection points and A1 are collinear (Figure 4).
The reflection Ω in the line A1A2 leaves the vertices V1 and V3 fixed, while mapping the vertices V2 and V4 onto each other.

Also, the sides V1V2 and V2V3 are mapped to the sides V1V4 and V3V4 under Ω. Thus, A (A1,A2;k)G is symmetric about the line
A1A2.

It is easily to see that the point A2 divides the diagonal V1V3 in the ratio |V1A2|
|A2V3| =

dG(V1,A2)
dG(A2,V3)

= k−1
k+1 , and the diagonal V2V4 in

the ratio |V2A2|
|A2V4| =

dG(V2,A2)
dG(A2,V4)

= 1.
In the case that the points A1 and A2 are on the y-axis, it can immediately be seen that A (A1,A2;k)G has the same properties

by using the reflection in the separator line y = a
b x and Theorem 6. ■
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Fig. 4. A (A1,A2;k)G when A1 and A2 on the same coordinate axis

It is known that translations preserve the properties of the generalized taxicab Apollonian sets according to Theorem 6. In
the case where two fixed points lie on a line parallel to the coordinate axis, the following results can be immediately obtained
by applying a suitable translation to the points in Theorem 7.

Corollary 9. Let A1 and A2 be two distinct points on the same horizontal or vertical line in the generalized taxicab plane and
k ∈ (1,∞). The generalized taxicab Apollonian set A (A1,A2;k)G has the following properties:

i. It consists of four line segments. The slopes of the two line segments are ± a(1+k)
b(1−k) , and the other two line segments are on

separator lines.

ii. It has four vertices such that two of them lie on the line A1A2 and the other two are on the line passing through the point
A2 and perpendicular to the line A1A2.

iii. It is symmetric about the line A1A2.

iv. The intersection points of the opposite sides are on the line passing through the point A1 and perpendicular to the line
A1A2.

In the following theorem, the generalized taxicab Apollonian set is examined, and its properties are presented when two
fixed points lie on the same separator line.

Theorem 10. Let A1 and A2 be two distinct points on the same separator line in the generalized taxicab plane and k ∈ (1,∞).
The generalized taxicab Apollonian set A (A1,A2;k)G has the following properties:

i. It consists of four line segments. The slopes of the two line segments are m k+1
k−1 and m k−1

k+1 , and the other two line segments
are parallel to the separator line with the slope −m where m is the slope of the line A1A2.

ii. Its vertices are on the horizontal and vertical lines passing through the point A2.

iii. The completions of the non-parallel opposite sides intersect at the point A1.

iv. A (A1,A2;k)G is symmetric about the line A1A2.

v. The point A2 divides the diagonals internally in the ratio k−1
k+1 .
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Fig. 5. A (A1,A2;k)G (on the right) and A (A2,A1;k)G (on the left) when A1 and A2 on the same separator line

Proof. Suppose that the points A1 and A2 are on the separator line y = a
b x. Let the abscissas of the points A1 and A2 be 0 and x0

where x0 > 0. The generalized taxicab Apollonian set A (A1,A2;k)G has the equality

a |x|+b |y|
a |x− x0|+b

∣∣y− a
b x0

∣∣ = k, (2)

where k > 1. Focusing on all possible cases in the equality (2) and solving for the absolute values appropriately, A (A1,A2;k)G
is determined.

In the regions where the value x is negative, the equality (2) reduces to an equation that has no solution.
In the regions where the value x is equal to or greater than zero and is less than x0, (2) states two line segments such that

one of them is the line segment with the equation

ax+by =
2k

k+1
ax0 (3)

joining V1 = ( k−1
k+1 x0,

a
b x0) and V4 = (x0,

a(k−1)
b(k+1)x0) when 0 ≤ y < a

b x0 and the other is the line segment with the equation

a(k+1)x+b(1− k)y = 0 (4)

joining V1 and V2 = (x0,
a(k+1)
b(k−1)x0) when y ≥ a

b x0. In the regions where the value x is equal to or greater than x0, the points
satisfying the equality (2) are on the line segment with the equation

a(1− k)x+b(1+ k)y = 0 (5)

joining V3 = ( k+1
k−1 x0,

a
b x0) and V4 when 0 ≤ y < a

b x0 and on the line segment with the equation

ax+by =
2k

k−1
ax0 (6)

joining V2 and V3 when y ≥ a
b x0 (Figure 5).

