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Abstract 

 

This study aims to explore all Pell numbers that are the product of two random Pell-

Lucas numbers and all Pell-Lucas numbers that are the product of two random Pell 

numbers based on linear forms in logarithms of algebraic numbers using Matveev's 

theorem and Dujella - Pethő reduction lemma. Further, we find all the common terms of 

Pell and Pell-Lucas numbers and show that no Pell and no Pell-Lucas numbers can be 

written as a square of another. 

 

Keywords: Pell number, Pell-Lucas number, Diophantine equation, Matveev's theorem, 

Dujella-Pethő reduction lemma, linear forms in logarithms. 

 

 

Pell ve Pell-Lucas sayılarının karşılıklı çarpımsal eşitlikleri ile 

ilgili Diophantine denklemleri  
 

 

Öz 

 

Bu çalışma, logaritmalardaki lineer formlara dayalı olarak geliştirilen Matveev’s 

teoremi ve Dujella-Pethő indirgeme lemması kullanılarak, iki rastgele Pell-Lucas 

sayısının çarpımı olan tüm Pell sayıları ve iki rastgele Pell sayısının çarpımı olan tüm 

Pell-Lucas sayılarını araştırmayı amaçlamaktadır. Ayrıca, Pell ve Pell-Lucas sayılarına 

ait ortak terimler incelenmiş ve hiçbir Pell sayısının bir Pell-Lucas sayısının karesi 

olamayacağı gibi, hiçbir Pell-Lucas sayısının da bir Pell sayısının karesi olarak 

yazılamayacağı gösterilmiştir. 

 

Anahtar kelimeler: Pell sayısı, Pell-Lucas sayısı, Diophantine denklemler, Matveev’s 

teoremi, Dujella-Pethö indirgeme lemması, logaritmalarda lineer formlar. 
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1.  Introduction 

 

The Pell numbers, denoted by  
0n n

P


, create a second-order integer sequence, which is 

defined by the recurrence relation 1 22n n nP P P− −= +  for all integers 2n  with initial 

conditions 0 0P =  and 1 1P = .  Further, the Pell-Lucas numbers, denoted by  
0n n

Q


, can 

be obtained by using the same recurrence relation but with initial conditions 0 2Q =  and 

1 2Q = .  On the other hand, the mentioned sequences can be generated by Binet's formula 

as follows: 

 
n n

nP
 

 

−
=

−
 and n n

nQ  = + ,              (1) 

 

where 1 2 = +  and 1 2 = − , which are the roots of 2 2 1 0x x− − = .  It can be said 

that the Pell and Pell-Lucas numbers are among the most fascinating integer sequences 

due to their numerous applications in fields such as number theory, cryptography, and 

group theory. These sequences are essential in solving Diophantine equations and 

understanding the structure of certain algebraic objects. In recent years, their applications 

in cryptography and group theory have been extensively explored. Examples of studies 

in [1-4] can be consulted, and the fundamental reference in [5] provides more precise 

examples. 

 

An investigation of Diophantine equations of various configurations consisting of integer 

sequences such as Fibonacci, Lucas, Pell, or Jacobsthal numbers has become very popular 

in recent years.  In [6], Alekseyev investigated the needed conditions under which two 

various generalized sequences can have common terms. In [7], Bravo and Luca identified 

all common terms of two different generalized k-Fibonacci sequences. In [8], Bensella 

and Behloul found the Leonardo numbers that are also the Jacobsthal numbers. In [9], 

Chalebgwa and Ddamulira studied all the Padovan numbers in the form of palindromic 

combinations of two distinct repdigits in the usual base. In [10], Daşdemir and Varol 

examined the Jacobsthal numbers that are expressible with the product of two Modified 

