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Abstract. In this paper, I∗-sequential topology is defined on a topological

space (X, τ) by considering any ideal I which is a family of subset of natural
numbers N. It has been proven that I∗-sequential topology is finer than I-
sequential topology. In connection with this fact, the notions I∗-continuity
and I∗-sequential continuity are shown to be coincided. Additionally, I∗-
sequential compactness and related notions are defined and investigated.

1. Introduction and Preliminaries

Examining convergence of sequences is one of the main and famous problem in
mathematical analysis. Especially, taking into consider different type convergence
methods has led to a better understanding of the geometric and algebraic structure
of the studied space. Statistical convergence, which is the most interesting method
in terms of how it is defined, was introduced by Fast [6] and Steinhouse [23] in the
year 1951, independently. Over the years, many studies on statistical convergence
have been conducted and many application in different field of mathematics like,
summability theory [21], number theory [5], trigonometric series [26], optimization
and approximation theory [8] and etc. were given.

Recall the notion of statistical convergence in a topological space. For any subset
A in N, the asymptotic density of A is defined by

δ(A) := lim
n→∞

1

n
|{k ∈ N : k ≤ n}|

when the limit exists.
A sequence x̃ = (xn) in the topological space (X, τ) is said to be statistically

convergent to a point x ∈ X if

δ({n ∈ N, xn /∈ U}) = 0,

holds for any neighborhood U of x. It is denoted by st− limx→∞ xn = x.
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A subset F ⊆ X is called sequentially closed if for each sequence x̃ = (xn) in F
with xn → x ∈ X then x ∈ F holds. A space (X, τ) is called sequential topological
space if each sequentially closed subset of X is closed.

A sequence x̃ = (xn) ⊂ X is said to be eventually in an open subset U of X,
if there exists n0(U) ∈ N such that xn ∈ U for all n > n0. A subset G ⊆ X is
said to be sequentially open if X − G is sequentially closed. Then, it is obvious
that, a subset U ⊆ X is sequentially open if and only if for each sequence x̃ = (xn)
converging to a point x in U , then x̃ = (xn) is eventually in U .

After that in 2000, P. Kostyrko, et al. in [12] introduced the notion of ideal
convergence which is completely different classical convergence but only its par-
ticular case coincides with classical and statistical convergence. Because of the
flexibility of the ideal concept, several results in different spaces were given in
[7, 9, 10, 11, 14, 18, 19, 20, 24]. Between the years 2012-2019, authors of the pa-
pers [2, 3, 4, 13, 16, 25] extended the notion of I-convergence of a sequence to
any topological space and proved several properties of this concept in a topological
space. And very recently, the idea of I-convergent is generalized and I∗-convergent
is defined.

Definition 1. [12] Let S be a set and I be a sub family of P (S). I is called an
ideal on S if (i) For all A,B ∈ I implies A ∪ B ∈ I and (ii) If A ∈ I and B ⊆ A
then B ∈ I hold.

The ideal I is called an admissible ideal if {s} ∈ I holds for all s ∈ S; and it is
called proper ideal if S /∈ I. A proper ideal is called maximal ideal if it is maximal
element ordered by inclusion in the set of all proper ideals defined on S.

An ideal I is called non trivial if I ≠ ϕ and S /∈ I.

Example 1. IFin := {A ⊂ N : A is finite set} and Iδ := {A ⊂ N : δ(A) = 0} are
admissible and proper ideal on the set of natural numbers.

Example 2. [11] Let N =
⋃∞

i=1 ∆i be a decomposition of N such that for all i ∈ N
the set ∆i are infinite subsets of N and ∆i ∩∆j = ϕ holds for all i ̸= j. Let

I := {B ⊂ N : B intersect at most finite number of ∆′
js}.

Then, I is an admissible and nontrivial ideal.

Definition 2. Let I be an ideal and K ⊂ S be any set. The set K is said
(i) I-thin if K ∈ I,
(ii) I-non thin if K /∈ I,
(iii) relatively I-non thin if there exist A ∈ I such that A ∈ K.

The set of I-thin, I-non-thin and relatively I-non-thin sets are denoted by It,
Int and Irnt, respectively.

