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Öz 

Köprü, baraj ve kule gibi yapıların sağlamlığının 
denetlenmesi, sağlıklı ve güvenilir bir çevre ortamının 
oluşturulmasında kritik öneme sahiptir. Yüzey 
çatlaklarının tespiti, yapı sağlamlığının 
denetlenmesinde stratejik öneme sahiptir. Yapı 
yüzeylerindeki çatlakların hafif ve zararsız görünümü 
değişen zaman ve hava koşullarıyla daha tehlikeli hale 
gelebilmektedir. Yüzey çatlaklarının manuel 
yöntemlerle tespitinin gerçekleştirilmesi insan gücüne 
dayalı yüksek performans gerektirdiğinden ulaşılması 
zor ve riskli yapılarda düşük doğruluğa sebebiyet 
verebilmektedir. Derin öğrenme teknikleriyle yüzey 
çatlaklarının tespitinin gerçekleştirilmesi, manuel 
yöntemlerin yaratmış olduğu yüksek maliyet, zaman 
ve iş gücü problemlerine bir çözüm sunmaktadır. Bu 
çalışmada tek aşamalı nesne tespitini sağlayan You 
Only Look Once (YOLO) algoritmasının güncel 
versiyonlarının beton yüzeylerindeki çatlakları tespit 
performansları karşılaştırmalı şekilde analiz edilmiştir. 
Çalışmada, insansız hava aracı (İHA) görüntülerinden 
oluşan açık kaynak şeklinde sunulan CRACK veri seti 
kullanılmıştır. YOLOv9s 0.885 mean average precision 
(mAP) değeriyle en yüksek doğruluğa sahip 
algoritmadır. 

Abstract 

The inspection of the structural integrity of 
constructions such as bridges, dams, and towers is 
critical to creating a healthy and reliable environment. 
Detecting surface cracks is of strategic importance in 
monitoring structural integrity. Due to the high 
performance required for manual detection of surface 
cracks, it often leads to lower accuracy in hard-to-reach 
and risky structures, as it relies heavily on human 
effort. The seemingly mild and harmless appearance of 
surface cracks on structures can become more 
dangerous over time and under varying weather 
conditions. Detecting surface cracks using deep 
learning techniques has provided a solution to the high 
cost, time, and labor problems caused by manual 
methods. In this study, a comparative analysis was 
conducted on detecting cracks on concrete surfaces 
using the latest versions of the You Only Look Once 
(YOLO) algorithm, which enables single-stage object 
detection. The CRACK dataset, which is publicly 
available and consists of UAV images, was used in the 
study. It was concluded that the YOLOv9s algorithm 
achieved the highest accuracy with a mean average 
precision (mAP) of 0.885. 
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1. Giriş 

Kule, köprü, bina ve baraj gibi yapılarda beton yüzeyler meteorolojik koşullar ile zaman içerisinde 
yıpranmaya maruz kaldıkça yüzey üzerindeki hasarlar belirginleşmeye ve çevresel ortamda risk 
oluşturmaya başlamaktadır. Kullanılan düşük kaliteli inşaat malzemeleri, yapısal bozulma ve çürümeler 
yüzey hasar oluşumu ve gelişiminde olumsuz yönde rol oynamaktadır. Sağlıklı ve güvenli bir çevre 
sistemi oluşturulması amacıyla yapı hasarlarının hızlı ve otomatik şekilde tespit edilmesi önemlidir. Bunu 
gerçekleştirmek için insansız hava araçları (İHA) son zamanlarda öne çıkan teknoloji haline gelmiştir. 
Yüksek ve riskli yapılarda hasar tespiti çalışması yürütüldüğü esnada otomatik bir şekilde görüntü 
yakalanması yapının ilk durumunun değerlendirmesinde kritik bir role sahiptir. İHA ile yapının çeşitli 
açı ve perspektifinden yüksek kaliteli, detaylı ve yakın görüntülerini elde etmek hem daha uygun 
maliyetli hem de daha pratik bir yoldur. Buna ek olarak, çalışılması ve ulaşılması zor alanlarda, daha geniş 
alan tarayabilme özelliği sebebi ile İHA’lar yaygın şekilde kullanılmaktadır. 
 
İHA görüntülerinin tespit, izleme ve analiz çalışmalarında kullanımı uzun bir süre manuel yöntemlerle 
gerçekleştirilmiştir. Manuel yöntemler beraberinde getirdiği daha fazla insan gücü, zaman ve maliyet 
gereksinimi ile tespit ve denetleme çalışmalarında performansı ve doğruluğu negatif yönde 
etkileyebilmektedir. Manuel yöntemlerde operatörün sürekli olarak İHA’yı takip etmesi zaman 
bakımından olumsuz yönde etki oluşturmasıyla birlikte operatörün süreç içerisinde anlık dikkatinin 
dağılması da hatalı nesne tespitine ve yüksek maliyete sebep olabilmektedir [1]. Araştırmacılar, görsel 
incelemelerin otomatik bir şekilde gerçekleştirilmesinin geleneksel insan gücü barındıran yöntemlerin 
oluşturduğu teknik sınırlamalarını azaltabilmesi sebebiyle nesne tespiti çalışmalarında bilgisayarlı görü 
tabanlı sistemlerin önemi üzerinde durmaktadır [2]. Bu sebeple, son zamanlarda beton yüzeylerdeki 
çatlakların otomatik bir şekilde tespit edilebilmesi için derin öğrenme tabanlı algoritmalar geliştirilmeye 
başlanmıştır. Çatlak tespiti çalışmaları doğrultusunda kullanılan her bir görüntü pikseline dayalı çeşitli 
gradyan özellikleri tasarlanmakta ve bir görüntü pikselinde çatlak olup olmadığına dair belirleyici ikili 
bir sınıflandırıcı kullanılmaktadır. Yerel ikili desen (YİD) tabanlı ve Gabar filtresine dayalı yaklaşımlar 
çatlak tespitine yönelik çalışmalarda kullanılmakta ve önerilmektedir [3].  
 