Pell numbers. The authors of [11] studied Fibonacci and Lucas numbers that are a product 

of their arbitrary terms. In [12], Ddamulira et al. conducted a solution process to 

determine whether Fibonacci or Pell numbers can be expressed as the product of two Pell 

or Fibonacci numbers. One of the key contributions of this work is that it represents one 

of the earliest studies to investigate whether the product of terms from two well-known 

integer sequences equals a term from another integer sequence. Additionally, this study 

provides valuable guidance on how to effectively apply several important lemmas and 

theorems presented within. In [13], Emin investigated Pell numbers that can be expressed 

as the sum of two Mersenne numbers. Next, the same author studied Mersenne numbers 

that are expressible as the summation of two Fibonacci numbers in [14] and powers of 

two written as the sums of the squares of two Lucas numbers in [15]. Unlike the studies 

referenced earlier, these works extend the exploration to include sums in exponential 

forms within integer sequences, inspired by the idea of investigating whether the sum of 

terms from two integer sequences equals a term from another sequence.  In [16], Erduvan 

and Keskin found all repdigits that are the products of two Fibonacci or Lucas numbers. 

In [17], Luca and Togbé studied all the Pell equations whose solutions are the usual 

Fibonacci numbers. In [18], Marques and Togbé proved that the sum of only the first 
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powers or square of two consecutive Fibonacci numbers can be a Fibonacci number. In 

[19], Chaves and Marques developed an investigation into the problem originally studied 

by Marques and Togbé [18] for generalized k-Fibonacci numbers. In [20], Sahukar and 

Panda searched all solutions to the Brocard-Ramanujan-type equations consisting of 

balancing-like and associated balancing-like numbers.  

 

To the best of our knowledge, the Pell numbers that can be expressible in terms of the 

product of two random Pell-Lucas numbers or vice versa, the Pell-Lucas numbers that are 

the product of two random Pell numbers, have not yet been investigated. In this paper, 

our problems are as follows: 

 

k m nP Q Q=                         (2) 

 

and  

 

k m nQ P P= ,                        (3) 

 

where 1k   and 1 m n  . There is a lack of mathematical investigation to provide 

fundamental insights regarding the solutions to the above-mentioned Diophantine 

equations. Further, it is noteworthy that the integer sequences on both sides of the above 

equations have the same algebraic equation, i.e., 2 2 1 0x x− − = . This is a factor that 

beclouds the solution within the framework of the usual method in the current literature. 

To address the issue, we put forth a mathematical approach to investigate the problems 

considered herein based on the Matveev's theorem [21, p. 1219] and Dujella-Pethő 

reduction lemma [22, p. 303]. 

 

 

2.  Basic tools 

 

This section presents essential definitions, some results, and the notations used from 

algebraic number theory. 

 

Let   be an algebraic number, and let  

 

( ) ( )( )0

1s

l
s

f x t x 
=

= −  

  

be its minimal polynomial of degree l , where  0 0t   and ( )s  is the sth conjugate of   

in  x . Furthermore, let ( )h   denotes the logarithmic height of the algebraic number 

 ; it is given by  

 

( ) ( ) ( )1

0

1

log log max ,1
s

l

s

h l t −

=

 
= + 

 
 . 

 

Several properties related to logarithmic height, which can also be found in numerous 

references such as [12, 21- 22], are presented below: 
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( ) ( ) ( )1 2 1 2 log 2 h h h   +  + + , 

( ) ( ) ( )1

1 2 1 2h h h    + , 

( ) ( )ph p h = . 

 

Let i  be an algebraic number in the real number field  for 1, 2,...,i l=  where the 

degree of   is D. Additionally, let 1 2, ,..., lb b b  represent nonzero rational integers. Now 

we will introduce the following notations: 

 
1 2

1 2 ... 1: lbb b

l  = −  and  1 2: max , ,..., lB b b b= . 

 

In the following, with the aid of the notations provided above, we will present the theorem 

published by Matveev in [21], which will be frequently used throughout this paper. 

 

Theorem 2. 1 (Matveev’s Theorem). Let  be non-zero, and let  be a real number 

field of degree D. Then,  

 

( ) ( ) ( )3 4.5 2

1 2log 1.4 30 1 log 1 log ...l

ll D D B A A A+  −     +  +      

 

where iA  are positive real numbers and satisfy ( ) max , log ,0.16j j jA Dh    for 

1, 2,...,j l= . 

 

To tighten the bounds when applying Theorem 2.1, the following lemma, developed by 

Dujella and Pethő as Lemma 5(a) in [22], is used. 