The dual notion of ideal is called filter and defined as follows:

Definition 3. [19] A family F ⊆ P(S) is said to be filter if (i) A∩B ∈ F for all
A,B ∈ F , and (ii) If A ∈ F ∧A ⊆ B, then B ∈ F hold.

A filter F is called proper if ϕ /∈ F . For every non-trivial ideal I defines a filter
associated by I as F (I) := {A ⊆ S : S −A ∈ I} on the set S.

Remark 1. Let I be an ideal and K ⊂ S be a set. Then, K ∈ Irnt if and only if
there exists a set B ∈ F (I) such that K ⊂ B.
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Proof. It can be obtained from definition. So, it is omitted here. □

Remark 2. If we consider I = Fin, then It = I and Int = Irnt = F(I) holds.

Remark 3. If I is an admissible ideal, then Int ⊂ Irnt.

Proof. Let I be an admissible ideal and A ⊂ N be a an I non-thin subset. Hence,
the set A is not finite set because of ideal I is admissible. From the set theory, it
is well known that A contains a finite subset B which is belongs to I. This implies
that A is in Irnt. □

Lemma 1. Let I be an ideal and A be a relatively I non-thin sub set of N. Then,
there exists a maximal set B ∈ I such that B ⊂ A holds.

Proof. Denote the set

A∗ = {B ∈ I : B ⊂ A}.
A∗ is partial order family with respect to inclusion. If we consider complete order
sub family A of A∗, then ⋃

{B : B ∈ A}
is the upper bound of A. Then, Zorn’s Lemma says that A∗ has a maximal element.
So, proof is ended. □

Thorough the paper, we are going to consider S = N set of natural numbers, I
is an arbitrary ideal and (X, τ) is a topological space. Unless otherwise stated this
triple X, τ and I will be displayed in (X, τ, I) format.

Definition 4. [25] A sequence x̃ = (xn) in a topological space (X, τ, I) is said to be
I-convergent to a point x ∈ X, if {n ∈ N : xn /∈ U} ∈ I holds for any neighborhood
U of x and it is denoted by I − limxn = x.

Remark 4. If we consider Iδ or IFin, then ideal convergence is coincide with
statistical or classical convergence, respectively.

If I is an admissible ideal, then classical convergence implies I-convergence. The
converse statement is not true if X has at least two point, in generally. Let x and
y be two different elements of X and A ∈ I be any set and consider a sequence
x̃ = (xn) ⊂ X with xn = x when n ∈ A and xn = y when n /∈ A. It is clear that
the sequence x̃ is I convergent to y but not usual convergent.

Furthermore, the set of ideal convergent sequences and the set of convergent
sequences are not comparable with respect to set inclusion for non-admissible ideal.
To see this let us consider non-admissible ideal I = P(2N). The real valued sequence
(xn) = ( 1n ) convergent to 0 in R with usual topology τe. Let ε > 0 be an arbitrary

real number such that there exists n0 ∈ N such that 1
n0

< ε < 1
n0−1 holds. Then,

following inclusion {1, 2, ..., n0} ⊂ {n : | 1n − 0| > ε} is satisfied. Since the set

{1, 2, ..., n0} /∈ I, then {n : | 1n − 0| > ε} /∈ I holds. This implies that the sequence

(xn) = ( 1n ) is not I convergent to zero.
Similarly, if we consider a sequence (xn) as follows:

xn =

{
0, n = 22k, k ∈ K,
1, otherwise.

It is clear that this sequence ideal convergent to 1 but it is not convergent to any
point in R.
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Definition 5. [1] Let I be an ideal and X be a topological space. Then,
(i) For a subset A ⊆ X, I-closure of A is defined by

ĀI := {x ∈ X : ∃ (xn) ⊂ A : xn
I→ x}.

(ii) A subset F ⊆ X is said to be I-closed if F̄ I = F holds.
(iii) A subset A ⊆ X is said to be I-open if X −A is I-closed.

It is clear that ϕ̄I = ϕ and A ⊆ ĀI hold. Also, it can be easily seen that any
open subset of topological space (X, τ, I) is also I-open.

