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Abstract 

 

The present manuscript aims to extend a Tauberian theorem previously established for 

the Cesàro and weighted mean summability methods of single sequences in ordered 

spaces to the logarithmic summability method, also known as the (ℓ,1,1) method, for 

double sequences. In order to achieve this, we present several Tauberian conditions 

which address the  𝑂𝐿-oscillatory behavior of a double sequence (𝑠𝑚𝑛) with respect to 

logarithmic summability in certain senses. These conditions facilitate the transition from 

(ℓ,1,1), (ℓ,1,0), and (ℓ,0,1) summability to P-convergence in ordered spaces. 

 

 

Keywords: Double sequences, ordered linear spaces, slowly decreasing sequences with 

respect to (ℓ,1,1), Tauberian conditions, Tauberian theorems, logarithmic summability 

method 

 

 

Sıralı uzaylarda logaritmik toplanabilme için bir Tauber tipi 

teorem 
 

 

Öz 

 

Bu çalışma daha önce sıralı uzaylardaki tek katlı dizilerin Cesàro ve ağırlıklı ortalama 

toplanabilirlik yöntemleri için oluşturulmuş Tauber tipi teoremleri, iki katlı diziler için 

logaritmik toplanabilirlik yöntemine, diğer adıyla (ℓ,1,1) yöntemine genişletmeyi 

amaçlar. Bu amaçla, çeşitli anlamlarda logaritmik toplanabilirliğe göre iki katlı bir 
(𝑠𝑚𝑛) dizinin 𝑂𝐿-salınım davranışını ele alan birkaç Tauber tipi koşul sunuyoruz. Bu 

koşullar, sıralı uzaylarda dizinin (ℓ,1,1), (ℓ,1,0) ve (ℓ,0,1) toplanabilirliğinden P-

yakınsaklığına geçişine olanak sağlar. 
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Anahtar kelimeler: Çift diziler, sıralı doğrusal uzaylar, (ℓ,1,1) metoduna göre yavaş 

azalan diziler, Tauber koşullar, Tauber teoremler, logaritmik toplanabilme metodu   

 

 

1. Introduction 

 

The study of summability methods has played a significant role in the advancement of 

mathematical analysis, particularly in understanding the convergence behavior of 

sequences and series. Among these methods, logarithmic summability has come to attract 

the attention of many researchers due to the influence of the pioneering work of Ishiguro 

[1] in the early 1960s, as well. His foundational papers, such as [1] and [2], laid the 

groundwork for further explorations into the properties and implications of logarithmic 

summability. With these seminal works, Ishiguro initiated a series of investigations that 

have examined Tauberian theorems, which provide equivalences between convergence 

and logarithmic summability method (ℓ, 1) for the single sequences or method (𝐿, 1) for 

the power series. In [1], Ishiguro proved that every summable sequence (𝑠𝑛) in terms of 

method (ℓ, 1) is also summable in terms of method (L, 1) to the same value besides 

the converse of that is not always true. In the following article, Ishiguro [2] offered a 

condition 𝑠𝑛 = 𝑂𝐿(1) for that to be true. Drawing inspiration from Hardy’s [3] and 

Szász’s [4] works in 1963, Ishiguro [5] indicated that if a sequence (𝑠𝑛) is logarithmic  

summable (ℓ, 1) (or (L, 1)) to 𝜉and 𝜔𝑛
(0)

= 𝑜(1), where 

  ω𝑛
(0)(𝑠) = (𝑛 + 1)ℓ𝑛−1(𝑠𝑛 − 𝑠𝑛−1) ∼ 𝑛 log 𝑛 (𝑠𝑛 − 𝑠𝑛−1),  

then it also converges to same value. In the latter of his consecutive papers, Ishiguro 

[6] insured the equivalence of the Cesàro and (ℓ, 1) methods, provided 

that log 𝑛 (𝜎𝑛 − 𝜉) = 𝑜(1), where 𝜎𝑛 denotes the logarithmic means of sequence 
(𝑠𝑛). In sequel, Kwee [7] demonstrated that the necessary condition for convergence 

of a sequence that is logarithmic summable (ℓ, 1) is 

𝑙𝑖𝑚 𝑖𝑛𝑓𝑚→∞(𝑠𝑛 − 𝑠𝑚) ≥ 0    whenever  𝑛 > 𝑚 → ∞  and 
log 𝑛

log 𝑚
→ 1.                         (1)              

To construct equivalence of the logarithmic methods (ℓ, 1) and (𝐿, 1), Kwee [8] 

presented some Tauberian theorems dealing with implication from the method (𝐿, 1) 

to the method (ℓ, 1) under conditions such as 𝑠𝑛 = 𝑂𝐿(1), 𝑠𝑛 − 𝜎𝑛 = 𝑂𝐿(1), the 

condition (1) 