 

Lemma 2. 2 (Dujella and Pethő). Let M be a positive integer, 
p

q
 be a convergent of the 

continued fraction expansion of the irrational number   such that 6M q , and let A, B, 

and   be real numbers where A>0 and B>1. Define : q M q  = − , where  denotes 

the distance from the nearest integer. If 0  , then there is no solution to the inequality 

 

0 k n AB   − − +   

 

where , ,k   and   are positive integers with 

 

k M  and 
( )log /

log

Aq

B


  . 

 

 

3.  Main results 

 

The main result of the paper is given below: 
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Theorem 3. 1. Let k, m, and n be a non-zero integer such that 1k   and 1 m n  . Then, 

all the solutions to Equation (2) are given only by ( ) ( ), , 4,1,2k m n = , and all the solutions 

to Equation (3) are given only by ( ) ( ), , 1,1,2k m n = . 

 

Proof. Here, we will consider both target equations simultaneously but divulge details 

only for Equation (2). 

 

First, one can prove the following inequalities by the induction method: 

 
2 1n n

nP − −  , 1 2n n

nQ −   , and 
1 1n n

nQ 
− + − −

  .                         (4) 

 

From (4), we can write 

 
22 n mk

k n mP Q Q 
− − −−  = .                             (5) 

 

So, we get 

 

( ) ( ) ( )
log

2 log 2 log 2 2 4
log

k n m k n m n


 


−  − + +   − + +  , 

 

where we used the fact that m n  and 
log

1
log




 − . Using Binet's formulas in Equation 

(1), we can write  

 

( )( )

( )

( ) ( )

2 2

2 2 2 2 2 2 1

2 2 1 1 .

k k
m m n n

k m n

mk m n n m n m

n km n k

P Q Q
 

   

    

  

+ + −

− −

−
=  = + +

 −  =  +   −

+   − + −

 

 

Taking the absolute value of both sides under 4k n  and m n  after dividing the last 

equation by 
k , we conclude that 

 

2

2

1 2 2 2 2 2 2 2 2

1 1 2
6 2 6 2

k n m n m k n m k m n k k

m m

m m m

     

 
  

− + + − − − − − −

− −

−    + + +

 + =  + 
 

for 3m . So, we have 

 

1 1

2
, : 2 2 1k n m

m
 



− +   = − .                            (6) 

 

We can consider the case where 3l = , 1 = , 2 = , 3 2 2 = , 1b k= − ,  2b n m= + , 

and 3 1b = . Here, ( )1 2 3, , 2     and ( )2=  of degree 2D = . Further, 1 0 



 
EMİN A., DAŞDEMİR A. 

469 

 

. On the contrary, let us assume that 1 0 = . Then, it must be 2 2k n m  − − = . However, 

this leads to a contradiction because the square of 
k n m  − −  does not equal an integer, 

whereas the square of 2 2  is an integer. Therefore, it follows that 2 2k n m  − −  .  

 

On the other hand, to apply Matveev's the famous theorem to Equation (6), we compute 

the following: 

 

( ) ( ) ( )1 2 3

1 3
log , log 2

2 2
h h h   = = = , 1 2 logA A = = , and 3 3log 2A = , 

 

where ( )jh   denotes the logarithmic height of 
j  and 

jA ’s are a positive real number 

satisfying that  ( ) max , log ,0.16j j jA Dh    for 1,2,3.j =  Further, when 4B n= , 

then  max , ,1B k n m − + . In this case, according to Matveev's theorem, we can write 

 

( )1

12log( ) 1.57 10 1 log 4n −  +  .                         (7) 

 

Also, from Inequality (6), we have 

 

1log( ) log 2 logm −  .                      (8) 

 

From Inequalities (7) and (8), we deduce that 

 

( )121.79 10 1 log 4m n   + .                                          (9) 

 

Now, let us return to Equation (2). Using a procedure similar to the one used to derive 

Inequality (6), we can obtain the following: 

 

2 2

17
, : 2 2 1k n

mn
Q 



−   = − .                                  (10) 

 

So, we can write 

 

2log( ) log17 logn  − .                                      (11) 

 

Also, we can consider the case where 3l = , 1 = , 2 = , 3 2 2 mQ = , 1b k= − ,  

2b n= , and 3 1b =  this time. So, ( )1 2 3, , 2     and ( )2=  of degree 2D = . 

