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Abstract: The detection of diabetes is crucial for effective management and prevention of the disease, which poses significant 
health risks globally. This study introduces a novel approach to diabetes detection by combining advanced data balancing 
techniques and feature selection methods, including Lasso (L1) regularization, to enhance the performance of predictive models 
in imbalanced datasets. Techniques such as Random Under Sampling (RUS), Adaptive Synthetic Sampling (ADASYN), and 
Synthetic Minority Over-sampling Technique (SMOTE) were employed alongside models including Random Forest (RF), 
CatBoost (CB), Extreme Gradient Boosting (XGB), K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), Logistic 
Regression (LR), and Gradient Boosting (GB) to assess their impact on model accuracy and generalization capabilities. The 
findings reveal that the RF model achieved the highest accuracy of 93.25% when utilizing the SMOTE technique, underscoring 
the importance of appropriate data handling strategies in improving predictive outcomes. Furthermore, when all features were 
utilized without selection, the RF model attained an accuracy of 95.31%, indicating the model’s capacity to capture complex 
patterns when feature richness is maximized. The comprehensive methodology used in the study achieved a higher accuracy 
in diabetes detection than research in the literature and provided important outputs for developing reliable prediction models 
in healthcare. 
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Dengeleme Tekniklerinin ve Özellik Seçiminin Diyabet Tespitinde Makine Öğrenmesi Modelleri 

Üzerindeki Etkisi 
 

Öz: Diyabet, küresel ölçekte önemli sağlık riskleri oluşturmaktadır. Diyabetin tespiti, hastalığın etkili yönetimi ve önlenmesi 
için büyük önem taşımaktadır. Bu çalışma, dengesiz veri setlerinde diyabet tespiti için çeşitli dengeleme tekniklerini ve Lasso 
(L1) düzenlemesi de dahil olmak üzere özellik seçim yöntemlerini birleştirerek diyabet tespitine yeni bir yaklaşım 
getirmektedir. Çalışmada, Random Under Sampling (RUS), Adaptive Synthetic Sampling (ADASYN) ve Synthetic Minority 
Over-sampling Technique (SMOTE) gibi teknikler, Random Forest (RF), CatBoost (CB), Extreme Gradient Boosting (XGB), 
K-En Yakın Komşu (KNN), Gaussian Naive Bayes (GNB), Lojistik Regresyon (LR) ve Gradient Boosting (GB) modelleri ile 
kullanılarak bu tekniklerin model doğruluğu ve genelleme yetenekleri üzerindeki etkileri değerlendirilmiştir. Bulgular, SMOTE 
tekniği kullanıldığında RF modelinin %93,25 ile en yüksek doğruluğa ulaştığını göstermektedir, bu da uygun veri işleme 
stratejilerinin tahmin sonuçlarını iyileştirmede önemini vurgulamaktadır. Ayrıca, özellik seçimi yapılmaksızın tüm özellikler 
kullanıldığında, RF modeli %95,31 doğruluk elde etmiş ve bu da özellik zenginliği maksimize edildiğinde modelin karmaşık 
desenleri yakalama kapasitesini ortaya koymaktadır. Araştırmada kullanılan kapsamlı metodoloji, diyabet tespitinde 
literatürdeki araştırmalardan yüksek bir doğruluğa ulaşmış ve sağlık hizmetlerinde güvenilir tahmin modelleri geliştirmek için 
önemli çıktılar sağlamıştır. 
 
Anahtar kelimeler: Diyabet tespiti, veri dengeleme teknikleri, dengesiz veri setleri, tahmine dayalı modelleme, sağlık bilişimi. 
 
1. Introduction 
 

Diabetes mellitus (DM) is a chronic disease with an increasing prevalence, affecting millions of people 
worldwide. According to the World Health Organization, diabetes causes approximately 1.6 million deaths each 
year, reflecting the direct and indirect effects of the disease [1]. If diabetes is not controlled, serious complications 
such as heart disease, kidney failure, stroke and nerve damage can occur [2]. Diabetes is caused by insufficient 
insulin production (Type 1 diabetes) or the body’s inability to use available insulin (Type 2 diabetes), leading to 
higher-than-normal blood glucose levels. Although Type 2 diabetes is a preventable disease, it continues to 
increase in prevalence, making early diagnosis and management even more important. 
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Despite advancements in diagnostic methods, gaps remain in accurately identifying diabetes at early stages, 
as traditional diagnostic methods often rely solely on static blood glucose measurements and clinical observations. 
This approach may not account for the dynamic nature of diabetes progression or provide insights for 
asymptomatic individuals, especially those in pre-diabetic stages. Addressing these gaps is crucial for enabling 
timely interventions and reducing diabetes-related complications. 

Early diagnosis of diabetes enables individuals to be guided towards appropriate lifestyle changes necessary 
to slow the progression of the disease and prevent complications. Traditional methods of diagnosing diabetes today 
usually involve clinical examinations, laboratory tests and assessments based on the knowledge and experience of 
specialized physicians [3]. These methods include various laboratory tests that measure blood glucose levels, such 
as fasting blood glucose testing, oral glucose tolerance testing and hemoglobin A1c testing. However, such 
methods may not adequately reflect the dynamic and multidimensional nature of the disease, as they are based 
only on blood glucose levels measured at a specific moment in time. One of the biggest problems with traditional 
diagnostic methods is that they rely on limited data sources and the experience of physicians. The diagnostic 
process depends on the physician’s assessment of the patient’s symptoms, medical history and familial risk factors 
[4]. However, this method may ignore individual variations or nuances and is not accurate in the early stages of 
the disease or in asymptomatic individuals. For example, in patients who are pre-diabetic or in the early stages of 
diabetes, blood glucose levels are often borderline, which may be missed by conventional testing. In addition, 
traditional methods are largely time-consuming and costly. The collection of blood samples, laboratory analysis 
and interpretation of the results can prolong the diagnostic process for patients and increase the risk of diabetes 
progression [5]. Furthermore, in rural areas or where access to health services is limited, the lack of infrastructure 
and expertise to conduct laboratory tests is also a significant barrier. 

Another important limitation of traditional methods is the increasing density and complexity of data. In 
healthcare today, it is possible to access large amounts of data from many different sources; however, processing 
and analyzing this data is very difficult and laborious with traditional methods. Analyzing the data can only scratch 
the surface, which can lead to overlooking complex underlying relationships or hidden patterns. Furthermore, 
results may not always be consistent as there may be subjective differences in assessment between experts [6]. 
These limitations highlight the need for more innovative and data-driven approaches to early diagnosis of diabetes. 
Advanced technologies such as machine learning and data mining can detect hidden patterns and meaningful 
relationships within large datasets, enabling higher accuracy and consistency in diagnostic processes. These 
approaches not only enable more effective use of existing health data, but also accelerate the diagnostic process, 
enabling individuals to access earlier intervention and treatment. 

