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Abstract: This paper presents a comprehensive analysis of the need for the Padé approximation for continuous-time models with 
delays, focusing on its critical role in addressing the control challenges posed by time delays. Time delays, often referred to as dead 
times, transport delays or time lags, are inherent in a wide range of industrial and engineering processes. These delays introduce phase 
shifts that degrade control performance by reducing control bandwidth and threatening the stability of closed-loop systems. Accurate 
modelling and compensation of these delays is essential to maintain system stability and ensure effective control. This paper highlights 
the difficulties that arise when using advanced control techniques such as root locus (RL), linear quadratic regulator (LQR) and H-
infinity (𝐻𝐻∞) control in systems with delays. Representing delays in exponential form leads to an infinite number of state problems, 
complicating the design and analysis of controllers in such systems. To address these challenges, the Padé approximation is proposed 
as an effective method for approximating time delays with rational polynomials of appropriate order. This approach allows for more 
accurate simulation, system analysis and controller design, thereby mitigating the problems caused by delays. The paper also provides 
a detailed comparative analysis between the Padé approximation and Taylor polynomials, demonstrating the superiority of the former 
in achieving accurate delay modelling and control performance. The results show that the use of Padé approximation not only 
improves the accuracy of system models, but also improves the robustness and stability of control strategies such as RL, LQR, and 𝐻𝐻∞. 
These results highlight the importance of the Padé approximation as a valuable tool in the design of delay-affected control systems, 
offering significant advantages for both theoretical and practical applications. 
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1. Introduction 
Time delays, both distorting and non-distorting, are an 
integral part of many engineering applications, 
particularly in the design and analysis of advanced 
control systems (Pujol-Vazquez et al., 2020; Zhang et al., 
2020; Zhang et al., 2024). In these systems, delays occur 
naturally due to physical phenomena, communication 
delays or processing times, and they significantly 
complicate both the design and performance of control 
strategies. Ignoring the effects of these delays can have 
serious consequences, such as reduced system 
performance or even instability, since time delays tend to 
degrade the control process by introducing phase shifts 
and reducing the control bandwidth (Mondié et al., 2022; 
Shangguan et al., 2020; Wu et al., 2023). Therefore, the 
development of appropriate control principles for time-
delayed dynamic systems with uncertainties has been an 
important research topic (Li et al., 2020; Abbasspour et 
al., 2020; Belhamel et al., 2020). 
In classical control theory, root locus (RL) analysis is a 

widely used graphical method to investigate how the 
roots of a system change in response to variations in 
system parameters, in particular the feedback gain 
(Luyben, 2020; Werth et al., 2020). However, when 
dealing with delayed systems, RL analysis faces 
significant challenges. Time delays introduce 
transcendental terms into the system's transfer function, 
creating an infinite number of poles. These poles make it 
virtually impossible to plot the RL diagram and 
complicate closed loop stability analysis. 
In modern control theory, approaches such as linear 
quadratic regulator (LQR) and H-infinity (𝐻𝐻∞) control are 
popular because of their ability to optimize system 
performance and stability while dealing with 
uncertainties and disturbances (Handaya and Fauziah, 
2021; Priyambodo et al., 2020; Menezes and Araújo, 
2023; Anh, 2020). LQR seeks to minimize a quadratic 
cost function while controlling a dynamic system with 
linear dynamics (Fridovich-Keil et al., 2020; Khamies et 
al., 2021; Yang et al., 2021). Similarly, 𝐻𝐻∞ control focuses 
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on optimizing system performance by solving a 
mathematical optimization problem to achieve stability 
with guaranteed robustness (Yang et al., 2021; Zhou et 
al., 2020). Despite their wide applicability and 
advantages such as optimality, computational efficiency 
and robustness - both LQR and 𝐻𝐻∞ face significant 
difficulties when applied to continuous-time systems 
with delays due to the infinite number of state problems 
introduced by time delays (Kanokmedhakul et al., 2024). 
To overcome these challenges, it is essential to convert 
the time delay term into a rational function form, which 
simplifies the analysis of the system and the design of the 
controller (De Persis and Tesi, 2021; Chen et al., 2020; 
Abdullah, 2021; Maghfiroh et al., 2022). The Padé 
approximation provides a practical solution to this 
conversion by approximating the time delay as a rational 
polynomial (Wei et al., 2016; Hu et al., 2024). This 
method is widely favoured for its flexibility in adjusting 
accuracy, preserving system dynamics, and ease of 
implementation. In addition, it significantly improves 
frequency domain analysis and provides more 
manageable system representations for control design 
(Gluzman, 2020). 
This paper presents a detailed investigation of the 
necessity of the Padé approximation for delayed 
continuous-time models, with a focus on its application 
to RL, LQR, and 𝐻𝐻∞ control strategies. The main 
contributions of this paper are as follows: 

i. The study provides a clear methodology for 
converting time delays from exponential form to 
rational polynomials using the Padé approximation, 
which simplifies the analysis of control systems with 
delays. 