It is seen that all the vertices Vi are on the horizontal and vertical lines through A2. Also, the sides V1V4 and V2V3 are parallel
and on the separator lines with the opposite sign of the slope of line A1A2. The completions of two non-parallel sides V1V2 and
V3V4 intersect at the point A1. While the reflection in the line A1A2 maps the points V1, V2 and the side V1V2 to the points V4,
V3 and the side V3V4, it leaves the sides V1V4 and V2V3 fixed. Thus A (A1,A2;k)G is symmetric about the separator line A1A2.
Since dG(V1,A2)

dG(A2,V3)
= k−1

k+1 = dG(V2,A2)
dG(A2,V4)

, the point A2 divides the diagonals V1V3 and V2V4 in the ratio k−1
k+1 .

When the points A1 and A2 are on the separator line y =− a
b x, it is readily achieved that the set A (A1,A2;k)G possesses the

analogous properties by using the reflection in x-axis. ■

The following Theorem 11 and Theorem 13 describe the properties of the generalized taxicab Apollonian sets when two
given points are on a gradual line. These theorems highlight conditions based on the relationship between the value k and the
slope of the line passing through two given points and reflect how varying conditions affect the structure and properties of the
generalized taxicab Apollonian set.

Theorem 11. Let A1 and A2 be two distinct points on a gradual line in the generalized taxicab plane and k ∈ (1,∞). If k < a
b|m| ,

where m is the slope of the line segment A1A2, then the generalized taxicab Apollonian set A (A1,A2;k)G has the following
properties:
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i. It consists of six line segments. The slopes of three line segments are ±sgn(m) a(k+1)
b(k−1) , sgn(m) a(k−1)

b(k+1) , and the other three
are parallel to the separator lines. It has two parallel sides.

ii. Four of the six vertices are on the horizontal and vertical lines passing through the point A2, and the other two are on the
horizontal line through the point A1.

iii. The completions of the sides with the slopes sgn(m) a(k+1)
b(k−1) , sgn(m) a(k−1)

b(k+1) , and the separator line passing through the
point A2 are concurrent.
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Fig. 6. The Apollonian sets when A1 and A2 on the same gradual line

Proof. Suppose that the coordinates of the points A1 and A2 are (0,0) and (x0,y0), where x0, y0 > 0. Since the line A1A2 is a
gradual line, y0 <

a
b x0. The generalized taxicab Apollonian set has the equality

a |x|+b |y|
a |x− x0|+b |y− y0|

= k, (7)

where k > 1. By concentrating on all the cases in equality (7) and suitably analyzing the absolute values, one gets A (A1,A2;k)G
as follows:
Consider the regions where 0 ≤ x < x0. When y < 0, the equality (7) becomes the equation

a(1+ k)x+ sgn(m)b(−1+ k)y = k(ax0 + sgn(m)by0). (8)

Since k < a
bm , the intersection of the line in equation (8) and the region is the line segment joining the points V5 =

(x0,
−ax0+sgn(m)kby0

sgn(m)b(k−1) ) and V6 = ( k(ax0+sgn(m)by0)
a(k+1) ,0) where −ax0+sgn(m)kby0

sgn(m)b(k−1) < 0 and 0 < k(ax0+sgn(m)by0)
a(k+1) < x0. When 0 ≤ y < y0,

the line with the equation

ax+ sgn(m)by =
k

k+1
(ax0 + sgn(m)by0) (9)

meets the region along the line segment joining the points V1 = ( kax0+sgn(−m)by0
a(k+1) ,y0) and V6 where 0 < kax0+sgn(−m)by0

a(k+1) < x0.
For y ≥ y0, the side of the generalized taxicab Apollonian set in this region is formed by the line segment with the equation

a(1+ k)x+ sgn(−m)b(k−1)y = k(ax0 + sgn(−m)by0) (10)

joining points V1 and V2 = (x0,
ax0+sgn(m)kby0

sgn(m)b(k−1) ) where ax0+sgn(m)kby0
sgn(m)b(k−1) > y0. Take into account the regions where x ≥ x0. When y

is negative, the line with the equation

a(1− k)x+ sgn(m)b(−1+ k)y = k(−ax0 + sgn(m)by0) (11)

intersects the region along the line segment whose endpoints are points V4 = ( k(ax0+sgn(−m)by0)
a(k−1) ,0) and V5. Since k < a