Machine learning algorithms are recognized as powerful tools for creating meaningful relationships and 
predictive models from large datasets. By learning relationships between variables from various data sources, these 
algorithms can analyze complex health data and identify previously undiscovered patterns [7]. Machine learning 
models developed for diabetes prediction make risk assessments using a wide variety of data types such as patients’ 
genetic information, laboratory test results, lifestyle data and other health indicators. However, the lack of 
consistent results of these models in clinical applications is due to several important reasons. The success of 
machine learning models depends on the quality and representativeness of the datasets used [8]. Missing data, 
erroneous or misleading information can negatively affect the accuracy and generalization ability of the model. 
The heterogeneity and variability of health data can make it difficult for models to produce generalizable results 
[9]. In addition, existing models lack a standardized structure due to different health institutions and data collection 
methods [10]. This may cause the same model to perform differently on different datasets, leading to reliability 
issues in clinical applications. Furthermore, algorithms used for the comprehensive analysis and interpretation of 
health data often face performance issues due to challenges such as data imbalance. In datasets used to predict 
diseases like diabetes, there is frequently an imbalance between the classes; typically, there are more individuals 
who are healthy compared to those who are not. This imbalance can cause machine learning models to prioritize 
the majority class, making it difficult to accurately predict the minority class [11]. Thus, addressing data imbalance 
and ensuring model reliability across diverse datasets are critical for developing practical applications in 
healthcare. To address this, various methods and balancing strategies have been developed to enhance the accuracy 
of prediction models built from existing electronic health records, health screening results, and other large datasets. 
These approaches can lead to significant advances in the early detection and management of diabetes by enabling 
models to produce more generalizable and stability results. Additionally, using data from larger and more diverse 
patient populations allows for the development of more comprehensive and effective healthcare strategies and 
policies. As machine learning techniques evolve and data quality improves, these advancements hold the potential 
to revolutionize the early diagnosis and management of chronic diseases such as diabetes. 
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The main objective of this study is to address identified gaps in diabetes detection by combining data-
balancing methods and advanced machine learning algorithms to create reliable predictive models, thereby 
improving the effectiveness of machine learning techniques in identifying the most appropriate methods for early 
diagnosis. Although existing research has demonstrated the effectiveness of machine learning techniques in 
diabetes prediction, data imbalance and feature selection have not been adequately addressed. This limits model 
accuracy and generalizability across different populations. In response, this study aims to reduce the effects of data 
imbalance -a key challenge in medical datasets that often leads to biased models- by applying advanced balancing 
techniques, namely SMOTE, RUS, and ADASYN. These methods enhance model reliability by either increasing 
the instances of the minority class or reducing the majority class instances, effectively countering the skewed 
distributions that commonly compromise the performance of traditional predictive models. 

Furthermore, this study provides a detailed comparison using a comprehensive set of machine learning 
algorithms that utilize different statistical techniques such as RF, CB, XGB, KNN, GNB, LR and GB to evaluate 
and improve the prediction accuracy. This multi-algorithm approach not only considers the complexity and 
diversity of diabetes-related data but also tests various machine learning models systematically against balanced 
data, providing a nuanced understanding of each model’s strengths and limitations. This study’s diverse 
algorithmic framework enables a more holistic comparison, ultimately guiding practitioners towards the most 
suitable and reliable models for early diabetes diagnosis. 

This research distinguishes itself by testing the integrated impact of data balancing and feature selection, 
specifically through Lasso regularization, to create high-performance models with the most relevant predictors. 
By addressing both data imbalance and feature relevance simultaneously, this study contributes a methodology 
that improves upon prior efforts and highlights the importance of balanced and optimized models in clinical 
applications. Comprehensive analysis of performance metrics, including accuracy and AUC, substantiates the 
study’s effectiveness and provides essential insights for developing scalable, high-accuracy models that can be 
reliably applied across diverse clinical settings. 
 
2. Related Works 

 
In the field of diabetes detection, several significant studies have been conducted in the literature, highlighting 

various approaches and methodologies for improving predictive accuracy. Shin et al. [12] conducted a study aimed 
at creating DM prediction models using easily accessible health screening parameters. Two variable sets were 
employed to develop eight models, utilizing XGB and RF algorithms, with internal validation through stratified 
10-fold cross-validation. The study found that the model based on 62 variables achieved the highest ROC-AUC 
of 0.928, while a simplified model with 27 variables still demonstrated acceptable performance, with ROC-AUCs 
ranging from 0.842 to 0.880. The inclusion of fasting glucose notably improved accuracy by up to 11.5%. Mir and 
Dhage [13] conducted a study aiming to enhance diabetes prediction using machine learning techniques. The 
researchers employed various classifiers, including Naive Bayes (NB), Support Vector Machine (SVM), RF, and 
Simple CART, utilizing the WEKA tool for analysis. The results indicated that SVM achieved the highest accuracy 
in predicting diabetes, suggesting it as the most effective algorithm among those tested. Sisodia and Sisodia [14] 
aimed to develop a model for predicting diabetes with high accuracy, addressing the challenges associated with 
traditional identification methods. The study utilized three machine learning classification algorithms: Decision 
Tree (DT), SVM, and NB, applying them to the Pima Indians Diabetes Database sourced from the UCI Machine 
Learning Repository. The results revealed that NB achieved the highest accuracy at 76.30%, demonstrating its 
effectiveness for early diabetes detection. Yahyaoui et al. [15] developed a Decision Support System (DSS) for 
diabetes prediction, addressing the growing prevalence of diabetes and its severe health implications. The study 
compared conventional machine learning techniques, SVM and RF, with a deep learning approach using a 
Convolutional Neural Network (CNN). Evaluating the proposed system on the Pima Indians Diabetes Database, 
which included 768 samples, the results demonstrated that RF achieved the highest accuracy at 83.67%, 
outperforming both CNN and SVM, which yielded accuracies of 76.81% and 65.38%, respectively. Khanam and 
Foo [16] used the Pima Indian Diabetes dataset from the UCI Machine Learning Repository to test seven machine 
learning algorithms for diabetes prediction. LR and SVM demonstrated strong performance, while a Neural 
Network model with two hidden layers achieved an accuracy of 88.6%. Sivaranjani et al. [17] employed SVM and 
RF algorithms to predict the likelihood of diabetes-related diseases. After data preprocessing and feature selection 
using step forward and backward methods, Principal Component Analysis (PCA) was applied. The RF model 
achieved an accuracy of 83%, outperforming the SVM, which had an accuracy of 81.4%. Hasan et al. [18] 
addressed outlier rejection, missing value handling, and feature selection using various machine learning 
classifiers, including RF and XGB. An ensemble model was created, weighting classifiers by their Area Under the 
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ROC Curve (AUC). The proposed model, tested on the Pima Indian Diabetes Dataset, achieved an AUC of 0.950, 
outperforming existing methods by 2%. Maniruzzaman et al. [19] focused on predicting diabetes using a machine 
learning-based system. Logistic regression was utilized to identify key risk factors, revealing seven significant 
variables. Four classifiers -NB, DT, Adaboost, and RF- were employed, with performance assessed using accuracy 
and AUC. The dataset, derived from the National Health and Nutrition Examination Survey, included 6,561 
respondents. The study found that the combination of logistic regression for feature selection and RF classification 
achieved an accuracy of 94.25% and an AUC of 0.95, indicating strong predictive capability for diabetes. 