1

𝑛 + 1
∑ 𝑠𝑘

𝑛

𝑘=0

= 𝑂(1)    or    𝜐𝑛 ≔ ∑
𝜎𝑘

𝑘 + 1

𝑛

𝑘=0

= 𝑜(log2 𝑛),                                        (2) 

independently from each other. In the following article, Kwee [9] generalized some 

Tauberian results, obtained by Ishiguro [1] and Kwee [7-8], from the logarithmic methods 

(ℓ, 1) and (𝐿, 1) to (ℓ, 𝛼) and (𝐿, 𝛼). In subsequent years, researchers such as Rangachari 

and Sitaraman [10], Kaufman [11], Kohanovskiĭ [12-13], and Burljai [14] broadened 

Tauberian theorems’ peculiar to logarithmic methods scope in certain senses supporting 

from Ishiguro’s and Kwee’s contributions. These findings fostered a deeper understanding 

of its applications in mathematical analysis, illuminating conditions under which 

logarithmic summability could yield convergence. 

 

In the later years, the works proceeded with contributions from Móricz [15-16] based upon 

the finding of necessary and sufficient conditions for the logarithmic summability of 

sequences and its interaction with statistical methods. Móricz [15] established two results 

dealing with implication from the statistical logarithmic summability (ℓ, 1) to 

convergence under conditions controlling 𝑂 and 𝑂𝐿-oscillatory behavior of sequence. 
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After Móricz [16] introduced the concept of slow oscillation of a sequence with respect to 

summability (ℓ, 1), and indicated to be equivalent to (1), the author presented necessary 

and sufficient Tauberian conditions under which the convergence follows from its 

logarithmic summability (ℓ, 1). 

 

More recent studies such as Alghamdi et al. [17], Totur and Okur [18], Sezer and Çanak 

[19-20], Çınar and Çanak [21], Okur [22] enlarged the scope of logarithmic summability 

from various aspects. In [17, 21], Alghamdi et al. and Çınar and Çanak discussed the 

relation between statistical logarithmic summability and statistical logarithmic 

convergence. Totur and Okur [18] investigated the logarithmic summability methods of 

numerical sequences and their applications such as Tauberian theorems. Using the sequence 

(𝜔𝑛
(𝑟)(𝑠)) defined recursively instead of (𝜔𝑛

(0)(𝑠)), Sezer and Çanak [19] generated some 

Tauberian results based on this sequence. These investigations not only reaffirm the 

standing of logarithmic summability in classical mathematical analysis but also emphasize 

its applicability to current topics through statistical extensions and the development of new 

Tauberian conditions. 

 

In the present paper, our aim is to expand a Tauberian theorem for the Cesàro method due 

to Maddox [23] and the weighted mean method due to Çanak [24] in ordered spaces to 

the (ℓ, 1, 1), summability method of double sequences. These researchers formulate the 

related results as follows, respectively: 

 

Theorem 1. ([23]) Let (𝑋, ≤) be an ordered linear space over ℝ and suppose that a 

sequence (𝑠𝑛) is Cesàro summable to 𝜉 ∈ 𝑋, relative to 𝜏 ∈ 𝑋. If (𝑠𝑛) is slowly 

decreasing, relative to 𝜏 ∈ 𝑋, then (𝑠𝑛) is convergent to 𝜉, relative to 𝜏 ∈ 𝑋.  
 

Theorem 2. ([24]) Let (𝑋, ≤) be an ordered linear space over ℝ and let 

  𝑙𝑖𝑚 𝑖𝑛𝑓𝑚→∞
𝑃𝜆𝑚

𝑃𝑚
> 1     for all    𝜆 > 1,                                                                                    (3) 

be satisfied. Suppose that a sequence (𝑠𝑛) is summable by the weighted mean method to 

𝜉 ∈ 𝑋, relative to 𝜏 ∈ 𝑋. If (𝑠𝑛) is slowly decreasing, relative to 𝜏 ∈ 𝑋, then (𝑠𝑛) is 

convergent to 𝜉, relative to 𝜏 ∈ 𝑋.  
 

In case 𝑝𝑛 = 1/(𝑛 + 1), the weighted mean method, or known as the (𝑁, 𝑝) method, 

leads to the logarithmic method (ℓ, 1) for single sequences where 𝑃𝑛~ log 𝑛 for all 𝑛 ∈
𝑁. 
 

Accordingly, we present several Tauberian conditions, addressing 𝑂𝐿-oscillatory 

behavior of a double sequence (𝑠𝑚𝑛) with respect to logarithmic summability in certain 

senses, from the (ℓ, 1, 1), (ℓ, 1,∗), and (ℓ,∗, 1) summability to 𝑃-convergence in ordered 

spaces.  

 

This article highlights key findings from the existing literature while proposing a new 

technique for research on the topic of logarithmic summability and its associated 

Tauberian theorems, as a consequently aims to synthesize these developments. By 

gathering the mentioned studies from historical and current perspectives, we seek to 

contribute to the ongoing process on investigating the relationships between logarithmic 

summability method and convergence. 
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2. Preliminaries 

 

A double sequence 𝑠 = (𝑠𝑚𝑛) is defined as a function from ℕ × ℕ into either the set of 

ℝ or ℂ. The number 𝑠𝑚𝑛 represents the value of the function 𝑠 at a point (𝑚, 𝑛) ∈ ℕ × ℕ 

and is known as the (𝑚, 𝑛)-term of the double sequence. 