In the paper [22], I-closure and I∗-closure of a set A was defined by using I
non-thin sequences. Let us recall it: A sequence x̃ = (xn)n∈M is called I-thin if
M ∈ I, otherwise it is called I-non-thin. Then, I-closure of a set A is

ĀI := {x ∈ X : ∃ (xn)n∈M ⊂ A : (xn)n∈M
IM→ x}

where IM := {M ∩A : A ∈ I}.
It is clear that IM is an ideal IM ⊂ I for any subset M ⊂ N.

Remark 5. It is clear that IM is an (admissible) ideal for any (admissible) ideal
and IM ⊂ I holds for any subset M ⊂ N.

Theorem 1. Let (X, τ) be a topological space, I be an ideal and M /∈ I. Then,

(xn)n∈M
IM→ x if and only if (xn)n∈M

I→ x

Proof. From the definitions, proof can be obtained easily. So it is omitted here. □

2. Further properties of I∗- sequential topological space

Through the paper, we consider any ideal unless said otherwise. Let’s remember
the definition of I∗-convergence of sequences for any ideal I.

Definition 6. [13] Let (X, τ, I) be a topological space. A sequence x̃ = (xn) in X
is said to be I∗-convergent to a point x ∈ X if there exist a set M ∈ F (I) where

M = {m1 < m2 < · · · < mk < · · · }

such that for any neighborhood U of x, there exists N(U) ∈ N such that xmk
∈ U

holds for all mk > N(U).

If X has an algebraic structure, then the Definition 6 can be reformulated in the
following form as called decomposition theorem:

Theorem 2. A sequence x̃ = (xn) in (X, τ, I) is I∗-convergent to x ∈ X if and
only if it can be written as xn = tn + sn for all n ∈ N such that t̃ = (tn) ⊂ X is a
IFin-convergent to x and s̃ = (sn) ⊂ X is non zero only in a set of I.

Proof. Assume that xn := tn + sn is satisfied for all n ∈ N where tn→x(IFin)
and (sn) is non zero only in a set from ideal I. Since tn→x(IFin), then for any
neighborhood U of x

{n ∈ N : tn /∈ U} ∈ IFin

holds. Let M := N− {n ∈ N : tn /∈ U}. Then, sn = 0 for all n ∈ M . So, xn = tn
and this implies that for any neighborhood U of x xn ∈ U holds for all n ∈ M .

Hence, xn
I∗

→ x.
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Conversely, let xn
I∗

→ x. Then, there exists M ∈ F (I) such that (xn)n∈M

convergent to x. Take into consider sequences t̃ = (tn) and s̃ = (sn) as follow

tn :=

{
xn, n ∈ M,
x, n /∈ M,

and sn :=

{
0, n ∈ M,

xn − x, n /∈ M.

It is clear that tn→x(IFin) and (sn) is nonzero only on a set from the ideal I
and xn = tn + sn holds for all n ∈ N. □

In [13], it was pointed out that I∗-convergence implies that I-convergence. In
the following example, we will show that the converse statement is not true, in
generally.

Example 3. Let (R, τe) be an Euclidean topological space and let Bn(0) := (− 1
2n ,

1
2n )

for n ∈ N be a monotonically decreasing open base at zero. Define a real valued
sequence x̃ = (xn) such that

xn ∈ Bn(0)−Bn+1(0)

where xn = 2n+1
4n2+4n . It is clear that xn → 0, n → ∞.

Consider the ideal given in Example 2 and let us note that any ∆i is a member
of I.

Let ỹ = (yn) be a sequence defined by yn = xj if n ∈ ∆j. Let U be any open
set containing zero. Choose a positive integer m such that Bn(0) ⊂ U holds for all
n > m. Then,

{n : yn /∈ U} ⊂ ∆1 ∪∆2 ∪∆3... ∪∆m ∈ I

implies that yn
I→ 0 satisfies.

Now, suppose that yn
I∗

→ 0 holds. Hence, there exists a set

M := N−H = {m1 < m2 < ... < mk...} ∈ F (I)

where H ∈ I such that for any neighborhood U of zero there exists N ∈ N such that
xmk

∈ U for all mk > N .
Let l ∈ N be a fixed number and assume that

H ⊂ ∆1 ∪∆2 ∪∆3... ∪∆l

then ∆i ⊂ N − H holds for all i > l + 1. Therefore, for each i > l + 1, there is
infinitely many k’s such that ymk

= xi. But, the limit limynk
doesn’t exists because

of xi ̸= xj for all i ̸= j.