Literature reveals a variety of approaches in diabetes detection, showcasing the effectiveness of machine 
learning techniques across multiple studies. Most existing studies, however, are limited in scope, often focusing 
on single algorithms or using imbalanced datasets without adequately addressing data skewness, which can 
compromise predictive reliability in clinical applications. These studies employed diverse algorithms such as RF, 
SVM, and NB to enhance predictive accuracy. Methods ranged from creating predictive models based on easily 
accessible health parameters to developing decision support systems that integrate both conventional and deep 
learning approaches. Many studies emphasized the importance of feature selection and data preprocessing, 
utilizing techniques like PCA and ensemble methods to improve performance metrics, including accuracy and 
AUC. However, issues such as data imbalance, lack of feature selection methods, and inconsistency in results 
across diverse datasets remain significant challenges in the field. 

This study distinguishes itself from existing literature by integrating multiple advanced machine learning 
techniques and balancing methods to optimize diabetes prediction accuracy. Unlike previous works, this study 
adopts a holistic approach by systematically addressing data imbalance and irrelevant features, both of which are 
critical for creating more reliable and generalizable models. While previous works primarily focused on individual 
algorithms or specific datasets, this research employs a comprehensive approach that combines RF with 
sophisticated balancing techniques such as RUS, ADASYN, and SMOTE. By incorporating these balancing 
methods, the study effectively mitigates the risk of biased predictions toward the majority class, a limitation seen 
in prior research. Additionally, the utilization of Lasso regularization for feature selection ensures that only the 
most relevant variables are included, enhancing model strength. The empirical analysis demonstrates significant 
improvements in predictive performance, illustrating the importance of a multifaceted methodology in tackling 
the complexities of diabetes detection. This comprehensive strategy not only enhances predictive accuracy but 
also contributes to the development of more effective, scalable models that can be applied across diverse healthcare 
settings, marking a substantial advancement in the field. 
 
3. Methodology 
 

In this study, the objective is to improve the accuracy of diabetes detection through the evaluation of various 
data preprocessing techniques. These techniques will be assessed for their effectiveness in enhancing the quality 
and suitability of the input data for further analysis. Additionally, different oversampling methods will be 
examined to identify the most effective approach for mitigating class imbalance in the dataset. Class imbalance 
can significantly impact model performance, making it critical to select the appropriate oversampling method to 
enhance accuracy. Ultimately, the best combination of data preprocessing and oversampling techniques will be 
used to develop a model for precise diabetes detection. By integrating the most effective methods, this study aims 
to create a model that improves the reliability of diabetes diagnosis. 

In the subsequent sections of the study, detailed information will be provided on several key aspects. The 
dataset utilized will be described, including its source and features. The classification algorithms employed, 
including GB, RF, CB, XGB, KNN, GNB, and LR, will be outlined, along with the data preprocessing techniques 
applied. Methods for addressing data imbalance, including oversampling techniques, will be discussed. 
Hyperparameter tuning processes will be explained, and Z-score normalization methods will be detailed. Cross-
validation procedures and performance metrics used to evaluate the models will also be covered.  
 
3.1. Dataset 
 

The dataset used in this project is derived from the Behavioral Risk Factor Surveillance System (BRFSS) 
data spanning the years 1984 to 2015 [20]. Collected annually by the CDC, the BRFSS survey gathers data from 
over 400,000 Americans on health-related behaviors, chronic conditions, and preventive services. The rationale 
for selecting data only up to 2015 stems from several key considerations. Firstly, each year’s dataset encompasses 
a substantial number of variables, ranging between 220 and 350, contingent upon the health topics prioritized 
during that specific survey year. The complexity of managing such a vast amount of data over several decades, 
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while striving to maintain a standardized format, presents considerable challenges. Notably, certain variables 
crucial for accurately predicting diabetes outcomes were not consistently available across all years. The inclusion 
of these variables, which number among the 22 key features employed in this study, is essential for ensuring the 
reliability of the predictive models. Additionally, the years following 2015, particularly those during the COVID-
19 pandemic, introduced significant irregularities in health behaviors and access to care, which could skew 
analyses and predictions. The pandemic has been associated with alterations in chronic disease management that 
deviate from typical patterns, thereby necessitating careful consideration of any data integrated from this period. 
Thus, a focus was placed on a stable, pre-pandemic timeframe to ensure consistency and enhance the robustness 
of the findings.This study uses two distinct datasets to analyze and predict diabetes outcomes. The first dataset is 
a balanced collection of patient data, containing 70,692 samples with 22 features per sample. This dataset includes 
an equal number of individuals with and without diabetes, ensuring class balance and providing a fair basis for 
model evaluation. The second dataset is an imbalanced collection with 253,680 samples and the same 22 features 
per sample. In this dataset, a significant class imbalance is present, where one class is overrepresented compared 
to the other, which may impact model accuracy. The analysis will focus on exploring the relationships between 
features and the target variable in the imbalanced dataset to understand its structure and characteristics. Insights 
gained from this analysis will be used to enhance predictions in the balanced dataset, leveraging the extensive 
information from the larger, imbalanced dataset to improve the accuracy and reliability of diabetes predictions. 
Table 1 provides a detailed description of the features and their corresponding explanations. 

 
Table 1. Description of features and their definitions. 

 
Feature Description 
Diabetes_binary Indicates whether the individual has diabetes (1: diabetic, 0: non-diabetic). 
HighBP Indicates the presence of high blood pressure (0: no high BP, 1: high BP). 
HighChol Indicates the presence of high cholesterol (0: no high cholesterol, 1: high cholesterol). 

CholCheck Indicates whether cholesterol levels have been checked in the past 5 years (0: not 
checked, 1: checked). 

BMI Body Mass Index, calculated as weight divided by the square of height. 

Smoker Indicates smoking status (0: never smoked, 1: smoked at least 100 cigarettes in entire 
life). 

Stroke Indicates whether the individual has had a stroke (1: had a stroke, 0: no stroke). 
HeartDiseaseorAttack Indicates a history of coronary heart disease or myocardial infarction (0: no, 1: yes). 

PhysActivity Indicates physical activity in the past 30 days, excluding job-related activity (0: no, 1: 
yes). 

Fruits Indicates whether the individual consumes fruit one or more times per day (0: no, 1: 
yes). 

Veggies Indicates whether the individual consumes vegetables one or more times per day (0: 
no, 1: yes). 

HvyAlcoholConsump Indicates heavy alcohol consumption (0: no, 1: yes), defined as more than 14 drinks 
per week for men and 7 for women. 

AnyHealthcare Indicates whether the individual has any form of health care coverage (0: no, 1: yes). 

NoDocbcCost Indicates if the individual could not see a doctor due to cost in the past 12 months (0: 
no, 1: yes). 

GenHlth Self-reported general health status on a scale from 1 (excellent) to 5 (poor). 

MentHlth Number of days in the past 30 days when the individual’s mental health was not good 
(1-30 days). 

PhysHlth Number of days in the past 30 days when the individual’s physical health was not good 
(1-30 days). 