ii. By implementing the Padé approximation, the 
infinite pole problem in delayed systems is addressed, 
allowing for more accurate RL analysis and improved 
system stability when using LQR and 𝐻𝐻∞ techniques. 

iii. A comprehensive comparison with other 
polynomial approximations, such as Taylor series, 
shows that Padé offers superior accuracy and 
preservation of system behaviour, making it ideal for 
practical control system design. 

iv. The study highlights the relevance of these results 
in real engineering applications where the use of 
delayed models is inevitable, providing practical 
solutions for improving the performance of modern 
control systems. 
 
2. Materials and Methods 
2.1. Padé Approximations of Time Delay 
Approximations can be derived by determining the 
numerator and denominator coefficients and expressing 
a function as the ratio of two power series, known as a 
rational polynomial. When functions contain poles, Padé 
approximations offer a significant advantage over Taylor 
series and Taylor polynomials, which are among the most 
commonly used approximation methods. This advantage 
arises because Padé approximations use rational 

functions, which allow a more accurate representation of 
functions with poles than traditional power series 
expansions (Pinheiro and Colón, 2024). 
The Padé approximation 𝑅𝑅𝐿𝐿/𝑀𝑀 ≡ [𝐿𝐿/𝑀𝑀] to any power 
series is given by (equation 1) 

𝐴𝐴(𝑥𝑥) = �𝑎𝑎𝑗𝑗

∞

𝑗𝑗=0

𝑥𝑥𝑗𝑗  (1) 

Considering that 𝐴𝐴(𝑥𝑥) is a transcendental function (e.g. 
𝑒𝑒𝑥𝑥), as the time delay approximation is the basis of this 
study, each term of the expansion of equation 1 is given 
by the Taylor series about 𝑥𝑥0 (equation 2) 

𝑎𝑎𝑛𝑛 =
1
𝑛𝑛!𝐴𝐴

(𝑛𝑛)(𝑥𝑥0) (2) 

Substituting in equation 2, the coefficients are as follows 
(equation 3): 

𝐴𝐴(𝑥𝑥) −
𝑃𝑃𝐿𝐿(𝑥𝑥)
𝑄𝑄𝑀𝑀(𝑥𝑥) = 0 (3) 

An additional constraint can be enforced since 𝑄𝑄𝑀𝑀(𝑥𝑥) can 
be multiplied by any constant, which will rescale the 
other coefficients. The standard scaling method is 
defined as 𝑄𝑄𝑀𝑀(0) = 1. The expansion of equation 3 gives 
(equations 4 and 5) 

𝑃𝑃𝐿𝐿(𝑥𝑥) = 𝑝𝑝0 + 𝑝𝑝1𝑥𝑥 + 𝑝𝑝2𝑥𝑥2 + ⋯𝑝𝑝𝐿𝐿𝑥𝑥𝐿𝐿 (4) 

𝑄𝑄𝑀𝑀(𝑥𝑥) = 1 + 𝑞𝑞1𝑥𝑥 + 𝑞𝑞2𝑥𝑥2 + ⋯𝑞𝑞𝑀𝑀𝑥𝑥𝑀𝑀 (5) 

The set of equations based on the equations 3-5 are given 
by (equation 6) 

𝑎𝑎0 = 𝑝𝑝0 
𝑎𝑎1 + 𝑎𝑎0𝑞𝑞1 = 𝑝𝑝1 

𝑎𝑎2 + 𝑎𝑎1𝑞𝑞1 + 𝑎𝑎0𝑞𝑞2 = 𝑝𝑝2 
⋮ 

𝑎𝑎𝐿𝐿 + 𝑎𝑎𝐿𝐿−1𝑞𝑞1 + ⋯+ 𝑎𝑎0𝑞𝑞𝐿𝐿 = 𝑝𝑝𝐿𝐿 
𝑎𝑎𝐿𝐿+1 + 𝑎𝑎𝐿𝐿𝑞𝑞1 +⋯+ 𝑎𝑎𝐿𝐿−𝑀𝑀+1𝑞𝑞𝑀𝑀 = 0 

⋮ 
𝑎𝑎𝐿𝐿+𝑀𝑀 + 𝑎𝑎𝐿𝐿+𝑀𝑀−1𝑞𝑞1 +⋯+ 𝑎𝑎𝐿𝐿𝑞𝑞𝑀𝑀 = 0 

(6) 