İnsansız hava araçları tarafından elde edilen görüntülerde derin öğrenmeye dayalı algoritmaların 
kullanımı, nesne tespiti, segmentasyonu, sınıflandırılması, denetlenmesi ve izlenmesi gibi görev 
aşamalarının yüksek doğruluk ve performansla gerçekleştirilmesini sağlamaktadır. Derin öğrenme 
teknikleriyle nesne tespiti yöntemlerinde, görüntünün tek bir geçişiyle gerçek zamanlı nesne tespitini 
sağlayan YOLO algoritması (You Only Look Once), bölgesel öneri ağı desteğiyle tahmini nesne konumu 
oluşturan Faster R-CNN ( Region- based Convolutional Neural Network) [5], nesne tespitinine ek olarak 
segmentasyon görevini de tamamlayan Mask R-CNN [6] ve bir başka tek geçişli algoritmaya sahip nesne 
tespiti ve sınıflandırma algoritması olan SSD (Single Shot Multibox Detector) [7] gibi algoritmalar 
bulunmaktadır. Bu algoritmaların birbirlerine göre avantajları ve dezavantajları bulunmaktadır. Faster R-
CNN'nin algılama sınırlayıcı kutuları, aynı veri seti ve görüntü üzerinde Mask R-CNN'in sınırlayıcı 
kutularına göre daha fazladır. Bu durum, ortak eğitim yöntemi nedeniyle sınırlayıcı kutu regresyonunda 
ortaya çıkan problemlerden kaynaklanmakta olup, Faster R-CNN'nin performansının daha yüksek 
olmasını sağlamaktadır [9]. Faster R-CNN, önce özellik haritasını oluşturan ve sonrasında bu haritayı ilgi 
alanı bölgelerine gönderen bir Bölge Öneri Ağı (RPN) kullanır. Daha sonra bu bölgelerde nihai 
sınıflandırma ve sınırlayıcı kutu regresyonu yapılır. Bu sebeple, Faster R-CNN doğruluk bakımından 
üstün bir algılama performansı gösterir. Ancak, Faster R-CNN’in tek katmanlı özellik eşlemesi, küçük 
hedef nesnelerin algılanmasında etkili olmadığından, algılama verimliliği açısından tek aşamalı 
dedektörlere göre daha düşük performans sergiler [10]. Xu vd. (2022)’ ne göre Faster R-CNN'nin algılama 
sınırlayıcı kutuları, aynı veri seti ve görüntü için Mask R-CNN’in algılama sınırılayıcı kutularından daha 
fazla olup, ortak eğitim yönteminin sebep olduğu sınırlayıcı kutu regresyonundaki problemlerden dolayı 
Faster R-CNN’nin performansı daha yüksektir. Faster R-CNN, gerçek zamanlı nesne tespitinde sınırlı 
performans ve doğruluğa sahip olsa da, ağır bölge tabanlı aşamasından dolayı gömülü platformlarda 
kullanıma uygun değildir. Buna karşın, YOLO, tek bir sinir ağı ile tespit aşamasını optimize ederek, 
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genelleştirilebilir uçtan uca bir algoritma ile sınıflandırma ve tahmin aşamalarında daha fazla esneklik 
sunmaktadır [8].  
 
Bu çalışmada derin öğrenme tekniklerinin beton yüzey çatlakları tespitinde kullanımı karşılaştırmalı 
şekilde analiz edilmiştir. Uygulama aşamasında YOLOv5 versiyonları, YOLOv8s ve YOLOv9s modelleri 
CRACK veri seti ile eğitilerek test edilmiş ve sonuçları birbirleriyle karşılaştırılmıştır. Karşılaştırma 
sonucunda modellerin performansları ve hassasiyet doğrulukları değerlendirilmiştir. 
 