DiffWalk Indicates difficulty walking (1: difficulty, 0: no difficulty). 
Sex Gender (1: male, 0: female). 
Age Age category, represented by 13 groups (e.g., 1: 18-24, 9: 60-64, 13: 80 or older). 

Education Education level on a scale from 1 to 6 (1: never attended or only kindergarten, 6: 
college graduate). 

Income Income level on a scale from 1 to 8 (1: less than $10,000, 5: less than $35,000, 8: 
$75,000 or more). 
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Figure 1 illustrates the correlations between various variables and diabetes, categorizing them into positive 
and negative correlations. Several variables exhibit a strong positive correlation with diabetes, including General 
Health (GenHlth), which shows the highest positive correlation, and High Blood Pressure (HighBP), which 
demonstrates a significant association with increased diabetes risk. Other variables, such as High Cholesterol 
(HighChol), Body Mass Index (BMI), and Heart Disease or Attack (HeartDiseaseorAttack), also show notable 
positive correlations. These strong correlations suggest that individuals with poorer general health, elevated blood 
pressure, high cholesterol, higher BMI, or a history of heart disease are at a higher risk of developing diabetes. 

 
 

 
 

Figure 1. Correlation analysis of key variables with diabetes. 
 

3.2. Data preprocessing 

In the data preparation phase, the dataset underwent several preprocessing steps to ensure the data quality and 
suitability for subsequent analysis. Initially, the dataset was examined for missing values, and it was confirmed 
that there were no missing values. The next step involved checking duplicate entries, as duplicates can introduce 
biases and affect the model’s performance. A total of 24,206 duplicate rows were detected and removed, resulting 
in a cleaned dataset with 229,474 entries. Following the cleanup, variables were grouped based on their 
characteristics. The target variable, Diabetes binary, indicates the presence or absence of diabetes. The remaining 
variables were classified into two groups: boolean variables and numerical variables. Boolean variables were 
identified as those with only two unique values, excluding the target variable, while numerical variables included 
all other features that did not fall into the boolean category. This categorization facilitated tailored preprocessing 
and analysis for each type of variable, optimizing the overall data preparation process. 

 
3.3. Classification algorithms 

In this study, various classification algorithms have been employed to predict diabetes outcomes effectively. 
Each algorithm was selected based on its suitability for handling the characteristics of the dataset and its 
performance in similar studies. The first algorithm utilized is GB, a powerful ensemble learning technique that 
builds models sequentially, where each new model attempts to correct the errors of the previous one. GB is 
particularly effective for datasets with imbalanced classes, as it focuses on learning from misclassified instances, 
thus enhancing predictive accuracy. The method combines weak learners, typically decision trees, into a strong 
learner, making it versatile for various classification tasks [21]. 

Another algorithm used in the research is RF. This algorithm operates by constructing multiple decision trees 
during training and outputting the mode of the classes for classification tasks. The inherent feature of RF to perform 
well with high-dimensional data and its robustness against overfitting makes it a valuable choice, especially in 
scenarios with substantial feature sets [22]. Furthermore, RF provides insights into feature importance, allowing 
for better understanding of the factors influencing diabetes prediction. 
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CB, which stands out for its ability to handle categorical features without extensive preprocessing, is another 
algorithm used in the research. CB implements an innovative approach to gradient boosting, reducing the risk of 
overfitting and improving generalization [23]. Its efficiency in managing large datasets while delivering 
competitive results in prediction accuracy is advantageous for this study’s objectives. 

XGB is recognized for its scalability and performance. XGB enhances the traditional gradient boosting 
framework by introducing parallel processing and regularization techniques, making it effective for handling 
complex datasets. Its capacity to optimize both training time and model performance through fine-tuning 
hyperparameters has proven beneficial in previous studies [24]. 

The KNN is a straightforward yet effective instance-based learning method. KNN classifies instances based 
on the majority class of their nearest neighbors in the feature space [25]. This algorithm is particularly useful for 
its simplicity and ease of interpretation, although it may require careful consideration of distance metrics and the 
number of neighbors to ensure optimal performance. 

GNB has been included for its probabilistic approach to classification. Based on Bayes’ theorem, GNB 
assumes independence among predictors, which simplifies the computation of posterior probabilities. Despite its 
simplifying assumptions, GNB has shown effective performance, especially in scenarios with high-dimensional 
data, making it a reliable choice for diabetes prediction tasks [26]. 

LR has been applied, serving as a fundamental statistical method for binary classification. LR models the 
probability of class membership using a logistic function, providing interpretability and efficiency [27]. Its 
application in healthcare-related predictive modeling is well-established, enabling insights into the relationships 
between features and the likelihood of diabetes occurrence. 

 
3.4. Addressing data imbalance 

Data imbalance is a common challenge in classification tasks, particularly when one class significantly 
outnumbers the other, as seen in the diabetes dataset used in this study, as shown in Figure 2. This imbalance can 
lead to biased models that perform well on the majority class but poorly on the minority class, ultimately 
compromising the model’s predictive accuracy and generalizability. To address this issue, it is essential to apply 
techniques that balance the dataset, ensuring that both classes are adequately represented during training. Three 
methods, namely SMOTE, RUS and ADASYN, were used in this study. 

SMOTE generates synthetic samples for the minority class by interpolating between existing minority 
instances, thus enhancing the representation of the minority class without duplicating data [28]. This approach 
helps to create a more balanced training set, improving the model’s ability to learn the characteristics of both 
classes effectively [29]. RUS addresses imbalance by reducing the size of the majority class through random 
selection, creating a more balanced dataset by removing excess majority samples. While this method effectively 
balances the classes, it can potentially discard valuable information from the majority class, making it essential to 
carefully assess its impact on the model’s performance [30]. ADASYN, an advanced variant of SMOTE, focuses 
on generating synthetic samples in areas where the minority class is underrepresented. This adaptive approach 
prioritizes instances that are harder to classify, thereby improving the model’s capacity to differentiate between 
classes in complex decision boundaries [31]. By applying these techniques, the study aims to mitigate the negative 
effects of class imbalance, enhance the predictive power of the models, and ensure strong and reliable performance 
across both diabetic and non-diabetic classifications. 

 
 

 
 
 

Figure 2. Distribution of diabetes status in the dataset (%). 
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3.5. Hyperparameter tuning 

Hyperparameters are configuration settings used to control the training process of a model, unlike model 
parameters which are learned from the data. Optimal tuning of these hyperparameters can significantly enhance a 
model’s ability to generalize well on unseen data, thereby improving its predictive accuracy. One of the most used 
methods for hyperparameter tuning is Grid Search. This technique involves exhaustively searching through a 
manually specified subset of the hyperparameter space to identify the best combination of parameters.  

During Grid Search, the model is trained and evaluated for each combination of hyperparameters specified in 
the grid, usually using cross-validation, to ensure vigorous performance across different data splits. Although 
computationally intensive, Grid Search provides a thorough exploration of the hyperparameter space, making it a 
reliable method for finding optimal settings [32]. For this study, we employed Grid Search to determine the best 
hyperparameters for RF, CB, XGB, KNN, GNB, LR, and GB models. The optimal hyperparameter settings 
identified for each model, which were found to maximize performance metrics such as accuracy, and AUC, are 
shown in Table 2. 
 