bm ,
k(ax0+sgn(−m)by0)

a(k−1) > x0 and −ax0+sgn(m)kby0
sgn(m)b(k−1) < 0. When 0 ≤ y < y0, the line with the equation

a(k−1)x+ sgn(−m)b(k+1)y = k(ax0 + sgn(−m)by0) (12)

meets the designated region along the line segment whose endpoints are V3 = ( kax0+sgn(m)by0
a(k−1) ,y0) and V4. Since ax0 +by0 > 0,

it is clear that kax0+sgn(−m)by0
a(k−1) > x0. Considering the case of y ≥ y0, the line segment with the equation

ax+ sgn(m)by =
k

k−1
(ax0 + sgn(m)by0) (13)
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joining the points V2 and V3 is the sixth side of A (A1,A2;k)G.
It is seen immediately that the completions of the sides V1V2 and V3V4 and the separator line passing through the point A2

intersect at the point ( ax0+sgn(−m)by0
2a , sgn(−m)ax0+by0

2b ). So, these lines are concurrent. Also, it is obvious from equations (9) and
(13) that the sides V1V6 and V2V3 are parallel (Figure 6). ■

Considering the points in the hypothesis of Theorem 6, the intersection points of the separator lines passing through the
points A1 = (0,0) and A2 = (x0,y0) are A12 = ( ax0+by0

2a , ax0+by0
2b ) and A21 = ( ax0−by0

2a , −ax0+by0
2b ).

The points A21 and A2 are on the separator line. The set A (A21,A2;k)G is the union of the following line segments:
The line segment is defined by

ax+ sgn(m)by =
k

k+1
(ax0 + sgn(m)by0),

kax0 + sgn(−m)by0

a(k+1)
≤ x ≤ x0 (14)

joining the vertices K1 = ( kax0+sgn(−m)by0
a(k+1) ,y0) and K4 = (x0,

−ax0+sgn(m)kby0
sgn(m)b(k−1) ), the line segment

a(1+ k)x+ sgn(−m)b(k−1)y = k(ax0 + sgn(−m)by0),
kax0 + sgn(−m)by0

a(k+1)
≤ x ≤ x0 (15)

joining the vertices K1 and K2 = (x0,
ax0+sgn(m)kby0

sgn(m)b(k−1) ), the line segment

ax+ sgn(m)by =
k

k−1
(ax0 + sgn(m)by0), x0 ≤ x ≤ kax0 + sgn(m)by0

a(k−1)
(16)

joining the points K2 and K3 = ( kax0+sgn(m)by0
a(k−1) ,y0) and the line segment

a(k−1)x+ sgn(−m)b(k+1)y = k(ax0 + sgn(−m)by0), x0 ≤ x ≤ kax0 + sgn(m)by0

a(k−1)
(17)

joining the points K3 and K4 where m is the slope of the line segment A1A2.
It is immediately evident that the vertices V1, V2 and V3 of A (A1,A2;k)G in Theorem 6 coincide with the vertices K1, K2

and K3 of A (A21,A2;k)G. Therefore, the sides K1K2and K2K3 of A (A21,A2;k)G are also the sides of A (A1,A2;k)G.
If the sides V3V4 of A (A1,A2;k)G and K3K4 of A (A21,A2;k)G are extended to line, they coincide. Since x0 <

k(ax0+sgn(−m)by0)
a(k−1) ,

the side K3K4 includes the side V3V4. Any point X on the side K3K4 that is not on the line segment V3V4 is in the region bounded
by A (A1,A2;k)G, since dG(A1,X)

dG(A2,X) ≥ k. Similarly, the side V1V6 is included by the side K1K4. The points on the side K1K4 that
are not on the side V1V6 are in the region enclosed by the set A (A1,A2;k)G. The set(x,y) :

a
∣∣∣x− ax0−by0

2a

∣∣∣+b
∣∣∣y− −ax0+by0

2b

∣∣∣
a |x− x0|+b |y− y0|

≥ k


defines the region bounded by A (A21,A2;k)G and it is included by the region bounded by A (A1,A2;k)G (Figure 7).
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Fig. 7. The region bounded by A (A21,A2;k)G in A (A1,A2;k)G