2. Literatür Araştırması 

Literatürde derin öğrenme teknikleriyle İHA görüntülerinden beton yüzeyi çatlaklarının tespit edilmesi 
konusunda birçok çalışma mevcuttur. Woo vd. [1], İHA ve derin öğrenme tekniklerini kullanarak beton 
bir binanın dış yüzeyindeki yapısal çatlakları tespit etmek için bir yöntem önermektedir. Yöntem, İHA 
görüntüleri, nokta bulutu verisi ve tasarım çizimlerini birleştirerek yapısal çatlakları belirlemektedir. 
Süreç veri temini, ortofoto görüntü üretimi, derin öğrenme tabanlı çatlak tespiti, tasarım çizimleriyle yapı 
analizi ve çatlakların tanımlanması adımlarından oluşmaktadır. Çalışmada SDNET2018 ve İHA ile elde 
edilen görüntülerle oluşturulan veri seti kullanılmıştır ve YOLOv5 modeliyle çatlak tespiti 
gerçekleştirilmiştir. Modelde ortalama hassasiyet değeri (mAP) 0.46 değerindedir. Silva ve Lucena [12], 
beton yüzeylerdeki çatlakları tespit etmek amacıyla makine öğrenmesi tabanlı bir model geliştirmeyi 
hedeflemektedir. Modelin İHA ile entegre edilerek beton altyapı incelemelerinde otomasyon seviyesinin 
arttırılması amaçlanmaktadır. Çatlak tespiti için evrişimsel sinir ağlarına (ESA) dayanan derin öğrenme 
algoritması kullanılmış ve beton yüzeylerdeki çeşitli koşulları dikkate alacak şekilde geliştirilmiştir. 
Modelin doğruluğu, öğrenme oranı, düğüm sayısı ve veri seti boyutu gibi parametreler üzerinde yapılan 
48 deneyle test edilmiştir. Çalışma sonucunda %92.27 doğruluğa ulaşılmıştır. Yang vd. [13], yapısal 
güvenlik açısından kritik olan yüzey çatlaklarının tespiti için derin öğrenme algoritmalarını 
incelemektedir. 1024 x 1024 boyutlarında 2000 çatlak görüntüsü toplanmış, ancak veri yetersiz olduğu için 
görüntü artırımı uygulanmıştır. 416 x 416 boyutlarında 1600 eğitim ve 200 test görüntüsü içeren bir veri 
seti oluşturulmuş, görüntüler çatlak konumu ve sınıfı ile etiketlenmiştir. AlexNet, VGGNet13 ve ResNet18 
modelleri kullanılarak çatlak tespiti yapılmış ve performansları YOLOv3 modeliyle karşılaştırılmıştır. 
Zhang vd. [17], köprülerdeki çatlakların manuel yöntemlerle tespitinin denetçilerin deneyimine dayalı 
olması nedeniyle yanlış değerlendirmelere yol açabileceğini vurgulayarak, çatlakların görüntü üzerinden 
otomatik tespiti ve izlenmesi için dört algoritmayı karşılaştırmıştır. İncelenen algoritmalar The Fast Haar 
Transformation, The Fast Fourier Transformation, Sobel Algoritması ve Canny Algoritması'dır. 1024 x 
1024 piksel boyutlarında 1500 görüntüden oluşan bir veri seti kullanılmış ve çatlaklar etiketlenmiştir. 
Çalışma sonucunda %89.16 hassasiyet ve %91.16 geri çağırma değeri elde edilmiştir.  Li vd. [18], baraj 
yüzeylerindeki çatlakların tespitini kolaylaştırmak amacıyla İHA ve YOLOv8'e dayalı bir derin öğrenme 
yöntemi geliştirmeyi hedeflemiştir. YOLOv8, gerçek zamanlı performansı ve baraj yüzeyi arka planının 
basitliği nedeniyle tercih edilmiştir. Çalışmada, 56.000'den fazla beton çatlak görüntüsü içeren 
SDNET2018 veri seti kullanılmıştır. Çalışma kapsamında YOLOv8 algoritması ile  %95.2 hassasiyet, %95.8 
geri çağırma ve %95.5 F1 skor elde edilmiştir.  Gupta ve Dixit [19], yapıların çatlaklarının manuel tespiti 
yerine, derin öğrenme tabanlı yöntemlerle daha hızlı, maliyet etkin ve doğru bir şekilde tespit edilmesini 
amaçlamıştır. Araştırmacılar, açık erişim veri setlerinden toplam 22.000 görüntü (11.000 çatlaklı, 11.000 
çatlaksız) toplamış ve bu görüntülerin çözünürlüklerini 256 x 256 piksel olarak ayarlamışlardır. İnce 
çatlakların daha iyi tespiti için kontrast sınırlı adaptif histogram eşitleme (CLAHE) yöntemi kullanılmış 
ve veri setine kaydırma, döndürme ve kesme gibi veri arttırma işlemleri uygulanmıştır. VGG16, VGG19 
ve ResNet50 modelleri transfer öğrenme yöntemiyle eğitilmiş ve performansları karşılaştırılmıştır. 
Çalışma sonucunda, ResNet50 ile %99,2, VGG16 ile %97,2 ve VGG19 ile %97,3 doğruluk elde edilmiştir.  
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3. Veri ve Yöntem 

3.1. Veri seti 

Beton yüzeylerindeki çatlakların belirlenmesi için farklı veri setleri bulunmaktadır. Bu çalışmada Google 
Dataset Search aracılığı ile Roboflow üzerinde oluşturulmuş ve açık kaynak CRACK veri seti [14] 
kullanılmıştır (Şekil 1). Görüntü sayısı nispeten az olsa da, farklı çatlak yapıları iyi bir şekilde temsil 
edilmiştir. Böylece eğitim esnasında çatlakların yeterli şekilde tanınması için veri sağlanmaktadır. Crack 
veri setinde çatlaklı ve çatlaksız olarak toplamda 1551 görüntü bulunmaktadır. Veri setinin YOLO 
mimarilerinde eğitilme aşamasında aşırı uyumunu önlemek adına ön işleme adımları Roboflow 
platformu üzerinde gerçekleştirilmiştir. Veri artırma yöntemi olarak saat yönü ve tersi yönünde 
döndürme, ± 15° döndürme, pozlama ve gürültü ekleme yöntemleri uygulanarak 2929 görüntü sayılı veri 
seti oluşturulmuştur. Görüntülere döndürme ve gürültü ekleme tekniği ile testi gerçekleştirilecek modele 
daha fazla nesne örneği sağlanmıştır. Görüntüler %70 eğitim, %10 doğrulama ve %20 test seti olacak 
şekilde bölünmüştür. Veri setindeki görüntüler 640 x 640 piksel boyutlarında oluşturulmuştur. Veri seti, 
isimler, sınıf sayısını ve veri seti hakkında bilgi içeren konfigürasyon dosyasına sahip YOLOv5, YOLOv8 
ve YOLOv9 algoritmalarına uygun formatta modellerde test edilmek üzere hazır hale getirilmiştir. 
 

     
Şekil 1. CRACK veri seti beton çatlak görüntüsü örnekleri [14]. 

 

3.2. Yöntem 

Çalışma kapsamında, beton yüzeyi çatlaklarının tespitini gerçekleştirmek amacıyla son zamanlarda 
yaygın bir şekilde kullanılmakta olan derin öğrenme tekniklerinden biri olan YOLO mimarileri 
kullanılmıştır. YOLOv5’in eğitilmiş olan beş modeli: nano (n), küçük (s), orta (m), büyük (l) ve ekstra 
büyük (x) modelleri, YOLOv8s ve YOLOv9s modelleri CRACK veri setinde test edilmiştir. 
 