Table 2. Optimal hyperparameters for selected models determined via Grid Search. 
 

Model Hyperparameter Optimal Value 

RF 

Number of Trees (n_estimators) 96 
Maximum Depth (max_depth) 11 
Minimum Samples Split (min_samples_split) 3 
Minimum Samples Leaf (min_samples_leaf) 2 
Max Features (max_features) ‘sqrt’ 

CB 
Depth (depth) 7 
Learning Rate (learning_rate) 0.09 
Number of Estimators (iterations) 483 

XGB 

Number of Estimators (n_estimators) 94 
Learning Rate (learning_rate) 0.08 
Maximum Depth (max_depth) 5 
Subsample (subsample) 0.76 
Colsample by Tree (colsample_bytree) 0.84 

GB 

Number of Estimators (n_estimators) 94 
Learning Rate (learning_rate) 0.08 
Maximum Depth (max_depth) 5 
Subsample (subsample) 0.76 
Colsample by Tree (colsample_bytree) 0.84 

KNN 
Number of Neighbors (n_neighbors) 5 
Weight Function (weights) ‘uniform’ 
Algorithm ‘auto’ 

GNB Smoothing Parameter (var_smoothing) 1e-09 

LR 
Regularization Strength (C) 1.0 
Solver ‘lbfgs’ 
Maximum Iterations (max_iter) 100 

 
3.6. Feature selection 

By identifying and retaining only the most relevant features, researchers can improve the accuracy of their 
predictive models while reducing computational complexity. Effective feature selection helps mitigate the risk of 
overfitting, enhances model generalization, and clarifies the relationships between the input features and the target 
variable [33]. In this study, Lasso was employed as a feature selection method to identify the most significant 
predictors of diabetes. Lasso regression applies a penalty to the absolute size of the coefficients, effectively 
shrinking some of them to zero, which aids in selecting a subset of features that contribute the most to the predictive 
capability of the model [34]. 
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The strength of the relationship between each feature and the target variable, diabetes status, was assessed 
using correlation coefficients, categorized as follows: 

• 0.5 and above: Very strong relationship – This feature has a significant impact on the target variable. 
• 0.3 to 0.5: Strong relationship – This feature has a considerable effect on the target variable. 
• to 0.3: Moderate relationship – This feature has a moderate effect on the target variable. 
• 0.02 to 0.1: Weak relationship – This feature has a slight effect on the target variable. 
• 0 to 0.02: Very weak or negligible relationship – This feature has very little or no effect on the target 

variable. 
The relationship strengths of the features in relation to the target variable are categorized as follows: GenHlth 

(General Health) shows a very strong relationship with a score of 0.648. HighBP (High Blood Pressure) and BMI 
(Body Mass Index) demonstrate strong relationships, with scores of 0.532 and 0.406, respectively, along with Age 
at 0.395. HighChol (High Cholesterol) and DiffWalk exhibit moderate relationships, with scores of 0.298 and 
0.267. HeartDiseaseorAttack (Heart Disease or Attack), PhysHlth (Physical Health), Income, and PhysActivity 
(Physical Activity) reflect weak relationships, with scores of 0.188, 0.172, 0.152, and 0.142, respectively. Finally, 
Education, HvyAlcoholConsump (Heavy Alcohol Consumption), Stroke, MentHlth (Mental Health), and Smoker 
(Smoker Status) are categorized as having very weak relationships, with scores of 0.109, 0.068, 0.078, 0.056, and 
0.026, respectively. 

 
3.7. Z-score normalization 

Z-score normalization, also known as standardization, is a widely used technique in data preprocessing that 
transforms features to have a mean of zero and a standard deviation of one [35]. By normalizing the data, we 
enhance the performance of various machine learning algorithms that are sensitive to the scale of input features. 
The Z-score normalization formula is given in Equation 1. 

 

𝑍 =
𝓍 − 	𝜇
𝜎    (1) 

 
Where, 𝑍 is the standardized value, 𝓍 is the original value, 𝜇 is the mean of the feature, 𝜎 is the standard 

deviation of the feature. This transformation allows for comparison of scores across different features by placing 
them on a common scale. The resulting Z-scores indicate how many standard deviations a data point is from the 
mean, providing insights into the relative standing of each observation within its distribution. 

 
3.8. Cross validation 

In this study, 5-fold cross-validation was utilized as a method for evaluation of the predictive models. This 
technique systematically partitions the dataset into five equal-sized folds. For each iteration, one-fold is designated 
as the validation set while the remaining four folds are combined to form the training set [36]. This process is 
repeated five times, ensuring that each fold serves as the validation set exactly once. The use of 5-fold cross-
validation helps to mitigate overfitting by providing a more generalized assessment of model performance across 
different subsets of the data. By averaging the evaluation metrics obtained from each fold, a comprehensive 
estimate of the model’s predictive capability is achieved. The formula for calculating the performance metrics in 
5-fold cross-validation is given in Equation 2. 
 

Performance	Metric =
1
𝑘6Metric!

"

!#$

 (2) 

 
where 𝑘 represents the number of folds, and Metric! is the performance metric calculated for the 𝑖-th fold. 
 

3.9. Performance metrics 

In this study, the effectiveness of the predictive models was assessed using two primary performance metrics, 
which include Accuracy and AUC. Accuracy is a fundamental metric that indicates the proportion of correctly 
predicted instances among the total instances in the dataset [37]. It is shown in Equation 3. 
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Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (3) 

 
In this context, TP (True Positives) refers to the number of correctly predicted positive instances, while TN 

(True Negatives) indicates the number of correctly predicted negative instances. FP (False Positives) represents 
the number of incorrectly predicted positive instances, and FN (False Negatives) denotes the number of incorrectly 
predicted negative instances. 

AUC, referring to the Receiver Operating Characteristic (ROC) curve, measures the model’s ability to 
distinguish between classes [38]. AUC is calculated as shown in Equation 4. 

 

AUC = B TPR
$

%
𝑑(FPR) (4) 

 
TPR (True Positive Rate) represents sensitivity, which is calculated as shown in Equation 5. 
 

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (5) 

 
FPR (False Positive Rate) is calculated using the formula provided in Equation 6. 
 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 (6) 

 
4. Experimental Study and Findings 

 
In this section of the study, the focus is on addressing the challenges posed by imbalanced datasets in 

predictive modeling by evaluating the effectiveness of various balancing techniques and their influence on model 
performance. Imbalanced data poses significant challenges in predictive modeling, often leading to biased results 
favoring the majority class. To address this, the study explores several balancing methods, comparing their 
effectiveness in enhancing model performance. By systematically examining these techniques, the research aims 
to provide insights into the best practices for handling imbalanced data in predictive modeling contexts. The 
research was conducted in a structured manner, progressing through the following steps: First, analyses were 
performed on the original imbalanced dataset to establish baseline results. Subsequently, the dataset was balanced 
using RUS to assess the effect of reducing the majority class. The study then employed the ADASYN sampling 
technique to generate synthetic samples of the minority class, followed by the SMOTE to further balance the data. 
Finally, the impact of feature selection was evaluated on the dataset balanced specifically using the SMOTE 
technique, providing a comprehensive comparison of the methods.  