where 𝑞𝑞𝑗𝑗 = 0 for 𝑗𝑗 > 𝑀𝑀 and 𝑎𝑎𝑛𝑛 = 0 for 𝑛𝑛 < 0. Directly 
solving these yields (equation 7): 

𝐿𝐿
𝑀𝑀 =

�

𝑎𝑎𝐿𝐿−𝑚𝑚+1 𝑎𝑎𝐿𝐿−𝑚𝑚+2 ⋯ 𝑎𝑎𝐿𝐿+1
⋮ ⋮ ⋱ 𝑎𝑎𝐿𝐿+𝑀𝑀
𝑎𝑎𝐿𝐿 𝑎𝑎𝐿𝐿+1 ⋯ 𝑎𝑎𝐿𝐿+𝑀𝑀

∑ 𝑎𝑎𝑗𝑗−𝑀𝑀𝑥𝑥𝑗𝑗𝐿𝐿
𝑗𝑗=𝑀𝑀 ∑ 𝑎𝑎𝑗𝑗−𝑀𝑀+1𝑥𝑥𝑗𝑗𝐿𝐿

𝑗𝑗=𝑀𝑀−1 ⋯ ∑ 𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗𝐿𝐿
𝑗𝑗=0

 �

�

𝑎𝑎𝐿𝐿−𝑀𝑀+1 𝑎𝑎𝐿𝐿−𝑀𝑀+2 ⋯ 𝑎𝑎𝐿𝐿+1
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝐿𝐿 𝑎𝑎𝐿𝐿+1 ⋯ 𝑎𝑎𝐿𝐿+𝑀𝑀
𝑥𝑥𝑀𝑀 𝑥𝑥𝑀𝑀−1 ⋯ 1

�

 (7) 

If the lower index is greater than the upper, the sums are 
replaced by a zero. Alternative forms are shown as 
(equations 8 and 9) 

𝐿𝐿
𝑀𝑀

= �𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑥𝑥𝐿𝐿−𝑀𝑀+1𝒘𝒘𝑻𝑻
𝐿𝐿/𝑀𝑀

𝐿𝐿−𝑀𝑀

𝑗𝑗=0

𝑊𝑊−1
𝐿𝐿/𝑀𝑀𝒘𝒘𝐿𝐿/𝑀𝑀 (8) 

𝐿𝐿
𝑀𝑀

= �𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑥𝑥𝐿𝐿+𝑛𝑛+1𝒘𝒘𝑻𝑻
(𝐿𝐿+𝑀𝑀)/𝑀𝑀

𝐿𝐿+𝑛𝑛

𝑗𝑗=0

𝑊𝑊−1
𝐿𝐿/𝑀𝑀𝒘𝒘(𝐿𝐿+𝑛𝑛)/𝑀𝑀 (9) 

where (equations 10 and 11) 

𝑊𝑊𝐿𝐿/𝑀𝑀 = �
𝑎𝑎𝐿𝐿−𝑀𝑀+1 − 𝑥𝑥𝑎𝑎𝐿𝐿−𝑀𝑀+2 ⋯ 𝑎𝑎𝐿𝐿 − 𝑥𝑥𝑎𝑎𝐿𝐿+1

⋮ ⋱ ⋮
𝑎𝑎𝐿𝐿 − 𝑥𝑥𝑎𝑎𝐿𝐿+1 ⋯ 𝑎𝑎𝐿𝐿+𝑀𝑀−1 − 𝑥𝑥𝑎𝑎𝐿𝐿+𝑀𝑀

 � (10) 
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𝒘𝒘𝐿𝐿/𝑀𝑀 = �

𝑎𝑎𝐿𝐿−𝑀𝑀+1
𝑎𝑎𝐿𝐿−𝑀𝑀+2

⋮
𝑎𝑎𝐿𝐿

� (11) 

and the relation between 𝑛𝑛 and 𝑀𝑀 satisfies the criterion 

of 0 ≤ 𝑛𝑛 ≤ 𝑀𝑀. The Padé approximation of 𝑒𝑒−𝑥𝑥 with a 
numerator order 𝐿𝐿 = 3 and denominator order 𝑀𝑀 = 3 is 
given in Table 1. 