3.2.1. You Only Look Once (YOLO) Algoritması 

YOLO [4], nesne tespiti için kullanılan derin öğrenme tabanlı bir algoritmadır. Bu algoritma, ilgili 
görüntüyü tek seferde sinir ağından geçirerek, tespit edilen nesnenin koordinatlarını belirlemekte ve 
nesnenin hangi sınıfa ait olduğunu tahmin etmektedir. YOLO, nesne tespitini bir regresyon problemi 
olarak ele almaktadır [20]. YOLO nesnelerin konumlarını, kategorilerini ve ilgili güven puanlarını 
hesaplayarak nesneleri gerçek zamanlı olarak tespit edebilmektedir. Gerçek zamanlı nesne tespiti 
sağladığı için, YOLO yüksek hız ve doğruluk sunmaktadır [15]. Çalışma prensibi, görüntüleri ızgaralara 
bölerek her hücredeki nesneleri potansiyel sınıflarına atamaktır. İşlemi tek bir sinir ağı ile yürüten YOLO, 
hızlı performansı nedeniyle yüksek hassasiyet gerektirmeyen işler için geniş ölçüde kullanılmış ve derin 
öğrenme dünyasında popüler bir algoritma haline gelmiştir. 2015 yılında geliştirilen ilk YOLO 
modelinden bu yana, farklı amaçlar ve çalışma koşullarına uyum sağlayabilmesi için çeşitli versiyonları 
oluşturulmuştur. Bu çalışma kapsamında, beton yüzeyindeki çatlakları tespit etmek için performansları 
değerlendirilen ve karşılaştırılan YOLO algoritmalarından YOLOv5 [16] (versiyonlar: YOLOv5s, 
YOLOv5x, YOLOv5n, YOLOv5m, YOLOv5l), YOLOv8s [16] ve YOLOv9s [21] modellerinin özelliklerine 
sırasıyla yer verilmiştir (Çizelge 1). 
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Çizelge 1.  Modellerin öğrenilebilir parametre sayıları. 

Model Parametre Sayısı 

YOLOv5s 7.24M 

YOLOv5x 86.2M 

YOLOv5n 1.8M 

YOLOv5m 20.9M 

YOLOv5l 46.1M 

YOLOv8s 11.1M 

YOLOv9s 7.3M 

 
YOLO algoritmasının çalışma prensibi, tek bir sinir ağında uçtan uca eğitim stratejisiyle beraber nesnelerin 
konumunu ve sınıfını görüntünün tek bir geçişinde tespit etmektir [8]. ESA prensibindeki görüntü 
üzerinde filtre kaydırma yöntemi yerine YOLO algoritması, görüntüyü bir dizi S × S ızgara hücresine 
bölerek nesne tespiti aşamasını başlatmaktadır. Bölünen her hücrede nesne var ise sınırlayıcı kutu ve 
nesnenin sahip olduğu sınıf olasılık puanı hesabı yapılmaktadır. Bu sınırlayıcı kutu nesne ile ilgili 5 
parametre bilgisini içermektedir. Sınırlayıcı kutunun merkez noktasının hücreye göre olan yatay ve dikey 
konumları (x, y), genişliği (w), yüksekliği (h) ve bu sınırlayıcı kutunun belirli bir nesneyi içerme olasılığına 
bağlı oluşturduğu güven skoru değeri sınırlayıcı kutunun parametreleridir. Güven skoru C, Denklem 
2’deki ızgara hücresinde ifade edilen sınıf olasılığını ve tahmin edilen sınırlayıcı kutunun temel gerçeğe 
göre uyum derecesine göre hesaplanmaktadır [8]. 
 
Denklem 1’de verilen eşitlikte P(Classi|Object) bir sınıfın koşullu olasılığını ifade etmektedir. Hücredeki 
sınırlayıcı kutu ızgara hücresinde nesneler bulunuyorsa Pr(Object) = 1, bulunmuyorsa Pr(Object) = 0 

olarak ifade edilmektedir.   IOUpred 
truth  ise temel doğruluk kutusu (A) ve tahmin edilen sınırlayıcı kutunun 

(B) alanları arasındaki kesişimin birleşime oranını ifade etmektedir. Sınırlayıcı kutuları ızgara 
hücresindeki nesnelere atama işlemi, sınırlayıcı kutunun sınıfa özgü belirlediği güven skoru eşik değerine 
göre yapılmaktadır. Ek olarak, ızgara hücresinde gereksiz sınırlayıcı kutu tahmini ortadan kaldırmak için 
maksimum olmayan bastırma yöntemi kullanılmaktadır. YOLO algoritması toplam kare hatasının çok 
parçalı kayıp fonksiyonunu işleme alarak tespit işlemini optimize etmektedir [8]. 
 

C = P(Classi|Object)Pr(Object) ∗ IOUpred
truth (1) 

 

Intersection over Union (IoU)pred 
truth =  

A ∩ B

A ∪ B
 (2) 

 
Denklem 3’te fonksiyon, L kaybını, yerelleştirme ve sınıf olasılığı ile ilgili beş terim ile ortaya koymaktadır. 
Denklemin ilk iki terimi koordinat kayıpları ve sınırlayıcı kutuların boyutlarına, üçüncü ve dördüncü 
terimi bir nesnenin tespit edilmesinin güvenirliğini tahmin etmeye, beşinci terim ise her bir ızgara 
hücresindeki nesnenin sınıflandırılmasına atıfta bulunmaktadır.  
 