As can be seen, since 2 2k n

mQ  − =  is never satisfied, 2 0  . Then, we can write 

 

( ) ( )1 2

1
log

2
h h  = = , and 1 2 logA A = = . 
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Also, since 3  is a root of 2 28 mx Q− , we have ( ) ( )3 log 2 2 mh Q = . Further, using the 

fact that ( ) ( ) ( )1 2 1 2h h h   +  and 2 m

mQ   , we can conclude that 

 

( ) ( )3 log 2 2 log2 2 log log2 2 log2 log 3 logm mh Q Q m m  = = +  + +    

 

for all 1m . Therefore, we can write  

 

( ) ( ) ( ) ( ) 3 3 36 log 2 3 log max , log ,0.16m m Dh Dh    =   . 

 

So, we have that 3 6 logA m = . In addition,  max , ,1B k n −  for 4B n= . According 

to Matveev's theorem, we have 

 

( )12

2log( ) 3.99 10 1 log 4 .n m −   +                         (12) 

 

From Inequalities (11) and (12), we have 

 

( )( )124.53 10 1 log 4 .n n m  +                               (13) 

 

By comparing Inequality (13) with Inequality (9), we obtain 

 
283.77 10n   .                                    (14) 

 

By the same token, after making the same mathematical consideration for Equation (3), 

we can attain the following definition and results: 

 

( )( )3 11

3 32

2
, : 2 1, 4 , 6.25 10 1 log 4 ,k n m

m
k n m n 



− + −   = −     +   

 

14 27

4 4

3
, : 1, 1.6 10 , 6.7 10k n

mn
Q n m n 



−   = −      .  

 

As a result, we can outline the above results as follows. 

 

Lemma 3.2. Let the triple ( ), ,k m n  be a solution of Equation (2) or Equation (3). Then, 

4k n , 1 ,m n   and 283.77 10n   . 

 

As can be seen, we found that there are a finite number of solutions to our problems but 

the bounds are quite rough. To obtain a more suitable case, we will use the Dujella -Pethő 

reduction lemma. 

 

First, we take a look at the notation 

 

( )1 : log log log 2 2k n m  = − + + + .                      (15) 
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Then, we get 

 

1

1

2
: 1

m
e



 = −  . 

It is clear that 
1

2 1

2m
    for all 2m . Additionally, we know from Ddamulira et al. 

[10, p. 16] that 2 1xx e −  whenever 
1 1

,
2 2

x
 

 − 
 

. Therefore, we can write 

1

1

4
2 1

m
e



  −  . Considering this inequality together with (15) and dividing both 

sides by log  , we obtain 

 

( )
( )log 1/ 2 2log 5

log log m
k n m



  
− + +  . 

 

Then, according to the Dujella-Pethő reduction lemma for 291.51 10M =   ( )4M n k   

and 
log

log





= , 66th convergent of the continued fraction expansion of   is 

 

66

66

4385801545984325829409425472044

16236440296341214119673681014241

p

q
=  

 

and so 666 16236440296341214119673681014241M q = . From this, we have 

 

( )
66 66

log 1/ 2 2
: , 0.05,

log
q M q    


= −  = . 

 

So, taking : 5A = , :B = , and :k m=  into account, we deduce that 87m  . 

 

Now, consider 2 87m  . Then, we can write 

 

2

1
: log log log

2 2 m

k n
Q

 
 

 = − + −   
 

   

and 

 

2

2

17
: 1

n
e



 = −  .  

 

It is clear that 
2

17 1

2n
    for all 4n  . According to the above result of Ddamulira et 

al. [12], we get 
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( )log 1/ 2 2log 39

log log

m

n

Q
k n



  
− +  . 