Theorem 3. Let (X, τ) be a topological space, and I be a finite ideal. Then,
I-convergence and I∗-convergence are coincided.

Proof. We already know that if xn
I∗

→ x then xn
I→ x for any ideal. Let a sequence

xn
I→ x, then for any neighborhood U of x, we have A := {n ∈ N : xn /∈ U} ∈ I .
Consider M = N−A ∈ F (I) and arrange M as

M = {m1 < m2 < · · · < mk < · · · }.

Since the set A is finite, then there exists N ∈ N such that xmk
∈ U holds for

all m > N . Therefore, xn
I∗

→ x, hods. □

Theorem 4. Let (X, τ, I) be a topological space. If every sub-sequence (xnk
) of

(xn) ⊆ X is I∗- convergent to a point x0 ∈ X, then (xn) is I∗- convergent to x0.
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Proof. Let us assume that (xn) is not I∗-convergent to point x0. Then, for all
M ∈ F (I) and for all N ∈ N there exists nk > N such that xnk

/∈ U , where U
is any neighborhood of x0. If we take N = 1, then there exists the sub-sequence
(xnk

) /∈ U , for all nk > 1. This means that there exists a sub-sequence of (xn)
which is not converging to the point of x0 which is contradiction. □

Now, let’s see with the following example that the converse of Theorem 4 is not
true, in generally.

Example 4. Let (R, τe) be a topological space, I be any ideal and K ∈ F (I) be an
arbitrary set. Define a sequence as

yn =

{
2n, n /∈ K,
1
n , n ∈ K.

The sequence (yn) is I∗-convergent to zero but its subsequence (ynk
) = (2nk)

for nk /∈ K is not I∗-convergent.

Lemma 2. Let I and J be two ideals of N such that I ⊆ J and x̃ = (xn) be a

sequence in a topological space (X, τ). Then, xn
I∗

→ x implies xn
J ∗

→ x.

Proof. Let (xn)
I∗

→ x holds. That is, there exists M ∈ F (I) as
M = {m1 < m2 < . . . , < mk < . . . }

such that for any neighborhood U of x, there exists N ∈ N such that xmk
∈ U holds

for all mk > N holds. Since N−M ∈ I, then from the assumption N−M ∈ J is

satisfied. So, (xn)
J∗

→ x. □

It is stated in (Lemma 2 in [1]) that every subsequence of I-convergent sequence
in a topological space (X, τ) is also I-convergent. Moreover, Example 4 shows
that this statement is not true for I∗-convergence. Because of this reason, when
defining I∗-closure of a set A, the sequence itself will be considered instead of its
subsequences.

Definition 7. Let (X, τ, I) be a topological space. Then,
(i) I∗-Closure of a set A is defined by

A
I∗

:= {x ∈ X : ∃(xn) ⊂ A such that xn
I∗

→ x}

(ii) A subset F ⊆ X is said to be I∗-closed if F
I∗

= F holds.
(iii) A subset U ⊆ X is said to be I∗-open if X − U is I∗-closed.

Remark 6. It is clear that ϕ
I∗

= ϕ and A ⊂ A
I∗

are true for any A ⊆ X.

Theorem 5. Let (X, τ) be a topological space and I is an admissible ideal. Then,
every I-open subset is I∗- open.

Proof. Let U be an I-open subset of X. Then, X − U is I-closed such that X −
U = X − U

I
holds. To prove X − U = X − U

I∗

it is sufficient to show that

X − U
I∗

⊂ X − U holds. Let x ∈ X − U
I∗

be an arbitrary element. Then, there

exists a sequence x̃ = (xn) ⊂ X − U such that xn
I∗

→ x holds. Therefore, Theorem

1 gives that xn
I→ x holds. This implies that x ∈ X − U

I
= X − U. Hence, the

proof is completed. □
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Corollary 1. Let (X, τ) be a topological space and I be a finite ideal. Then, A ⊂ X
is I-open if and only if A is I∗-open.