𝐿 = 𝛽coord ∑  

𝑆×𝑆

𝑖=0

∑  

𝐵

𝑗=0

1𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥̂𝑖)

2 + (𝑦𝑖 − 𝑦̂𝑖)
2] + 𝛽coord ∑  

𝑆×𝑆

𝑖=0

× ∑  

𝐵

𝑗=0

1𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √𝑤̂𝑖)
2

+ (√ℎ𝑖 − √ℎ̂𝑖)

2

] + ∑  

𝑆×𝑆

𝑖=0

× ∑  

𝐵

𝑗=0

1𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

+  noobj ∑  

𝑆×𝑆

𝑖=0

∑  

𝐵

𝑗=0

1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

+ ∑  

𝑆×𝑆

𝑖=0

1𝑖
𝑜𝑏𝑗

∙ ∑  

𝑐∈ classes 

(𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐))2

 (3) 

Denklem 3‘te 1𝑖
𝑜𝑏𝑗

 i’inci ızgara hücresinin bir kısmını içerdiğini göstermektedir.  1𝑖𝑗
𝑜𝑏𝑗

 i’inci ızgara 

hücresine yönelik tahmini gerçekleştiren j’inci sınırlayıcı kutuyu ifade etmektedir. 𝑥𝑖, 𝑦𝑖 , 𝑤𝑖 ve ℎ𝑖 o ızgara 
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hücresi i için sınırlayıcı kutunun koordinatlarını, genişliğini ve yüksekliğini ifade etmektedir. 𝐶𝑖 ve 𝑝𝑖(𝑐) 
parametreleri ise i'inci ızgara hücresindeki nesne varlığını ve sınıf olasılığını, B sınırlayıcı kutuların 
sayısını, β koordinatı koordinat kaybının ağırlığını ve noobj parametresi ise nesneleri olmayan sınırlayıcı 
kutular için kaybın ağırlığını ifade etmektedir [8]. 
 

3.2.2. YOLOv5 Modeli 

Ultralytics tarafından algılama doğruluğu ve hız açısından önceki modellere göre geliştirilen YOLOv5 
modeli, diğer YOLO modelleri gibi girdi, omurga, boyun ve kafa bölümlerinden meydana gelmektedir. 
Girdi tarafında, her bir eğitim verisi grubu, veri kümesini zenginleştirmek için rastgele ölçeklendirme, 
rastgele kırpma, rastgele döndürme ve Mosaic veri genişletme işlemleri gerçekleştirebilen bir veri 
yükleyici aracılığıyla iletilmektedir [10]. Girdi katmanı görüntüyü dilimleme ve derinlemesine birleştime 
özelliğini taşımaktadır [11]. Omurga kısmında, gradyan akışını farklı yollara bölen ve her yolda yalnızca 
belirli bir kısmın hesaplanmasını sağlayan CSPDarknet53 modeli kullanılmaktadır. Bu, aşamalar arası 
hiyerarşik birleştirme ile hesaplama çabasını azaltmakta ve özellik çıkarma kapasitesini artırmaktadır [10]. 
Omurga, görüntü özelliği çıkarımı için Çapraz Aşamalı Kısmi (CSP) ağı ve Uzamsal Piramit Havuzu'nu 
(SPP) derleme özelliğine sahiptir [11]. Boyun kısmı, çok ölçekli özellik füzyonu için Path Aggregation 
Feature Pyramid Network (PAFPN) özellik piramit yapısını kullanarak, güçlü semantik özellikleri ve sığ 
konum bilgilerini yüksek seviyelerde birleştirmektedir. "Yukarıdan aşağıya + aşağıdan yukarıya" iki 
kanallı bir yaklaşım benimsenmektedir. Kafa bölümünde, tam IoU (CIoU) kayıp fonksiyonu kullanılarak, 
tekrar tespit çerçevesinin örtüşme alanı, merkez mesafesi ve tahmin çerçevesinin hedef çerçeveye en boy 
oranı gibi faktörler dikkate alınmaktadır. Bu uygun kayıp fonksiyonu, ağın öğrenme etkisini ve hızını 
artırmaktadır [10]. YOLOv5'in performansı, hiperparametre optimizasyonu ve deney takibi entegre 
edilerek Ultralytics tarafından iyileştirilmiştir [11]. YOLOv5’in genel ağ yapısı Şekil 2’de sunulmuştur. 

 
Şekil 2. YOLOv5'in genel yapısı [11]. 
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YOLOv5s modeli, nesne tespitini tek bir geçişte gerçekleştiren, az sayıda parametreye sahip olduğu için 
küçük ve hızlı bir model olarak öne çıkan YOLOv5 algoritmalarından biridir. Düşük parametre sayısı 
nedeniyle hesaplama gereksinimi de düşüktür. Ancak, bu özellikleri nedeniyle yüksek hassasiyet 
gerektiren çalışmalarda genellikle beklenen performansı verememektedir. YOLOv5x modeli, büyük ve 
karmaşık veri setleri için daha uygun olan, tek geçişte nesne tespiti sağlayan ve yüksek hız ile doğruluk 
sunan YOLOv5 algoritmalarından biridir. Çok sayıda parametre içermesi ve büyük, karmaşık bir yapıya 
sahip olması nedeniyle, detaylı nesnelerin algılanmasında yüksek performans gösterir. Ancak, bu yüksek 
parametre sayısı, modelin eğitim süresini uzatarak olumsuz yönde etkileyebilir. YOLOv5n, YOLOv5m ve 
YOLOv5l algoritmaları, daha önce eğitilmiş YOLOv5 modellerinin üzerine inşa edilmiş, geliştirilmiş ve 
farklı hiperparametreler ile model boyutlarına sahip varyantlardır. Bu algoritmalar, farklı veri setleri ve 
amaçlar için uygun doğruluk ve hassasiyet seviyeleri sunmak üzere tasarlanmıştır. Diğer YOLOv5 
mimarileri gibi, tek bir sinir ağıyla tek geçişte nesne tespiti gerçekleştirdikleri için, gerçek zamanlı nesne 
tespiti alanında yaygın olarak kullanılmaktadırlar. 
 