 

Based on the Dujella-Pethő reduction lemma for 291.51 10M =   ( )4M n k   and 

log

log





= , 72th convergent of the continued fraction expansion of   is 

 

72

72

1344141359139361157238581738156910

4976073517847943047090943729455893

p

q
=  

 

and 726 4976073517847943047090943729455893M q = . As a result, for  

 2, ,87m  , we have 

( )
72 72

log 1/ 2 2
: , 0.008,

log

m

m m m m

Q
q M q    


= −  = . 

 

Considering : 39A = , :B = , and :k n=  it follows that 98n . 

 

Repeating the above approaches for 3  and 4 , we get that 96m   and 195n  . 

Organizing a looping algorithm in Mathematica© for Equations (2) and (3) over the range 

96m   and 195n   demonstrates the validity of Theorem 3.1. 

 

The outcomes of Theorem 3.1 bestow the following salient features additionally. 

 

Corollary 3. 3. Just as no Pell number can be written as the square of the Pell-Lucas 

number, no Pell-Lucas number can be written as the square of the Pell number. 

 

Proof. For the case where m n= , Equation (2) implies 2

k mP Q= . From [23] and [24], it is 

known that there is no perfect powers among Pell numbers, except for 21 1=  and 
213 169= . However, since 1 and 13 are not Pell-Lucas numbers, Equation (2) has no 

solution when m n= .  

 

Similarly, for the case where m n= , Equation (3) implies 2

k mQ P= . From [25], it is known 

that there are no perfect squares among Pell-Lucas numbers. Therefore, there is no integer 

k  that satisfies the equation 2

k mQ P=  when m n= . 

 

Corollary 3. 4. The only coincidence of Pell and Pell-Lucas numbers is 2 1 2P Q= = . 

 

Proof. We know from Theorem 3.1 that the only solution ( ), ,k m n  to the equation 

k m nQ P P=  is ( )1,1,2 . Substituting these values into the equation k m nQ P P= , we get 

1 1 2Q PP= , and from this, it is clear that the only solution is 1 2 2Q P= = . 
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4.  Conclusions 

 

In this study, we investigated the relationships between Pell and Pell-Lucas numbers 

through the lens of linear forms in logarithms of algebraic numbers. Specifically, we 

determined all Pell numbers that can be expressed as the product of two arbitrary Pell-

Lucas numbers, as well as all Pell-Lucas numbers that are the product of two arbitrary 

Pell numbers. Our findings demonstrated that there are no Pell or Pell-Lucas numbers that 

can be expressed as the square of another number in their respective sequences. 

Additionally, we identified all common terms shared by the Pell and Pell-Lucas 

sequences, further enriching the understanding of these fundamental integer sequences. 

 

An open question arising from this work is whether the product of a Pell number and a 

Pell-Lucas number can itself be a term in the Pell or Pell-Lucas sequence. Exploring this 

question could provide new insights into the structural properties and interrelations of 

these sequences. Future research might also consider generalizations to other related 

integer sequences or investigate higher-order recurrence relations under similar 

frameworks. 

 

 

References 

 

 

[1]  Birol, F., Koruoğlu, Ö., Şahin, R., Demir, B., Generalized Pell sequences related 

to the extended generalized Hecke groups 3,qH  and an application to the group

3,3H , Honam Mathematical J., 41, 1,  197-206, (2019). 

[2]  Mushtaq, Q., Hayat, U., Pell numbers, Pell-Lucas numbers and modular group, 

Algebra Colloquium, 14, 1, 97-102, (2007). 

[3]  Taş, N., Uçar, S., Özgür, N. Y., Pell coding and Pell decoding methods with some 

applications, Contributions to Discrete Mathematics, 15, 1, 52-66, (2020). 

[4]  Yılmaz, N., Çetinalp, E. K., Deveci, Ö., Öztaş, E. S., The quaternion-type cyclic-

Pell sequences in finite groups, Bulletin of the International Mathematical 

Virtual Institute, 13, 1, 169-178, (2023). 

[5]   Koshy, T., Pell and Pell-Lucas numbers with applications, Springer, New 

York, USA, (2014). 