All model development and analysis were conducted using Python, taking advantage of its extensive libraries 
for machine learning and data processing. The primary libraries included scikit-learn for implementing machine 
learning algorithms, imbalanced-learn for handling imbalanced data through techniques like SMOTE, Pandas and 
NumPy for data manipulation and preprocessing, and Matplotlib and Seaborn for visualizations. Code was 
developed and executed in the Jupyter Notebook environment, allowing for iterative testing and refinement of the 
model. The models were trained on a PC with the following specifications: a Ryzen 7800x3D processor running 
at 4.2 GHz, an NVIDIA 4070 Ti GPU for accelerated computations, 32 GB of DDR5 RAM at 6000 MHz, and the 
Windows 11 operating system. Figure 3 presents the workflow of the study for diabetes prediction. 
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Figure 3. Workflow of the study for diabetes prediction model development. 
 
Figure 3 presents the workflow of the study for diabetes prediction model development, illustrating the 

sequential steps including data preprocessing, application of classification algorithms, implementation of data 
balancing techniques such as SMOTE, RUS, and ADASYN, and evaluation of the RF model’s performance 
without feature selection. The analyses conducted on the imbalanced dataset are presented in Table 3. 

 
Table 3. Analysis results on the imbalanced dataset. 

 

Model Training 
Accuracy 

Training 
AUC 

Test 
Accuracy Test AUC Unseen 

Accuracy 
Unseen 
AUC 

RF 0.983416 0.998015 0.842514 0.764099 0.914520 0.984570 
CB 0.864584 0.837797 0.859334 0.816036 0.587544 0.844531 
XGB 0.861199 0.835693 0.858288 0.812885 0.581085 0.842366 
KNN 0.874766 0.894319 0.835323 0.711257 0.653924 0.881901 
GNB 0.774726 0.768106 0.777802 0.768734 0.667854 0.782006 
LR 0.849264 0.803782 0.856502 0.807526 0.556091 0.816166 
GB 0.853205 0.814605 0.859421 0.816742 0.563201 0.825097 

 
Table 3 presents the analysis results for different models applied to the imbalanced dataset, focusing on key 

performance metrics, including testing and unseen data accuracy and AUC scores. The RF model stood out with 
the highest test accuracy of 0.8425 and a notable test AUC of 0.7641. Additionally, RF showed strong 
generalizability on unseen data, achieving an accuracy of 0.9145 and an AUC of 0.9846, which are the highest 
among all evaluated models. 

 
Table 4. Analysis results on the RUS-balanced dataset. 

 

Model Training 
Accuracy 

Training 
AUC 

Test 
Accuracy Test AUC Unseen 

Accuracy 
Unseen 
AUC 

RF 0.950887 0.992859 0.366350 0.603088 0.631913 0.690164 
CB 0.883607 0.939894 0.348658 0.547894 0.561971 0.575401 
XGB 0.880251 0.936391 0.356850 0.559054 0.565707 0.586397 
KNN 0.857530 0.944120 0.533075 0.633808 0.650868 0.689271 
GNB 0.818123 0.905807 0.535515 0.623527 0.609337 0.646294 
LR 0.845981 0.909715 0.490936 0.648997 0.626888 0.668883 
GB 0.862950 0.924309 0.411801 0.624394 0.593857 0.645043 

 
Table 4 displays the performance metrics of various models applied to the dataset balanced using the RUS 

technique. Among the models evaluated, the KNN model demonstrates relatively better performance, achieving a 
test accuracy of 0.5331 and a test AUC of 0.6338. KNN also shows competitive results on unseen data, with an 
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accuracy of 0.6509 and an AUC of 0.6893, which are among the highest in this configuration. Comparatively, the 
performance of models under RUS is generally lower than on the imbalanced dataset presented in Table 3. The 
RF, which previously excelled, shows a significant reduction in test accuracy (0.3664) and AUC (0.6031). This 
highlights the impact of balancing techniques like RUS, which, while mitigating the class imbalance, may also 
lead to information loss and reduced overall model performance. 

 
Table 5. Analysis results on the ADASYN-balanced dataset. 

 

Model Training 
Accuracy 

Training 
AUC 

Test 
Accuracy Test AUC Unseen 

Accuracy 
Unseen 
AUC 

RF 0.984322 0.999205 0.687860 0.779964 0.851847 0.942934 
CB 0.761683 0.846848 0.706728 0.813942 0.758895 0.836873 
XGB 0.769956 0.854639 0.704593 0.810164 0.760039 0.838074 
KNN 0.787682 0.875128 0.676225 0.749124 0.751321 0.820569 
GNB 0.695081 0.769712 0.731001 0.767885 0.701464 0.781333 
LR 0.732424 0.805529 0.720019 0.807786 0.741243 0.816781 
GB 0.740081 0.817603 0.710868 0.816711 0.747513 0.824921 

 
Table 5 presents the analysis results on the ADASYN-balanced dataset. Among the evaluated models, the RF 

model demonstrates superior performance, particularly evident in the test and unseen data. RF achieved a test 
accuracy of 0.6879 and an AUC of 0.7800. Furthermore, RF excelled on the unseen data with an accuracy of 
0.8518 and an AUC of 0.9429, highlighting its strong generalization capability and effectiveness in predicting 
outcomes in previously unseen instances. In comparison to other models, the RF model consistently showed higher 
AUC values across different data splits, reinforcing its reliability in handling the ADASYN-balanced dataset. 
Other models, such as CB and XGB, also performed well with relatively high AUC scores (above 0.81 on the test 
set and around 0.84 on unseen data), but RF’s superior unseen AUC of 0.9429 emphasizes its distinctive advantage 
in predictive performance. 

 
Table 6. Analysis results on the SMOTE-balanced dataset. 

 

Model Training 
Accuracy 

Training 
AUC 

Test 
Accuracy Test AUC Unseen 

Accuracy 
Unseen 
AUC 

RF 0.985237 0.998741 0.827915 0.758419 0.932534 0.980670 
CB 0.870121 0.947975 0.841119 0.800728 0.640775 0.829975 
XGB 0.862297 0.940380 0.843211 0.803321 0.624817 0.813572 
KNN 0.833034 0.869892 0.853364 0.661417 0.491912 0.675342 
GNB 0.840268 0.920058 0.835062 0.793648 0.619213 0.800814 
LR 0.856084 0.934584 0.836238 0.806860 0.637444 0.812978 
GB 0.552343 0.610201 0.530542 0.609531 0.557897 0.615662 

 
Table 6 shows the performance results on the SMOTE-balanced dataset. Among the evaluated models, RF 

stands out with consistently high performance across all metrics, particularly on unseen data. RF achieved a test 
accuracy of 0.8279 and a test AUC of 0.7584. Notably, RF excelled on unseen data with an accuracy of 0.9325 
and an AUC of 0.9807. The overall findings underscore the RF model’s strong adaptability and efficiency in 
handling imbalanced data, especially when balanced using SMOTE. 