3.2.3.  YOLOv8 Modeli 

YOLOv8 [22] algoritması, önceki YOLO sürümlerinin avantajlarından yararlanarak daha yüksek hız, 
doğruluk ve hassasiyet sağlamak amacıyla geliştirilen, YOLO’nun en son versiyonlarından biridir. 
YOLOV8, algılama, segmentasyon ve sınıflandırma için kullanılan beş ayrı modele sahiptir. Bu 5 model, 
s, n, l, x ve m olarak adlandırılmaktadır. YOLOv8n, en hızlı ve en düşük doğruluğa sahip modelken, 
YOLOv8x ise en yavaş ama en yüksek doğruluğa sahip model olarak öne çıkmaktadır. Modeller 
arasındaki temel fark, boyutları ve bu boyutların performansa etkisidir. YOLOv8’in ağ detayları Şekil 3’te 
gösterilmiştir. 
 

 
Şekil 3. YOLOv8'in genel yapısı [11]. 
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3.2.4. YOLOv9 Modeli 

YOLOv9 [22], Programlanabilir Gradyan Bilgisi (PGI) ve Genelleştirilmiş Verimli Katman Toplama Ağı 
(GELAN) (Şekil 4) yeni özellikler sunarak gerçek zamanlı nesne tespitinde ilerlemiş bir model ortaya 
koymaktadır. Bu model, MS COCO veri setinde verimlilik, doğruluk ve uyarlanabilirlik açısından yeni 
ölçütler sunarak son derece önemli gelişmeler göstermektedir. YOLOv9 projesi, Ultralytics ve YOLOv5 
tarafından sağlanan kod ve mimariler üzerinde geliştirilerek inşa edilmiştir. PGI ve çok yönlü GELAN 
mimarisi (Şekil 4), modelin öğrenme kapasitesini ve algılama süreci boyunca önemli bilgilerin 
korunmasını sağlayarak doğruluk ve performans açısından diğer modellere göre üstünlük 
göstermektedir. YOLOv9 modelinin temel yenilikleri Bilgi Darboğazı İlkesi ve Tersinir İşlevlerin yenilikçi 
kullanımı, model mimarisinin merkezinde yer almakta ve YOLOv9'un yüksek verimlilik ve doğruluğa 
sahip olmasını sağlamaktadır. 
 

 
Şekil 4. GELAN Mimarisi [22]. 

 

4. Uygulama 

Uygulama Python proglamlama dilinde Google Colaboratory platformu üzerinde gerçekleştirilmiştir. 
Google Colaboratory ücretsiz şekilde 12.7 GB RAM, Tesla T4 GPU ve 78 GB depolama alanı sağlamaktadır. 
Test edilen modeller 100 epok ve 16 batch size olacak şekilde eğitilmiştir. YOLOv5 (ve versiyonları), 
YOLOv8s ve YOLOv9s algoritmaları optimum parametreler ile CRACK veri seti üzerinde eğitilmiş ve test 
edilmiştir. Eğitim parametreleri donanım özelliklerine bağlı olarak en iyi metrik değerleri elde edilecek 
şekilde belirlenmiştir. 
 
Deney ortamında gerçekleştirilen model testleri arasından en iyi modeli seçebilmek için hassasiyet (P), 
geri çağırma (R) ve ortalama hassasiyet (mAP) değerlerine ihtiyaç duyulmaktadır. P hassasiyet, doğru 
tahmin edilen nesnelerin sayısının tahmin edilen toplam nesne sayısına bölünmesiyle elde edilmektedir. 
Denklem 4’te doğru pozitif (DP) değeri modelin doğru bir şekilde tespit ettiği nesneleri, yanlış pozitif (YP) 
değeri ise modelin yanlış bir şekilde tespit ettiği yani aslında olmayan nesneleri ifade etmektedir. Geri 
çağırma değeri ise, gerçek nesnelerden kaç tanesinin doğru bir şekilde tespit edildiğini ölçmektedir. 
Denklem 5’te yanlış negatif (YN) değeri modelin tespit edemediği aslında var olan nesneleri ifade 
etmektedir. Modelde mAP değeri ise tüm sınıflara karşılık gelen hassasiyet değerinin (AP) değerlerinin 
ortalamasıdır. Modelin genel algılama performansını ölçmek için kullanılmaktadır.  F1 skoru ise 
hassasiyet ve geri çağırmanın harmonik ortalamasına karşılık gelmektedir. F1 skoru, hassasiyet ve geri 
çağırma arasındaki dengeyi ölçmektedir. Bir modelin yüksek hassasiyete sahip olması, tespit edilen 
nesnelerin büyük çoğunluğunun doğru olduğu anlamına gelmektedir. Ancak, bu model aynı zamanda 
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birçok nesneyi kaçırabilmektedir (düşük geri çağırma). Benzer şekilde, yüksek geri çağırmaya sahip bir 
model, doğru olan çoğu nesneyi tespit edebilmektedir, ancak aynı zamanda birçok yanlış tespit de 
yapabilmektedir (düşük hassasiyet). Değerlendirme metrikleri şu şekilde hesaplanmaktadır: 
 

Hassasiyet =  
Doğru Pozitif (DP)

Doğru pozitif (DP) + Yanlış Pozitif (YP)
 (4) 

 

Geri Çağırma =  
Doğru Pozitif (DP)

Doğru pozitif (DP) + Yanlış Negatif (YN)
 (5) 

 

F1 skor = 2 x 
(Hassasiyet x Geri çağırma)

(Hassasiyet + Geri çağırma)
 (6) 

 

5. Bulgular ve Tartışma 

Deney kapsamında kullanılan CRACK veri setinden test için belirlenen 580 çatlaklı çatlaksız görüntüde 
YOLOv5 versiyonları, YOLOv8s ve YOLOv9s modellerin test edilmiştir. 580 test görüntüsü içerisinde 710 
adet çatlak etiketlenmiştir. Elde edilen hassasiyet (P), geri çağırma (R), F1-skor ve mAP değerleri Çizelge 
2’de verilmiştir.  
 