For the points A12 and A2 on the same separator line, the set A (A12,A2;k)G, consists of the union of the line segments in
the following. These are the line segment

a(1+ k)x+ sgn(m)b(−1+ k)y = k(ax0 + sgn(m)by0),
kax0 + sgn(m)by0

a(k+1)
≤ x ≤ x0 (18)
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joining the vertices K′
1 = ( kax0+sgn(−m)by0

a(k+1) ,y0) and K′
4 = (x0,

sgn(−m)ax0+kby0
b(k−1) ), the line segment

a(1+ k)x+ sgn(−m)b(1+ k)y = k(ax0 + sgn(−m)by0),
kax0 + sgn(m)by0

a(k+1)
≤ x ≤ x0 (19)

joining the vertices K′
1 and K′

2 = (x0,
sgn(m)ax0+kby0

b(k+1) ), the line segment

a(−1+ k)x+ sgn(m)b(1+ k)y = k(ax0 + sgn(m)by0), x0 ≤ x ≤ kax0 + sgn(−m)by0

a(k−1)

joining the vertices K′
2 = and K′

3 = ( kax0+sgn(−m)by0
a(k−1) ,y0) and the line segment

a(1− k)x+ sgn(m)b(−1+ k)y = k(−ax0 + sgn(m)by0), x0 ≤ x ≤ kax0 + sgn(−m)by0

a(k−1)

joining the vertices K′
3 and K′

4.
It is seen that the vertex V5 of A (A1,A2;k)G in Theorem 6 and the vertex K′

4 of A (A12,A2;k)G coincide. If the sides V4V5

of A (A1,A2;k)G and K′
3K′

4 of A (A12,A2;k)G are extended to line, they coincide. Since k(ax0+sgn(−m)by0)
a(k−1) < kax0+sgn(−m)by0

a(k−1) , the
side K′

3K′
4 includes the side V4V5. For any point X = (x,y) on the side K′

3K′
4 that is not on the line segment V4V5 satisfies in the

following

a(1− k)x+ sgn(m)b(−1+ k)y = k(−ax0 + sgn(m)by0),
k(ax0 + sgn(−m)by0)

a(k−1)
< x ≤ kax0 + sgn(−m)by0

a(k−1)
0 < y ≤ y0.

Since dG(A1,X)
dG(A2,X) = k( ax+by

ax−by )> k, the point X is in the region enclosed by A (A1,A2;k)G. Similarly, for any point X on the sides

K′
1K′

4, K′
1K′

2 and K′
2K′

3, it is obtained that dG(A1,X)
dG(A2,X) ≥ k. So every point in the set A (A12,A2;k)G is in the region defined by

A (A1,A2;k)G. Thus, it is concluded that the region(x,y) :
a
∣∣∣x− ax0+by0

2a

∣∣∣+b
∣∣∣y− ax0+by0

2b

∣∣∣
a |x− x0|+b |y− y0|

≥ k

 ,

bounded by A (A12,A2;k)G, is contained in the region bounded by A (A1,A2;k)G (Figure 8). 19
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Fig. 8. The region bounded by A (A12,A2;k)G in A (A1,A2;k)G

Based on the results obtained, the following corollary can be stated:

Corollary 12. Let A1 and A2 be two distinct points on a gradual line in the generalized taxicab plane and k ∈ (1,∞) with
k < a

b|m| . If the intersection points of the separator lines passing through the points A1, A2 are A12 and A21, then the region
bounded by A (A1,A2;k)G is the union of the regions bounded by A (A12,A2;k)G and A (A21,A2;k)G (Figure 9).
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Theorem 13. Let A1 and A2 be two distinct points on a gradual line in the generalized taxicab plane and k > 1, k ∈ R+. If
k ≥ a

b|m| , where m is the slope of the line segment A1A2, then the generalized taxicab Apollonian set A (A1,A2;k)G has the
following properties:

i. It consists of four line segments. The slopes of three line segments are sgn(m) a(k+1)
b(k−1) , sgn(m) a(k−1)

b(k+1) and sgn(−m) a
b .

ii. Its vertices are on the horizontal and vertical lines passing through the point A2.

iii. The completions of the sides with slopes sgn(m) a(k+1)
b(k−1) , sgn(m) a(k−1)

b(k+1) and the separator line passing through the point A2
are concurrent.

iv. Two sides are parallel.

v. A (A1,A2;k)G is symmetric about the separator line with the slope sgn(m) a
b passing through point A2.

vi. The lengths of the diagonals and a side in A (A1,A2;k)G are equal.

vii. The point A2 divides the diagonals internally in the ratios k−1
k+1 and k+1

k−1 .