Theorem 6. Let I and J be two ideal such that I ⊂ J and X be a topological
space. If U ⊂ X is J ∗- open then it is I∗-open.

Proof. Let U be J ∗-open then X − U is J ∗-closed and X − U = X − U
J ∗

holds.

We must to prove X − U
I∗

⊂ X − U . Let x ∈ X − U
I∗

be an arbitrary point,
then there exists a sequence (xn) ⊂ X − U such that (xn) is I∗-convergent to a
point x ∈ X−U . Then by Theorem 2 the sequence (xn), J ∗ converges to x. Hence,

x ∈ X − U
J

= X − U this implies that x ∈ X − U and U is J ∗-open. □

Definition 8. Let A be a subset of topological space (X, τ, I). Then, I∗ interior
of A is defined as

AoI
∗

:= A− (X −A)
I∗

.

Lemma 3. Let A be a subset of topological space (X, τ, I). Then, the set A is

I∗-open if and only if AoI
∗

= A.

Proof. Let A be I∗-open subset of topological space (X, τ, I). Then, X − A is

I∗-closed and X −A = X −A
I∗

holds. This implies that

AoI
∗

= A− (X −A)
I∗

= A− (X −A) = A.

Conversely assume that A = AoI
∗

holds. Considering the definition, the equality

A = A − (X −A)
I∗

is obtained. This implies that A ∩ (X −A)
I∗

= ϕ holds.

Therefore, (X −A)
I∗

⊂ X − A. Hence, X − A is I∗- closed and the set A is
I∗-open. □

Theorem 7. Let A be a subset of topological space (X, τ, I). Then, the following
statements are equivalent:

(i) A is I∗- closed.
(ii) A =

⋂
{F : F is I∗ − closed and A ⊂ F}.

Proof. From the definitions it is obvious that (i) ⇒ (ii). So, we are going to prove
(ii) ⇒ (i). To show that ĀI∗

= A holds it is sufficient to prove that ĀI∗ ⊆ A
holds. Let x0 ∈ ĀI∗

is an arbitrary point, then there exists a sequence (xn) ⊂ A
such that (xn) is I∗-convergent to x0. Assume that x0 /∈ A. So, (ii) implies that

x0 /∈
⋂

{F : F is I∗ − closed and A ⊂ F}.

Hence, there exists an I∗-closed set F such that A ⊂ F and x0 /∈ F . Since
(xn) ⊂ A ⊂ F , then x0 ∈ F which is a contradiction to assumption. □

Theorem 8. Let A be a subset of topological space (X, τ, I). Then, the following
statements are equivalent:

(i) A is I∗- open.
(ii) A =

⋃
{U : U is I∗ − open and U ⊂ A}.

Proof. From the definitions (i) ⇒ (ii) is obvious. So, we are going to prove inverse
of this case. Let us consider A =

⋃
{U : U is I∗ − open and U ⊂ A}. To prove A

is I∗- open subset of X, we must to show that A = AoI
∗

holds. It is known that

AoI
∗

always subset of A. So, it is sufficient to show that A ⊂ AoI
∗

holds.
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Let x0 ∈ A be an arbitrary point, then there is an open subset U of A such that

x0 ∈ U . Since U ⊂ A then x0 ∈ AoI
∗

and this implies that A ⊂ AoI
∗

holds. □

Definition 9. Let I be an ideal and U be a subset of topological space X. A
sequence x̃ = (xn) ⊂ X is I∗-eventually in U if there exists M ∈ F (I) such that
xm ∈ U holds for all m ∈ M.

In the following a new characterization will be given for the I∗-open set.

Proposition 1. Let I be a maximal ideal and (X, τ) be a topological space. Then,
a subset U ⊆ X is I∗-open if and only if each I∗-convergent sequence to a point
x ∈ U in X is I∗-eventually in U .

Proof. Let us assume that U be an I∗ open subset of (X, τ). Consider an arbitrary
sequence x̃ = (xn) ⊂ X which is I∗-convergent to a point x ∈ U . Since U is
I∗-open, then it is neighborhood of the point x. So, E := {n : xn /∈ U} ∈ I and
M(= N − E) = {n : xn ∈ U} ∈ F (I) holds. Hence, for all m ∈ M such that
xm ∈ U and this implies that x̃ is I∗-eventually in U .