Table 1. Padé approximation of 𝑒𝑒−𝑥𝑥 with numerator order 𝐿𝐿 = 3 and denominator order 𝑀𝑀 = 3 

 
2.2. A Comparative Analysis using Taylor 
Polynomials 

An analogy with the Taylor series expansion of 𝑒𝑒−𝑥𝑥 
around 𝑥𝑥 = 0, as presented in equation 12, helps to 
highlight the significance of the Padé approximation. 

𝑒𝑒−𝑥𝑥 = �
(−𝑥𝑥)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= 1 − 𝑥𝑥 +
1
2 𝑥𝑥

2 −
1
6𝑥𝑥

3 + ⋯ (12) 

To transform equation 12 into the Padé approximation, 
the desired order of the rational polynomial - specifically, 
the choice of numerator and denominator orders as 
shown in Table 1 - must be determined (Conca et al., 
2024). For example, if both the numerator order 𝐿𝐿 and 
the denominator order 𝑀𝑀 are chosen as first order, the 
Padé approximation of order 𝑀𝑀 over 𝐿𝐿 is defined by the 
rational function shown in equation 13. 

𝑅𝑅(𝑥𝑥) =
∑ 𝑎𝑎𝑗𝑗𝑀𝑀
𝑗𝑗=0 𝑥𝑥𝑗𝑗

1 + ∑ 𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘𝐿𝐿
𝑘𝑘=1

 (13) 

Solving equation 13 for the Padé approximation of order 
1/1 gives the expression provided in equation 14. 

𝑅𝑅(𝑥𝑥) =
∑ 𝑎𝑎𝑗𝑗1
𝑗𝑗=0 𝑥𝑥𝑗𝑗

1 + ∑ 𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘1
𝑘𝑘=1

=
𝑎𝑎0 + 𝑎𝑎1𝑥𝑥
1 + 𝑏𝑏1𝑥𝑥

 (14) 

The coefficients 𝑎𝑎0, 𝑎𝑎1, and 𝑎𝑎2 are determined by 
equating equation 14 to the Taylor polynomial of order 
𝑀𝑀 + 𝐿𝐿. Since both the numerator and denominator are of  
 
order 1, this corresponds to equating the expression to 
the second-order Taylor polynomial, as shown in 
equation 15. 

𝑅𝑅(𝑥𝑥) =
𝑎𝑎0 + 𝑎𝑎1𝑥𝑥
1 + 𝑏𝑏1𝑥𝑥

= 1 − 𝑥𝑥 +
1
2𝑥𝑥

2 (15) 

 
Extending equation 15 to solve for the coefficients yields 
the following results: 

𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 = 1 − 𝑥𝑥 +
1
2 𝑥𝑥

2 + 𝑏𝑏1𝑥𝑥 − 𝑏𝑏1𝑥𝑥2 +
1
2 𝑏𝑏1𝑥𝑥

3 (16) 

𝑎𝑎0 = 1, 𝑎𝑎1 = −
1
2 , 𝑏𝑏1 =

1
2 (17) 

An important aspect to note here is the presence of a 
residual term in the equation. In this example, when 
considering up to order 𝑀𝑀 + 𝐿𝐿, the 𝑥𝑥3 term is discarded 
during the process. This distinction highlights a key 
difference between the Padé approximation and the 
Taylor polynomial, as the higher-order term is omitted in 
the Padé approach. By excluding this term, the resulting 
approximation provides a closer fit to 𝑒𝑒−𝑥𝑥 compared to 
the second-order Taylor polynomial, as demonstrated in 
Figure 1. 

 
 

Figure 1. Comparison of the Padé approximation and the 
second-order Taylor polynomial 𝑒𝑒−𝑥𝑥. 
 