CRACK veri setinin YOLOv5 versiyonları (s, x, l, m, n), YOLOv8s ve YOLOv9s modellerindeki test 
işleminden sonra elde edilen değerler sonucunda en yüksek hassasiyet (P) ve geri çağırma değerleri 
sırasıyla 0.885 ve 0.776 ile YOLOv9s modelinde elde edilmiştir. En yüksek ortalama hassasiyet değerine 
(mAP) sahip model ise 0.836 değeri ile YOLOv9s modelidir. En yüksek hassasiyet (P) değerinin YOLOv9s 
modelinde elde edilmesi, YOLOv9s modelinin tespit edilen nesnelerde sayıca en fazla doğru nesne tespiti 
gerçekleştirdiğini ortaya koymaktadır. Bu durum, YOLOv9s modelinin nesneleri tespit etmedeki 
hassasiyetini ve detaycılığını ön plana çıkarmaktadır. Ortalama hassasiyet değerine göre de YOLOv9s 
modeli en başarılı algoritma olmuştur. Beton çatlak görüntülerinden oluşturulan veri seti, yakın 
mesafeden çekilmiş ve farklı nesne türlerini içermeyen görüntülerden meydana gelmektedir. Hassasiyet 
bakımından YOLOv5x algoritması içerdiği yoğun parametre özellikleriyle birlikte daha yüksek 
performans sağlama kabiliyetine sahip olmasına rağmen bu veri setinde YOLOv9s ortalama hassasiyet 
bakımından daha iyi performans göstermesi detay içermeyen veri setleri için yoğun parametre ihtiyacının 
gerekmediği ve en hızlı olan algoritmanın bu veri setleri için daha uygun olduğunu çıkarımını 
desteklemektedir. Algoritmalara ait tahmin görselleri Şekil 5, Şekil 6 ve Şekil 7’de sunulmuştur. Her bir 
algoritmanın hata matrisleri Şekil 8’de gösterilmiştir.  
 

Çizelge 2.  CRACK veri setinin YOLOv5, YOLOv8 ve YOLOv9 model test sonuçları. 

Model Hassasiyet Geri Çağırma F1 skor mAP50 mAP50 - 95 

YOLOv5s 0.805 0.765 0.784 0.780 0.587 

YOLOv5x 0.860 0.752 0.802 0.810 0.640 

YOLOv5n 0.809 0.764 0.782 0.802 0.589 

YOLOv5m 0.833 0.757 0.793 0.797 0.628 

YOLOv5l 0.852 0.745 0.795 0.785 0.615 

YOLOv8s 0.806 0.759 0.782 0.782 0.603 

YOLOv9s 0.885 0.776 0.827 0.836 0.678 
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Şekil 5. Nesne tespitinin görsel sonuçları YOLOv5. 

 

     

     
Şekil 6. Nesne tespitinin görsel sonuçları YOLOv8s. 
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Şekil 7. Nesne tespitinin görsel sonuçları YOLOv9s. 

 

     
(a)                                (b)                                   (c)                               (d) 

 

     
(e)                                  (f)                                 (g) 

Şekil 8. Her bir yönteme ait hata matrisi. (a) YOLOv5s; (b) YOLOv5x; (c) YOLOv5n; (d) YOLOv5m; (e) 
YOLOv5l; (f) YOLOv8s; (g) YOLOv9s. 

 
Yanlış tespit edilen veya hiç tespit edilemeyen çatlaklar da bulunmaktadır. Şekil 9’da yanlış ve eksik 
tahminler için örnek görseller sunulmuştur. YOLOv5x ve YOLOv8s modelleri derin çatlakları tespit 
edebilmiş ancak yatay şeklinde devam eden ince çatlağı tam olarak tespit edememiştir. Bununla beraber 
derin ve belirgin çatlakların tespit edilemediği durumlar da bulunmaktadır. YOLOv5m ve YOLOv5s 
modelleri derin çatlakları tespit edememiştir. Bazı durumlarda bir çatlak bölünerek farklı çatlaklarmış gibi 
tespit edilmiştir. Özellikle YOLOv5s yapısı gereği basit ve küçük nesneleri tespit etmede daha başarılı 
olduğundan bu tip çatlakları tespit etmede düşük performans göstermiştir. Test süreleri göz önüne 
alındığında, gerçek zamanlı uygulamalar için uygun sonuçlar elde edilmektedir. 24 fps’lik standart bir 
video görüntüsünde, kullanılan tüm algoritmalar uygun şekilde tespit yapabilmektedir (Çizelge 3).  
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Şekil 9. Algoritmaların eksik veya yanlış tespitler için örnek görseller. 

 
Çizelge 3.  Çalışmada kullanılan modellerin CRACK veri setindeki eğitim ve test süreleri. 

Model Eğitim Süresi Test Süresi (1 görüntü için) 

YOLOv5s 36d 36s  9.2 ms 

YOLOv5x 127d 30s 32.5 ms 

YOLOv5n 38d 48s 10.2 ms 

YOLOv5m 53d 18s 8.3 ms 

YOLOv5l 82d 42s 26.6 ms 

YOLOv8s 127d 24s 11.7 ms 

YOLOv9s 187d 30s 13.2 ms 

 
Çalışma sonuçları literatürde Crack veri setini kullanmış çalışmaların sonuçları ile karşılaştırılmıştır. 
Karşılaştırma metrikleri olarak hassasiyet, geri çağırma, F1 skor ve mAP50 değerleri seçilmiştir. Çalışma 
kapsamında literatürdeki sonuçlara yakın değerler elde edilmiştir. Özellikle geri çağırma metriğinde 
[25]’ten daha iyi bir sonuç elde edilmiştir. Sonuçlar değerlendirilirken, çalışma kapsamında kullanılan 
donanımın kısıtı göz önünde bulundurulmalıdır. Eğitim parametreleri bu donanıma bağlı olarak 
belirlenmiştir. Karşılaştırmalı sonuçlar Çizelge 4’te sunulmuştur.  
 