Let us assume each I∗-convergent sequence to a point x0 ∈ U is I∗-eventually
in U . That is, if x̃ is a sequence which is I∗-convergent to x0 ∈ U , then there exists
M ∈ F (I) such that xm ∈ U holds for all m ∈ M . Now, we are going to show that
U is I∗-open. It is enough to prove X−U is I∗-closed. To do this we will focus the

inclusion X − U
I∗

⊆ (X − U) is satisfied. Let x ∈ X − U
I∗

be an arbitrary point.
Then, there exists a sequence (xn) ⊂ (X − U) such that (xn) is I∗-convergent to
x. Assume that x ∈ U . From the assumption there exists M ∈ F (I) such that
xm ∈ U for all m ∈ M , but we have xn ∈ X − U , for all n which is contradiction.
Hence x ∈ X − U and U is I∗-open. □

Lemma 4. Let I be an admissible ideal and (X, τ) be a topological space. If U and
V are I∗-open subsets of X, then U ∩ V is I∗-open.

Proof. Let x̃ = (xn) be an I∗-convergent sequence in X which convergent to a point
x ∈ U ∩ V . Since U and V are I∗-open sets and the sequence x̃ is I∗-converging
to a point x in U also in V . So, by the help of Proposition 1, the sequence x̃ is I∗-
eventually in U and also in V . Then, there exists M1,M2 ∈ F (I) such that xm ∈ U
for all m ∈ M1 and xm ∈ V for all m ∈ M2. If we consider M = M1 ∩M2 ∈ F (I),
then xm ∈ U ∩ V holds for all m ∈ M . This shows that U ∩ V is I∗-open subset of
X. □

Theorem 9. Let I be a maximal ideal and (X, τ) be a topological space. A sequence
x̃ = (xn) ⊂ X is I∗-convergent to an element x ∈ X if and only if for any I∗-open
subset U of X with x ∈ U , there exists M ∈ F (I) such that xm ∈ U , for all
m ∈ M .

Proof. Let I be a maximal ideal and x̃ = (xn) be an I∗-convergent sequence to
x ∈ X. Let U be an I∗-open subset of X with x ∈ U . Then, x̃ will be I∗-eventually
in U . Hence, there exists a set M ∈ F (I) such that xm ∈ U , for all m ∈ M .

The converse statement is clear from the definition of I∗-convergence. So, it is
omitted here. □

Theorem 10. (I∗-sequential topology) Let (X, τ, I) be a topological space. Then,
the family

τI∗ := {U ∈ P (X) : U is I∗ − open set}
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is a topology on X.

Proof. It is obvious that X and ϕ are I∗-open sets. By Lemma 4, we can say that
finite intersection of I∗-open sets is I∗-open.

Let (Uα)α∈Λ be an arbitrary family of elements of τI∗ . We are going to show
that their union belongs to τI∗ . Since

X −
⋃
α∈Λ

Uα =
⋂
α∈Λ

(X − Uα),

then it is sufficient to show that
⋂

α∈Λ(X − Uα) is I∗- closed. That is,⋂
α∈Λ

(X − Uα)
I∗

=
⋂
α∈Λ

(X − Uα).

Let x ∈
⋂

α∈Λ(X − Uα)
I∗

be an arbitrary point. Then, there exists a sequence

(xn) ⊂
⋂

α∈Λ(X − Uα) such that xn
I∗

→ x holds. Therefore, for all α ∈ Λ the

sequence (xn) ⊆ (X − Uα) and xn
I∗

→ x. Since the set X − Uα is I∗- closed for all
α ∈ Λ, then x ∈ X − Uα. Hence, x ∈

⋂
α∈Λ(X − Uα) thus

⋂
α∈Λ X − Uα is I∗-

closed. □

Theorem 11. If I is admissible ideal and the topological space (X, τ) has no limit
point, then every I∗-open set is I-open set.

Proof. Let U be an I∗-open set, i.e. X−U is I∗-closed. To prove U is I-open, it is
enough to show that X−U is I-closed set. It is clear that X−U ⊆ X − U

I
holds.