[6]  Alekseyev, M. A., On the intersections of Fibonacci, Pell, and Lucas numbers, 

Integers, 11, 3, 239-259, (2011). 

[7]  Bravo, J. J., Luca F., Coincidences in generalized Fibonacci sequences, Journal 

of Number Theory, 133, 6, 2121-2137, (2013). 

[8]  Bensella, H., Behloul, D., Common terms of Leonardo and Jacobsthal numbers, 

Rendiconti del Circolo Matematico di Palermo Series 2, 73, 259-269, (2024). 

[9]  Chalebgwa, T. P., Ddamulira M., Padovan numbers which are palindromic 

concatenations of two distinct repdigits, Revista de la Real Academia de 

Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115, 108, (2021). 

[10]  Daşdemir, A., Varol, M., On the Jacobsthal numbers which are the product of two 

Modified Pell numbers, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 73, 

3, 604-610, (2024). 

[11]  Daşdemir, A., Emin, A., Fibonacci and Lucas numbers as products of their 

arbitrary terms, Eskişehir Technical University Journal of Science and 

Technology A - Applied Sciences and Engineering, 25, 3, 407-414, (2024). 



BAUN Fen Bil. Enst. Dergisi, 27(2), 464-474, (2025) 

 

474 

 

[12]  Ddamulira, M., Luca, F., Rakotomalala, M., Fibonacci Numbers which are 

products of two Pell Numbers, Fibonacci Quarterly, 54, 1, 11-18, (2016). 

[13]  Emin, A., Pell Numbers that can be Written as the Sum of Two Mersenne 

Numbers, Bulletin of International Mathematical Virtual Institute, 14, 1, 129-

137, (2024). 

[14]  Emin, A., Mersenne numbers that are expressible as the summation of two 

Fibonacci numbers, The Aligarh Bulletin of Mathematics, 43, 1, 65-76, (2024). 

[15]  Emin, A., On The Diophantine Equation 2 2 2am nL L+ = , Proceedings of the 

Bulgarian Academy of Sciences, 77, 8, 1128-1137, (2024). 

[16]  Erduvan, F., Keskin, R., Repdigits as products of two Fibonacci or Lucas numbers, 

Proceedings-Mathematical Sciences, 130, 1-14, (2020). 

[17]  Luca, F., Togbé, A., On the x-coordinates of Pell equations which are Fibonacci 

numbers, Mathematica Scandinavica, 122, 1, 18-30, (2018). 

[18]  Marques, D., Togbé, A., On the sum of powers of two consecutive Fibonacci 

numbers, Proceedings of the Japan Academy, Series A, Mathematical 

Sciences. 86, 10, 174-176, (2010). 

[19]  Chaves, A. P., Marques, D., A Diophantine equation related to the sum of squares 

of consecutive k-generalized Fibonacci numbers., Fibonacci Quarterly, 52, 1, 

70-74, (2014). 

[20]  Sahukar, M. K., Panda, G. K., Diophantine equations with balancing-like 

sequences associated to Brocard-Ramanujan-type problem, Glasnik 

matematički, 54, 2, 255-270, (2019). 

[21]  Matveev, E. M., An explicit lower bound for a homogeneous rational linear form 

in the logarithms of algebraic numbers. II., Izvestiya Mathematics, 64, 6, 1217-

1269, (2000). 

[22]  Dujella, A., Pethő, A., A generalization of a theorem of Baker and Davenport, The 

Quarterly Journal of Mathematics, 49, 195, 291-306, (1998). 

[23]  Emin, A., Ateş, F., On the exponential Diophantine equation 2 2 2am nPP + = , Asian-

European Journal of Mathematics, (2024). 

https://doi.org/10.1142/S1793557124501286 

[24]  Pethő, A., The Pell sequence contains only trivial perfects powers, Colloquia 

Mathematica Societatis Janos Bolyai, 60, 561-568, (1992). 

[25]  Bravo, J. J., Das, P., Guzman, S., Laishram, S., Powers in products of terms of 

Pell’s and Pell-Lucas sequences, International Journal of Number Theory, 11, 

4, 1259-1274, (2015). 
 

https://doi.org/10.1142/S1793557124501286