Çizelge 4.  Çalışma sonuçlarının literatür ile karşılaştırılması. 
Çalışma Hassasiyet Geri çağırma F1 skor mAP50 

YOLOv7 [23] 0.850 0.750 0.800 0.820 

YOLOv7 [24] 0.845 0.835 0.840 0.820 

YOLOv8s-CA3SC [25] 0.944 0.731 0.824 - 

YOLOv5s* 0.805 0.765 0.784 0.780 

YOLOv5x* 0.860 0.752 0.802 0.810 

YOLOv5n* 0.809 0.764 0.782 0.802 

YOLOv5m* 0.833 0.757 0.793 0.797 

YOLOv5l* 0.852 0.745 0.795 0.785 

YOLOv8s* 0.806 0.759 0.782 0.782 

YOLOv9s* 0.885 0.776 0.827 0.836 

* Bu çalışmada kullanılan yöntemler. 

 
 
 



Ödübek ve Atik  İnsansız Hava Aracı Görüntülerinden Beton Yüzeyi Çatlaklarının YOLO Mimarileri İle Tespiti  

Adyü J Eng Sci 2025;12(26):159-172 / Adyü Müh Bil Derg 2025;12(26): 159-172                   171 

6. Sonuç 

Bu çalışmada yedi farklı YOLO versiyonu ile İHA görüntülerinden beton yüzeyindeki çatlaklar derin 
öğrenme teknikleriyle tespit edilmiştir. Derin öğrenme yöntemleri otomatik çatlak tespiti 
uygulamalarında iş gücü, zaman ve maliyet bakımından büyük avantaj sağlamaktadır. Bu sebeple, en 
uygun yöntemin ve parametrelerin seçilmesi çatlak tespiti işlemlerinde yapı ve çevre sağlığını oluşturma 
ve geliştirme kapsamında büyük öneme sahiptir. İHA görüntüleri bu çatlakların otomatik denetlenmesi 
için zengin bir veri kaynağı oluşturmaktadır. Beton yüzeylerdeki çatlakların tespitinde en yüksek 
metrikler YOLOv9s modelinde elde edilmiştir. YOLO algoritmalarının çatlak tespitinde göstermiş olduğu 
yüksek performans çatlak tespitinin hızlı ve yüksek değrulukla yapılmasına büyük oranda katkı 
sağlamaktadır. Ancak veri setlerinin içerdiği görüntülerin detay seviyesi, içerdiği nesnelerin boyutları ve 
algılanabilirlik özellikleri veri setlerinde testi gerçekleştirilen modellerden elde edilen değerlere büyük 
oranda etki etmektedir. Modellerin sahip olduğu parametre sayısı ve boyut genişliği de test aşamasındaki 
performanslarını önemli ölçüde etkilemektedir. Bu kısıtların model ve testlerdeki performanslara olan 
etkileri göz önünde bulundurularak analizler yapılmalı ve en uygun model ve parametreler seçilmelidir. 
Beton yüzeyi çatlaklarının tespiti çalışmalarında kullanılacak modellerin birtakım optimizer ve 
transformatörlerle iyileştirilmesi ve geliştirilmesi modellerin performanslarına pozitif yönde katkı 
sağlayabileceği öngörülmektedir. 
 
Çalışma özellikle beton yüzeylerindeki deformasyonların görüntüler üzerinden izlenmesi için umut verici 
sonuçlara sahiptir. Ayrıca deprem sonrası hasar tespitinde bina taşıyıcı elemanlarının görüntüleri YOLO 
algoritmaları ile incelenebilir. Böylece hasar tespitinde otomasyon arttırılarak insan gücüne olan ihtiyaç 
azaltılabilir. Karar vericilere ulaştırılacak hızlı sonuçlar sayesinde afet yönetim sistemi çerçevesinde 
müdahale ve iyileştirme çalışmalarında etkin bir çözüm üretilmesine destek sağlanabilir. Sadece beton 
yüzeyleri değil asfalt gibi farklı malzeme türlerinde de uygulanabilirlik potansiyeline sahiptir. Özellikle 
İHA görüntüleri ile geniş alanlarda yol ve kaldırımlardaki bozulmalar otomatik şekilde tespit edilebilir.  
Gelecek çalışmalarda gerçek zamanlı olarak veri setlerindeki görüntülerin nesne tespitlerini 
gerçekleştirmek için videolar üzerinden anlık tespit gerçekleştirilmesi planlanmaktadır. Bu çatlak veri 
setlerinin olası deprem sonrası çalışmalarda kullanılmak üzere geliştirilmesi ve iyileştirilmesi ile birlikte 
geliştirilmiş derin öğrenme tekniklerinin kullanımıyla ilgili çalışmaların kullanım yelpazesi 
genişletilebilmektedir. Veri setleri, kullanılan derin öğrenme algoritmaları, çalışma alanı ve koşullarının 
çeşitlendirilmesi ve iyileştirilmesiyle birlikte daha yüksek performans ve doğrulukta sonuçların elde 
edileceği öngörülmektedir. 
 

Çıkar Çatışması Beyanı 

Makale yazarları herhangi bir kurum, kuruluş, kişi ile kişisel ve finansal çıkar çatışması olmadığını beyan 
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