Let x ∈ X − U
I
be an arbitrary point. Then, there exists a sequence (xn) ⊂ X−U

such that (xn) is I-convergent to x.
Since I is admissible and X has no limit point, then by [13] the sequence (xn)

will be I∗-convergent to x. Therefore, x ∈ X − U
I∗

. This implies that x ∈ X − U
holds. □

Corollary 2. Under the assumption of Theorem 12, I-sequentially and I∗-sequentially
topology are coincide.

Definition 10. [13] Let I be an ideal of N, it is said that the ideal I satisfies
additive property (AP) if for every countable family (Ai)i∈N ⊂ I, there exists a
countable family (Bi)i∈N of sets such that Ai △ Bi ∈ F (I) for all i ∈ N and
B = ∪Bi ∈ I.

Theorem 12. Let I be an admissible ideal which has the (AP)-property, and (X, τ)
is first countable topological space. Then, every I∗-open subset of X is I-open.
Proof. Let U be an arbitrary I∗-open subset of X. Then, X − U is I∗-closed, so

X−U = X − U
I∗

holds. To proof U is I-open, we must show that it’s complement

is I-closed. Let x ∈ X − U
I
be an arbitrary point. Then, there exists a sequence

xn ⊂ X − U such that it is I-converging to the point x. As the ideal I has (AP)-
property and the space X is first countable by [13] it is I∗-converging to x. So

x ∈ X − U
I∗

. So, x ∈ X − U . Hence, this fact implies that X − U is I-closed and
U is I-open. □

Corollary 3. Under the assumption of Theorem 12, it can be say that I-sequential
and I∗-sequential topology are coincide.
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Definition 11. Let (X, τ1, I) and (Y, τ2, I) be two topological space and f : X → Y
be a function. The function f is said to be (i) I∗-continuous if f−1(U) is I∗-open
subset of X for every I∗-open subset U of Y .

(ii) sequentially I∗-continuous if f(xn) is I∗-convergent to f(x) for each se-
quence (xn) in X which (xn) is I∗ convergent to x.

It is well known that the definitions given above are not necessarily equivalent
in classical topological spaces. In the following theorem we will show that they are
equivalent notions for typologies produced with the help of ideals.

Theorem 13. Let (X, τ1, I) and (Y, τ2, I) be two topological space and f : X →
Y be a function. Then, f is sequentially I∗-continuous if and only if f is I∗-
continuous function.

Proof. Let f be a sequentially I∗-continuous function and U be any I∗-open set
in Y . Assume that f−1(U) is not I∗- open in X, equivalently X − f−1(U) is not

I∗- closed. We conclude from the assumption that X − f−1(U)
I∗

is not subset of

X−f−1(U). So, there exists a point x ∈ X − f−1(U)
I∗

such that x /∈ X−f−1(U).
This means that there exists a sequence (xn) ⊂ X − f−1(U) such that it is I∗-
converging to x and x ∈ f−1(U). Since f is sequentially continuous, then the
sequence f(xn) is I∗-converging to f(x). This implies that f(xn) ⊂ Y − U which
is not in case so f−1(U) is I∗-open subset of X.

Let f : X → Y be an I∗-continuous mapping and assume that xn
I∗

→ x. Then,
for any neighborhood U of x, there exists N ∈ N and M ∈ F (I) such that xmk

∈ U
for all mk ∈ M . Let V be any I∗-open neighborhood of f(x), then f−1(V ) ⊂ X
is I∗-open and contain x. Hence, there exists N ∈ N and M ∈ F (I) such that
xmk

∈ f−1(V ). As a result of this discussion, it can easily be seen that f(xmk
) ∈ V

hence f(xn)
I∗

→ f(x). □

3. Sequentially I∗-compactness

The notion of compactness which is one of the most significant topological prop-
erties of the sets was formally introduced by M. Frechet in 1906. There are many
different type of compactness introduced by mathematicians over time. Recently,
using the concept of ideal the concept of I-compactness was defined by Newcomb
in [15] and studied by Rancin in the paper [17]. In this section, we will go one step
further and define the concept of I∗-sequentially compactness and examine some
of its basic properties.