Looking at these results in the context of transfer 
functions used for mathematical modelling in control 
systems, it is clear that for the same number of states, a 
transfer function with both poles and zeros exhibits more 

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

-1

-0.5

0

0.5

1

1.5

2

O
ut

pu
t v

al
ue

e
-x

1/1 Padé Approximation

2
n d

 Order Taylor Polynomial

    𝐿𝐿 𝑀𝑀 0 1 2 3 

0 1
1 

1 − 𝑥𝑥
1  1 − 𝑥𝑥 + 1

2 𝑥𝑥
2

1  
1 − 𝑥𝑥 + 1

2 𝑥𝑥
2 − 1

6 𝑥𝑥
3

1  

1 1
1 + 𝑥𝑥 

1 − 1
2 𝑥𝑥

1 + 1
2 𝑥𝑥

 
1− 2

3 𝑥𝑥 + 1
6 𝑥𝑥

2

1 + 1
3𝑥𝑥

 
1 − 3

4𝑥𝑥 + 1
4𝑥𝑥

2 − 1
24𝑥𝑥

3

1 + 1
4 𝑥𝑥

2
 

2 
1

1 + 𝑥𝑥 + 1
2 𝑥𝑥

2
 1 − 1

3 𝑥𝑥

1 + 2
3𝑥𝑥 + 1

6𝑥𝑥
2
 

1 − 1
2𝑥𝑥 + 1

12𝑥𝑥
2

1 + 1
2𝑥𝑥 + 1

12𝑥𝑥
2
 

1− 3
5 𝑥𝑥 + 3

20 𝑥𝑥
2 − 1

60𝑥𝑥
3

1 + 2
5 𝑥𝑥 + 1

20 𝑥𝑥
2

 

3 
1

1 + 𝑥𝑥 + 1
2𝑥𝑥

2 + 1
6𝑥𝑥

3
 1 − 1

4 𝑥𝑥

1 + 3
4𝑥𝑥 + 1

4𝑥𝑥
2 + 1

24𝑥𝑥
3
 

1 − 2
5𝑥𝑥 + 1

20𝑥𝑥
2

1 + 3
5𝑥𝑥 + 3

20𝑥𝑥
2 + 1

60𝑥𝑥
3
 

1 − 1
2𝑥𝑥 + 1

10𝑥𝑥
2 − 1

120𝑥𝑥
3

1 + 1
2𝑥𝑥 + 1

10𝑥𝑥
2 + 1

120𝑥𝑥
3
 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Cağfer YANARATEŞ and Aytaç ALTAN 1318 
 

complex behaviour than one with only zeros. 
2.3. Determining the Order of Approximation 

One of the key considerations in approximation 
applications is the choice of order for both the numerator 
and denominator polynomials, particularly when 
deciding between equal-order and mixed-order 
approximations. Each of the approximation in Table 1 can 
be chosen to represent the 𝑒𝑒−𝑥𝑥. A comparison between the 
2/2 and 2/3 Padé approximations is shown in Figure 2.  
 

 
 

Figure 2. Comparison of 2/2 and 2/3 Padé 
approximations for 𝑒𝑒−𝑥𝑥. 
 
However, only the equal-order Padé approximations 
(terms along the diagonal in Table 1) affect the phase 
without affecting the gain. These approximations behave 

like all-pass filters, a type of signal processing filter that 
adjusts the phase relationship between different 
frequencies while maintaining a uniform gain across all 
frequencies.  
The 2/2 Padé approximation results in a gain of 0 
decibels at all frequencies, affecting only the phase of the 
system, while the gain remains constant. In contrast, the 
2/3 approximation shows a drop in gain at higher 
frequencies. The preference for an all-pass filter is due to 
the fact that a time delay only affects the phase of a signal 
without affecting its gain. The choice of the appropriate 
order of approximation is critical and depends on both 
the magnitude of the delay and the speed of the system. 
Figure 3 illustrates a comparison of the step and phase 
responses between the delay-free approximation and the 
original time-delayed system. 
As shown in Figure 3, higher-order approximations give a 
closer phase match to the actual function over a wider 
frequency range. Specifically, the 2/2 approximation is 
accurate up to approximately 2 rad/sec, the 3/3 
approximation up to 4 rad/sec, the 4/4 approximation up 
to 6 rad/sec, and the 5/5 approximation up to 10 
rad/sec. These results highlight that the choice of 
approximation order should be guided by the critical 
frequencies of the system. In control system design, the 
most critical frequency is often the cut-off frequency 
where the gain falls below -3 dB, as this point has a 
significant impact on system performance in a closed-
loop configuration. 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 3. Comparison of the phase response of the Padé approximations: a) 2/2, b) 3/3, c) 4/4, and d) 5/5. 