Proof. Suppose that the coordinates of the points A1 and A2 are (0,0) and (x0,y0), where x0 and y0 > 0. Since the line A1A2
is a gradual line, y0 <

a
b x0. The generalized taxicab Apollonian set has the equality (7). It is useful to state that its vertices

Vi i = 1,2,3 are the same as the vertices obtained in the proof of Theorem 11. The equality (7) becomes an equation with
no solution in the regions where the value of x is negative. Consider the region where 0 ≤ x < x0. In the part y < 0 of this
region, the line described by equation (8) does not meet the region, since k ≥ a

bm . In the part 0 ≤ y < y0, the line with
equation (9) meets the region along the line segment that forms a side of A (A1,A2;k)G and its endpoints are the points V1

and V4 = (x0,
sgn(−m)ax0+kby0

(k+1)b ) where 0 ≤ kax0+sgn(−m)by0
a(k+1) < x0 and 0 ≤ sgn(−m)ax0+kby0

(k+1)b < y0. In the remaining part y ≥ y0 of the
region, the line segment with the equation (10) joining points V1 and V2 is another side of the generalized taxicab Apollonian
set where sgn(m)ax0+kby0

b(k−1) > y0. Consider the regions where x ≥ x0. Since the constant k is greater than or equal to the value
a

bm , the line with the equation (11) does not intersect the region where y is negative. The line in (12) meets the region where
0 ≤ y < y0 along the line segment whose endpoints are V3 and V4. It is clear that kax0+sgn(m)by0

a(k−1) > x0. In the region where y ≥ y0,
the line segment with equation (13) joining the points V2 and V3 is a side of A (A1,A2;k)G.

It is immediately apparent that the completions of the sides V1V2 and V3V4 and the separator line with the slope sgn(m) a
b

passing through the point A2 intersect at the point ( ax0+sgn(−m)by0
2a , sgn(−m)ax0+by0

2b ).
Let Ω be the reflection in the separator line with the slope sgn(m) a

b passing through point A2. While Ω maps the vertices
V1, V2, and the side V1V2 to the vertices V4, V3 and the side V3V4, respectively, it leaves the sides V1V4 and V2V3 fixed. Thus,
A (A1,A2;k)G is symmetric about the line y− y0 = sgn(m) a

b (x− x0).
Also, it is obvious that the sides V1V4 and V2V3 are parallel. Besides, the generalized taxicab lengths of the diagonals

V1V3 and V2V4 and the side V1V2 are equal, and this length is equal to 2k
(k−1)(k+1) |ax0 + sgn(m)by0|. Since dG(V1,A2)

dG(A2,V3)
= k−1

k+1 and
dG(V2,A2)
dG(A2,V4)

= k+1
k−1 , the point A2 divides the diagonals V1V3 and V2V4 internally in the ratios k−1

k+1 and k+1
k−1 , respectively (Figure

10). ■
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Fig. 10. The Apollonian set when A1 and A2 on the same gradual line for k ≥ a
b|m|

It is known from Theorem 5 that if the positive value k is less than 1, then the roles of the points A1 and A2 interchange in
the set A (A1,A2;k)G.

In the case that the points A1 and A2 are on the same gradual line and k < 1, observations show that if b
a |m|< k, then the set

A (A1,A2;k)G has the properties expressed in Theorem 11, and otherwise the properties in Theorem 13 are valid.
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Assume that points A1 and A2 are on a steep line.
In the generalized taxicab plane, the reflection Ω in the separator line with the slope sgn(m) a

b passing through point A1
transforms the steep line A1A2 to the gradual line A1A′

2 where m is the slope of the line A1A2. From Theorem 6, it is known that

Ω(A (A1,A2;k)G) = A (A1,A′
2;k)G,

where Ω(A2) = A′
2. So, A (A1,A2;k)G and A (A1,A′

2;k)G are symmetric about the separator line with the slope sgn(m) a
b

passing through point A1, and they share the same properties. Since the vertices, the sides and the properties of A (A1,A2;k)G
can be immediately obtained using this reflection, theorems regarding this case will be presented without proof as follows.
However, it is obvious that the slope of the gradual line A1A′

2 is a2

b2m . While characterizing the set A (A1,A2;k)G, the cases
where the value k is greater than or equal to b

a |m| and less than b
a |m| will be taken into consideration.