Let’s start with the concept of boundedness in normed space which is directly
related to compactness.

Definition 12. [20] Let (X, ∥.∥) be a normed space and I be an ideal of N. A
sequence x̃ = (xn) in X is called (i) I-bounded if there exist K > 0 such that
{n ∈ N : ∥xn∥ > K} ∈ I holds.

(ii) I∗-bounded if there exists M ∈ F (I) such that (xn)n∈M is bounded.

Remark 7. Let (X, ∥.∥) be a normed space and I be an ideal of N. Then, every
I-bounded sequence is I∗-bounded.

Proof. Assume that (xn) ⊂ X is I-bounded sequence in X. Then, there exists
K > 0 such that {n : ∥xn∥ > K} ∈ I holds. If we denote M := {m : ∥xn∥ < K}.
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Then, M ∈ F (I) and ∥xn∥ < K holds for all n ∈ M . Hence, (xn) is I∗- bounded
sequence. □

Corollary 4. Let X be a normed space and I be an ideal of N. Then, every bounded
sequence is I∗-bounded.

Proof. Let X be a normed space and (xn) ⊂ X be a bounded sequence in X.
Then, the sequence (xn) is I-bounded which is given in [1] and by Remark 7 it is
I∗-bounded. □

Definition 13. Let (X, τ, I) be a topological space. A subset F ⊂ X is said to
sequentially I∗-compact if any sequence (xn) ⊂ F has an I∗-convergent subsequence

(xnk
) such that xnk

I∗

→ x ∈ F .

Theorem 14. Let (X, τ, I) be a topological space and f : X → R be a sequentially
I∗-continuous function. If A is sequentially I∗-compact subset of X, then f(A) is
I∗-bounded.

Proof. On the contrary assume that f(A) is not I∗-bounded. Then, there exists a
sequence (yn) in f(A) such that it is not I∗-bounded. That is

{n ∈ N : |yn| < M} /∈ F (I)

holds for all positive M > 0. Also, there exists a sequence (xn) in A such that
f(xn) =: yn holds for all n ∈ N . Since A is sequentially I∗- compact, then
there exists a subsequence (xnk

) of (xn) which is I∗-convergent to a point x0 in A.
Moreover, f is sequentially I∗-continuous function then f(xn) is I∗-convergent to
f(x0). So, there exists E ∈ F (I) where

E = {m1 < m2 < · · · < mk < · · · }

such that for any neighborhood U of f(x0), there exists N ∈ N such that f(xnmk
) ∈

U holds for all mk > N . As a result of this analysis, it can be say that (yn) =
f(xnk

) is I-convergent to f(x0). Then, {n ∈ N : |f(xn)| > M} ∈ I holds for any
neighborhood U of f(x0). So, we have {n ∈ N : |xn| < M} ∈ F (I) which is not in
case so f(A) is I∗-bounded. □

Lemma 5. Let (X, τ, I) and (Y, τ, I) be topological spaces. If X is sequentially
I∗-compact and f : X → Y is sequentially I∗-continuous function, then f(X) is
sequentially I∗-compact.

Proof. It can be proved easily. So it is omitted. □

4. CONCLUSIONS AND SOME REMARKS

In the paper, we defined the I∗-sequential topology on a topological space (X, τ)
and proved that I∗-sequential topology is finer then I-sequential topology. Also, we
observed that under the conditions of if the space X has no limit point and I be an
admissible ideal then, the I-sequentially topology and the I∗-sequentially topology
are coincide, i.e τI = τI∗ . Also, If I is an admissible ideal with (AP)-property,
and (X, τ) is a first countable topological space, then I-sequentially topology and
I∗-sequentially topology are coincide, i.e τI = τI∗ . Interestingly, it has been proven
that the concepts of I∗-continuity and I∗-sequential continuity of a function are
equivalent. As a continuation of this study, some questions can be asked:
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Q1 : Is there any topology (different from discrete topology) over X that are
finer than the I∗-sequentially topology?

Q2 : Is there any sequential type topology between I-sequential topology and
I∗-sequential topology on topological space X?

Q3 : Can I-sequential topology (or I∗-sequential topology) be metrizable?
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