XLabel
-30

-20

-10

0

M
ag

ni
tu

de
 (d

B)

2/2 Padé Approximation

2/3 Padé Approximation

10 -3 10 -2 10 -1 10 0 10 1
-90

0

90

180

270

360

Ph
as

e 
(d

eg
)

Frequency  (Hz)



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Cağfer YANARATEŞ and Aytaç ALTAN 1319 
 

2.4. Time Delay in Control Systems 

Dead times, also referred to as time lags or transport 
delays, are a common feature of processes in feedback 
control systems. These delays pose significant challenges 
to control, as they introduce linear phase shifts that 
reduce the control bandwidth and compromise the 
stability of the control system. The generic form of the 
time delay differential equation for 𝑥𝑥(𝑡𝑡) ∈ ℝ𝑛𝑛 is given as 
follows: 
𝑑𝑑
𝑑𝑑𝑡𝑡 𝑥𝑥

(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑥𝑥𝑡𝑡) (18) 

where 𝑥𝑥𝑡𝑡 = {𝑥𝑥(𝜏𝜏):𝜏𝜏 ≤ 𝑡𝑡} is the past trajectory of the 
solution. 𝑓𝑓 acts as a functional operator from ℝ × ℝ𝑛𝑛 ×
𝐶𝐶1(ℝ,ℝ𝑛𝑛) to ℝ𝑛𝑛 in this equation. 
Consider a signal 𝑓𝑓 = 𝑥𝑥(𝑡𝑡), which is zero for negative 
time but undergoes a change at 𝑡𝑡 = 0 seconds. The 
delayed function, 𝑥𝑥(𝑡𝑡 −  𝑇𝑇),, represents this signal being 
delayed by 𝑇𝑇 seconds. The Laplace transform of such a 
delayed function is expressed as 

𝑔𝑔(𝑡𝑡) = � 0, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇
𝑓𝑓(𝑡𝑡 − 𝑇𝑇), 𝑡𝑡 ≥ 𝑇𝑇  (19) 

𝐺𝐺(𝑠𝑠) = ℒ{𝑔𝑔(𝑡𝑡)} = ℒ{𝑓𝑓(𝑡𝑡 − 𝑇𝑇)} = � 𝑒𝑒−𝑠𝑠𝑡𝑡𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

0
 (20) 

𝐺𝐺(𝑠𝑠) = � 𝑒𝑒−𝑠𝑠𝑡𝑡𝑓𝑓(𝑡𝑡 − 𝑇𝑇)𝑑𝑑𝑡𝑡
∞

𝑇𝑇
= � 𝑒𝑒−𝑠𝑠(𝜏𝜏+𝑇𝑇)𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏

∞

0
 (21) 

𝐺𝐺(𝑠𝑠) = 𝑒𝑒−𝑠𝑠𝑇𝑇𝐹𝐹(𝑠𝑠) (22) 

where 𝑇𝑇, the delay, is expressed in terms of seconds. 
Thus, an element delaying 𝑇𝑇 seconds has a transfer 
function of 𝑇𝑇𝐹𝐹(𝑠𝑠) = 𝑒𝑒−𝑠𝑠𝑇𝑇. 
 
3. Results and Discussion 
Accurately capturing time delays in system models is 
essential for reliable simulation, system analysis and 
effective controller design because delays are inherent in 
many dynamic systems. Failure to model them properly 
can lead to performance degradation and inaccurate 
predictions of system behaviour. Tools such as the Bode 
plot, widely used in control theory, provide an effective 
means of analyzing systems with delays, providing 
valuable insight into frequency response, stability 
margins and overall system robustness. These tools are 
particularly important in controller design, where 
ensuring stability and achieving desired performance are 
key objectives. However, when using advanced control 
techniques such as RL, LQR, and 𝐻𝐻∞ synthesis, the 
presence of time delays introduces complexity. These 
methods, traditionally designed for systems without 
delays, are challenged by the infinite-dimensional nature 
of time-delay systems. In such cases, an approximation of 
the time-delay transfer function by rational polynomials 
is often required to make these methods viable. While 
this approximation can simplify the design process, it 
comes with trade-offs in accuracy and fidelity of system 
behaviour. Overall, this study highlights the importance 
of considering time delays in control system design and 
the need for careful approximation techniques when 

using advanced control methods. Future research should 
focus on refining these approximations and developing 
novel strategies for directly addressing time delays in 
more complex control frameworks. By doing so, we can 
improve the robustness and accuracy of controllers, 
especially in applications where delays play a significant 
role in system dynamics. This will contribute to more 
reliable and efficient control systems in various 
engineering domains. 
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