Table 7 presents the performance metrics of the RF model on the dataset without any feature selection, 
illustrating how the model’s accuracy evolves as additional features are incrementally included. The RF model 
was selected for in-depth analysis across varying feature sets due to its consistently superior performance 
compared to other models in previous evaluations. The table reveals a clear trend: as the number of included 
features increases, there is a notable enhancement in model performance across all key metrics, particularly on 
unseen data. For example, with only a single feature, PhysHlth, the RF model achieved an unseen accuracy of 
0.5926 and an unseen AUC of 0.6100. As more features were incorporated, such as PhysHlth, BMI, MentHlth, the 
unseen accuracy improved to 0.6639 and the unseen AUC to 0.7295. This progression continues, with the model 
reaching an unseen accuracy of 0.9532 and an unseen AUC of 0.9877 when 21 features were utilized. The data 
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strongly suggests that the inclusion of additional relevant features enables the RF model to capture more complex 
patterns in the dataset, thereby significantly enhancing its predictive accuracy and generalization capability. The 
most prominent gains are observed in the unseen metrics, emphasizing the RF model’s improved ability to 
generalize to new data as feature richness increases. 
 

Table 7. Performance of the RF model without feature selection. 
 

Model Test 
Accuracy 

Test 
AUC 

Unseen 
Accuracy 

Unseen 
AUC Features No. of 

Features 
RF 0.690953 0.605988 0.592568 0.609960 [PhysHlth] 1.0 
RF 0.666768 0.695607 0.653518 0.712813 [PhysHlth, BMI] 2.0 
RF 0.648379 0.661457 0.663930 0.729464 [PhysHlth, BMI, MentHlth] 3.0 

RF 0.766385 0.724543 0.841030 0.928445 [PhysHlth, BMI, MentHlth, 
Age, HighBP, DiffWal... 9.0 

RF 0.793054 0.733316 0.884501 0.958254 [PhysHlth, BMI, MentHlth, 
Age, HighBP, DiffWal... 10.0 

RF 0.828700 0.757375 0.932114 0.980489 [PhysHlth, BMI, MentHlth, 
Age, HighBP, DiffWal... 15.0 

RF 0.832534 0.766317 0.940788 0.983989 [PhysHlth, BMI, MentHlth, 
Age, HighBP, DiffWal... 16.0 

RF 0.840988 0.777247 0.949998 0.987455 [PhysHlth, BMI, MentHlth, 
Age, HighBP, DiffWal... 20.0 

RF 0.842383 0.777327 0.953170 0.987694 [PhysHlth, BMI, MentHlth, 
Age, HighBP, DiffWal... 21.0 

 
The analysis reveals significant changes in model performance across various balancing methods and feature 

sets. The RF model demonstrated an accuracy of 91.45% and an AUC of 98.46% on the imbalanced dataset. 
However, when applying the RUS technique, the accuracy dropped to 36.63%, indicating a reduction of 
approximately 54.82%. In contrast, on the ADASYN-balanced dataset, RF’s accuracy improved to 68.79%, 
reflecting a gain of about 32.16%. Further, the SMOTE balancing technique yielded an accuracy of 82.79%, 
resulting in a notable increase of around 14.00%. Finally, the analysis without feature selection showed that 
including more features consistently enhanced the model’s accuracy, reaching 94.98% with 21 features, illustrating 
the importance of both balancing techniques and feature richness in predictive modeling.  

Figure 4 illustrates the comparison of unseen accuracy values for various models across different datasets, 
including the imbalanced dataset, RUS-balanced dataset, ADASYN-balanced dataset, and SMOTE-balanced 
dataset. The bar chart presents the performance of various machine learning models, highlighting their unseen 
accuracy values across the different datasets. This comparison highlights the impact of different balancing 
techniques on model efficacy, with a clear indication of how unseen accuracy varies across models and datasets, 
thereby underscoring the importance of appropriate data handling strategies in enhancing predictive performance 
in diabetes detection. 

 
 

Figure 4. Comparison of unseen accuracy across different machine learning models and datasets. 
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5. Discussion 

The present study investigates the impact of various balancing techniques and feature selection on predictive 
model performance in the context of imbalanced datasets, focusing on diabetes detection. The results highlight the 
challenges associated with class imbalance and the importance of employing appropriate methods to enhance 
model accuracy and generalization capabilities in predicting diabetes outcomes. 

The RF model consistently emerged as the top performer across various datasets, demonstrating a test 
accuracy of 91.45% and an AUC of 98.46% on the original imbalanced dataset. This strong performance can be 
attributed to RF’s ensemble learning approach, which effectively combines the predictions of multiple decision 
trees [39], thereby enhancing its ability to identify complex patterns in data relevant to diabetes detection. 
However, applying the RUS technique resulted in a drastic decrease in accuracy to 36.63%, underscoring the 
potential drawbacks of this method, particularly regarding information loss during data reduction [40]. RUS works 
by randomly removing instances from the majority class to balance the dataset, which can lead to the exclusion of 
valuable information that may be important for accurate predictions. This loss of data may reduce the model’s 
ability to learn important features associated with diabetes, such as specific physiological indicators or lifestyle 
factors that are often present in the majority class. Moreover, the imbalance created by removing majority class 
instances can lead to a distorted representation of the underlying data distribution, making it challenging for the 
model to generalize effectively to unseen data. This aligns with findings from recent studies, which have 
highlighted that naive approaches to balancing can compromise model performance and accuracy, especially in 
high-stakes domains like healthcare where accurate predictions are critical [41].  

The ADASYN and SMOTE techniques significantly enhanced the performance of the RF model, resulting in 
test accuracies of 68.79% and 82.79%, respectively. These improvements underscore the effectiveness of these 
advanced sampling methods in addressing class imbalance while maintaining critical data characteristics. The 
ADASYN technique, which focuses on generating synthetic minority instances based on the density of existing 
data points, allows for a more nuanced approach to balancing [42]. By adapting the number of generated instances 
to the local distribution of minority class samples, ADASYN effectively preserves the underlying structure of the 
data, thereby enhancing the model’s ability to capture complex relationships relevant to diabetes detection. This 
adaptive nature is particularly beneficial in healthcare applications, where nuanced variations in data can carry 
significant predictive power. Similarly, the SMOTE technique employs a synthetic oversampling strategy, creating 
new minority class instances by interpolating between existing samples. This method not only increases the 
number of minority class instances but also enriches the dataset by introducing variability, which can lead to 
improved model strength [43]. By ensuring that the minority class is adequately represented, SMOTE enhances 
the RF model’s capacity to generalize to unseen data, thus leading to improved accuracy and AUC metrics. These 
findings align with existing literature that emphasizes the efficacy of adaptive sampling methods in boosting 
predictive outcomes in imbalanced settings [44]. Such techniques facilitate a more balanced representation of data, 
enabling models to learn from a comprehensive view of the feature space associated with diabetes risk factors. 
This is fundamental, as accurate predictions are paramount in clinical settings, where misclassifications can have 
significant health implications. 