Theorem 14. Let A1 and A2 be two distinct points on a steep line in the generalized taxicab plane and k > 1, k ∈ R+. If
k ≥ b

a |m|, where m is the slope of the line segment A1A2, then the generalized taxicab Apollonian set A (A1,A2;k)G has the
following properties:

i. It consists of four line segments. The slopes of three line segments are sgn(m) a(k+1)
b(k−1) , sgn(m) a(k−1)

b(k+1) and sgn(−m) a
b .

ii. Its vertices are on the horizontal and vertical lines passing through the point A2.

iii. The completions of the sides with the slopes sgn(m) a(k+1)
b(k−1) , sgn(m) a(k−1)

b(k+1) and the separator line with the slope sgn(m) a
b

passing through the point A2 are concurrent.

iv. Two of its sides are parallel.

v. A (A1,A2;k)G is symmetric about the separator line with the slope sgn(m) a
b passing through point A2.

vi. The lengths of the diagonals and a side in A (A1,A2;k)G are equal.

In the case of k ≥ b
a |m|, let the vertices of the sets A (A1,A2;k)G and A (A1,A′

2;k)G be denoted by Vi and V ′
i , respectively,

where Ω(A2) = A′
2 and Ω(Vi) =V ′

i , i = 1,2,3,4. In the sets A (A1,A2;k)G and A (A1,A′
2;k)G, the completions of sides with

the slopes sgn(m) a(k+1)
b(k−1) , sgn(m) a(k−1)

b(k+1) , and the separator lines with the slope sgn(m) a
b passing through the points A2 and A′

2,
respectively, meet the points B and B′. Since these intersection points lie on the separator line with the slope sgn(−m) a

b passing
through the point A1, the points A1, B, and B′ are collinear. Also, if the sides of A (A1,A2;k)G and A (A1,A′

2;k)G are completed
to lines, the intersection points ViVi+1 ∩V ′

i V ′
i+1 i = 1,3, and VjVj+2 ∩V ′

jV
′
j+2 j = 1,2 lie on the separator line with the slope

sgn(m) a
b passing through the point A1.

Theorem 15. Let A1 and A2 be two distinct points on a steep line in the generalized taxicab plane, and k > 1, k ∈ R+. If
k < b

a |m|, where m is the slope of the line segment A1A2, then the generalized taxicab Apollonian set A (A1,A2;k)G has the
following properties:

i. It consists of six line segments. The slopes of three line segments are ±sgn(m) a(k−1)
b(k+1) and sgn(m) a(k+1)

b(k−1) , while the other
three are parallel to the separator lines.

ii. Four of the six vertices are on the horizontal and vertical lines passing through the point A2, and the other two are on the
coordinate axis through the point A1.

iii. The completions of the sides with the slopes sgn(m) a(k+1)
b(k−1) , sgn(m) a(k−1)

b(k+1) , and the separator line passing through the
point A2 are concurrent.

iv. Two of its sides are parallel.

In the case that the points A1 and A2 are on the same steep line and k ∈ (0,1), it is seen that if a
b|m| ≥ k, then the set

A (A1,A2;k)G has the properties mentioned in Theorem 14, and if a
b|m| < k, then it has the properties in Theorem 14.
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4. Conclusions
In this study, the Apollonian sets in the generalized taxicab plane are obtained using dG-distance, based on the ratio of distances
to two fixed points being a positive constant real number. The properties and structures of the generalized taxicab Apollonian
sets have been thoroughly investigated. In the analysis, it has been observed that these are not the generalized taxicab circles,
but rather simple, closed and rectilinear figures composed of line segments. The line on which the fixed points lie plays an
important role in determining the shape and properties of the generalized taxicab Apollonian set. When the fixed points are on
a coordinate axis or a horizontal line or a vertical line or a separator line, there is no need for any condition on the value k while
examining the structure of the generalized taxicab Apollonian set. However, when the points are on a gradual or steep line, the
analysis is conducted based on the condition imposed on the value of k. As the value k depending on the condition varies, the
geometric configuration changes accordingly. The differences observed in the set are expressed and presented in the theorems.
Overall, it is thought that this study would contribute to further exploration in this area of research.
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