The analysis conducted without feature selection demonstrated a noteworthy positive correlation between the 
number of features included in the model and its performance metrics. Specifically, the RF model achieved an 
accuracy of 95.31% when utilizing 21 features. As the number of relevant features increases, the RF model benefits 
from a richer representation of the underlying data landscape. Each additional feature contributes unique 
information that can help the model discern subtle variations in risk factors associated with diabetes. For instance, 
including features such as BMI, age, and blood pressure allows the model to leverage known risk factors that 
significantly impact diabetes prevalence [45]. This is critical in medical domains, where the complexity of patient 
data often requires multifactorial approaches to achieve reliable predictions. The findings align with existing 
literature that emphasizes the importance of feature richness in improving predictive accuracy and generalization 
capabilities [46]. Studies have shown that models with a higher number of relevant features are better equipped to 
identify complex interactions among variables, thus enhancing their overall interpretability and predictive power 
[47]. In the context of healthcare, this becomes vital, as accurately capturing the multifaceted nature of health-
related data can lead to better risk assessments and more effective intervention strategies. 

As demonstrated in Table 8, numerous studies have explored diverse machine learning models and datasets 
for diabetes detection, yielding varied levels of accuracy. For instance, the generalized regression neural network 
(GRNN) model by Zhang et al. [48] achieved a 75.49% accuracy on the CDC BRFSS2015 dataset, while Al-Absi 
et al. [49] attained a high 92% accuracy using the DiaNet v2 model on the Qatar Biobank dataset. Moreover, 
ensemble approaches, such as those used by Hasan et al. [18], and model combinations, like the LR and RF 
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ensemble applied by Maniruzzaman et al. [19], also showcased strong performance, reaching accuracies of 94.3% 
and 94.25%, respectively. However, the proposed method in this study, which utilized RF along with SMOTE on 
the CDC BRFSS2015 dataset, outperformed previous approaches with an accuracy of 95.31%. This result 
underscores the efficacy of RF in conjunction with SMOTE for managing imbalanced datasets and improving 
prediction accuracy in diabetes detection. The superior performance of our model may be attributed not only to 
the dataset choice and preprocessing steps but also to the optimized parameter tuning process applied. Specifically, 
Grid Search was employed to identify the best hyperparameters for the RF model, ensuring that it was finely tuned 
for optimal performance. Furthermore, cross-validation was implemented to validate the stability of the model, 
providing a reliable accuracy assessment across different data subsets.  

The extensive data preprocessing steps in this study are among the other factors contributing to the higher 
accuracy compared to other studies in the field. The dataset’s integrity was carefully examined, with missing values 
and duplicate entries eliminated to prevent the introduction of noise or bias. Additionally, variables were 
categorized based on their characteristics allowing for tailored preprocessing methods that optimized data handling 
and analysis for each type. Through this meticulous preparation, the model’s ability to detect nuanced patterns was 
enhanced, contributing to the stability and reliability of the predictive framework and ultimately yielding superior 
accuracy in diabetes detection. 

 
Table 8. Performance results of studies on diabetes detection. 

 
Reference Year Method Dataset Used Accuracy 
Zhang et al. [48] 2024 GRNN CDC BRFSS2015 Dataset GRNN: 75.49% 
Al-Absi et al. [49] 2024 DiaNet v2 Qatar Biobank (QBB) Dataset DiaNet v2: 92% 

Maulana et al. [50] 2023 XGB Pima Indians Diabetes 
Dataset XGB: 82.68% 

Khaleel and Al-
Bakry [51] 2023 LR Pima Indians Diabetes 

Dataset LR: 94% 

Shin et al. [12] 2022 XGB, RF Health Promotion Center of 
Seoul St. Mary’s Hospital 

XGB: 85.8% (62 
variables), 80.7% (27 
variables) 

Khanam and Foo 
[16] 2021 LR, SVM, CNN Pima Indians Diabetes 

Dataset CNN: 88.6% 

Sivaranjani et al. 
[17] 2021 SVM, RF Pima Indians Diabetes 

Dataset RF: 83% 

Hasan et al. [18] 2020 RF, XGB, 
Ensemble 

Pima Indians Diabetes 
Dataset XGB: 94.3% 

Maniruzzaman et 
al. [19] 2020 LR, NB, DT, 

Adaboost, RF 
National Health and Nutrition 
Examination Survey LR + RF: 94.25%  

Yahyaoui et al. [15] 2019 SVM, RF, CNN Pima Indians Diabetes 
Dataset RF: 83.67% 

Mir and Dhage [13] 2018 NB, SVM, RF, 
Simple CART 

Pima Indians Diabetes 
Dataset SVM: 79.13% 

Sisodia and Sisodia 
[14] 2018 DT, SVM, NB Pima Indians Diabetes 

Dataset NB: 76.30% 

This study - RF + SMOTE CDC BRFSS2015 Dataset RF: 95.31% 
 

6. Conclusion 
 

This study underscores the critical role of advanced data-balancing techniques and feature selection in 
enhancing predictive model accuracy for diabetes detection, particularly in imbalanced datasets. Unlike prior 
research that often overlooks the impact of data imbalance on model accuracy, this work uniquely integrates 
multiple balancing methods with a comprehensive machine learning framework to address this issue 
systematically. The findings reveal that the RF model, combined with the SMOTE technique, achieved the highest 
predictive performance, highlighting SMOTE’s effectiveness in mitigating class imbalance while maintaining 
essential data characteristics. In contrast, methods like RUS showed a significant drop in accuracy due to 
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information loss, emphasizing the potential drawbacks of certain balancing techniques and the need for careful 
method selection to avoid compromising data quality.  

Another novel aspect of this study lies in its evaluation of feature selection through Lasso regularization, 
which demonstrated a clear positive correlation between the number of relevant features included and model 
performance. The findings reveal that as more relevant features are integrated, predictive accuracy improves, 
underscoring the importance of comprehensive feature inclusion in diabetes detection. Prioritizing relevant 
variables through this approach strengthens predictive capability and provides an efficient method for selecting 
features in medical diagnostics. This comprehensive integration of data balancing and feature selection represents 
a methodological advancement in developing high-performing and reliable models for healthcare applications. 
The insights from this study contribute valuable knowledge to the field by identifying optimal data handling 
strategies, particularly emphasizing the utility of SMOTE, to enhance predictive accuracy and support early 
diabetes diagnosis for improved health outcomes. 

Looking ahead, future research could explore several avenues to build on the findings of this study. First, 
investigating the effectiveness of additional advanced balancing techniques, such as ensemble methods or 
generative adversarial networks, could provide further insights into improving model performance. Second, 
applying the developed methodologies to diverse populations and various healthcare settings would help validate 
the generalizability of the proposed models. Additionally, examining the interplay between feature selection 
methods and different algorithms could reveal more optimal combinations tailored for specific datasets. Finally, 
longitudinal studies could assess the real-world impact of these predictive models on early diabetes diagnosis and 
patient outcomes, thereby contributing to evidence-based practices in healthcare. 
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