 

A double sequence 𝑠 = (𝑠𝑚𝑛) is convergent in the sense of Pringsheim, or simply, 𝑃-

convergent to ξ if for all ε > 0 there exists a 𝑛0 = 𝑛0(ε) ∈ ℕ such that |𝑠𝑚𝑛 − ξ| < 

whenever 𝑚, 𝑛 ≥ 𝑛0 (see [25]). The number ξ is referred to as the 𝑃 −limit of 𝑠, denoted 

by 𝑃 − lim
𝑚,𝑛→∞

𝑠𝑚𝑛 = ξ, where both 𝑚 and 𝑛 approach to ∞ independently. 

 

A double sequence (𝑠𝑚𝑛) is considered bounded (or one-sided bounded) if there exists a 

positive constant 𝑀 such that |𝑠𝑚𝑛| ≤ 𝑀 (or 𝑠𝑚𝑛 ≥ −𝑀) for all non-negative values of 

𝑚 and 𝑛. 
It is important to note that a double sequence (𝑠𝑚𝑛) may converge even if it is not a 

bounded function of 𝑚 and 𝑛. In other words, 𝑃-convergence of (𝑠𝑚𝑛) does not 

necessarily imply that its terms are bounded, which contrasts with the behavior observed 

in single sequences. For example, the sequence (𝑠𝑚𝑛) defined by 

𝑠𝑚𝑛 = {
9𝑛+1, 𝑖𝑓 𝑚 = 3, 𝑛 ∈ ℕ,

9𝑚+3, 𝑖𝑓 𝑛 = 5, 𝑚 ∈ ℕ,
1,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

is 𝑃-convergent, but it is unbounded. 

 

Notation 3. Let (𝑠𝑚𝑛) be a double sequence. 

(i) The symbols 𝑠𝑚𝑛 = 𝑂(1) and 𝑠𝑚𝑛 = 𝑂𝐿(1) mean that |𝑠𝑚𝑛| ≤ 𝐻 and 𝑠𝑚𝑛 ≥ 𝑀 

for some constants 𝐻, 𝑀 > 0 and each 𝑚, 𝑛 ≥ 𝑛0. 
(ii) The symbol 𝑠𝑚𝑛 = 𝑜(1) means that 𝑠𝑚𝑛 → 0 𝑎𝑠 𝑚, 𝑛 → ∞. 

 

A double sequence (𝑠𝑚𝑛) is said to be the logarithmic summable (of order 1), or briefly, 
(ℓ, 1, 1) summable to ξ if the double sequence (σ𝑚𝑛

11 ) defined by  

σ𝑚𝑛
11 ≔

1

ℓ𝑚ℓ𝑛
∑ ∑

𝑠𝑖𝑗

(𝑖 + 1)(𝑗 + 1)

𝑛

𝑗=0

𝑚

𝑖=0

   where   ℓ𝑚 = ∑
1

𝑖 + 1
~

𝑚

𝑖=0

log 𝑚,                          (4) 

is 𝑃-convergent to ξ and it is denoted by P − lim σmn
11 = 𝜉 or equivalently, 𝑃 − lim 𝑠𝑚𝑛 =

 𝜉 (ℓ, 1, 1). Similarly, (ℓ, 1,∗) and (ℓ,∗, 1)  summable sequences are respectively defined 

via double sequences (σ𝑚𝑛
10 ) and (σ𝑚𝑛

01 ) as 

σ𝑚𝑛
10 ≔

1

ℓ𝑚
∑

𝑠𝑖𝑛

(𝑖 + 1)

𝑚

𝑖=0

    and    σ𝑚𝑛
01 ≔

1

ℓ𝑛
∑

𝑠𝑚𝑗

(𝑗 + 1)

𝑛

𝑗=0

 

for all 𝑚, 𝑛 ∈ ℕ. If a bounded double sequence is 𝑃-convergent to ξ, then it is also (ℓ, 1, 1) 

summable to the same value. However, the opposite of this implication is not generally 

true. The question comes to mind if there are certain conditions on the term 𝑠𝑚𝑛 under 

which its (ℓ, 1, 1) summability implies its 𝑃-convergence. The condition 𝑇{𝑠𝑚𝑛} which 

makes such a situation possible is called a Tauberian condition. The resulting theorem, 

which states that 𝑃-convergence follows from its (ℓ, 1, 1) summability and 𝑇{𝑠𝑚𝑛}, is 

called a Tauberian theorem (see [26]). 
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For a double sequence (𝑠𝑚𝑛), we define 

Δ11𝑠𝑚𝑛 ≔ Δ10Δ01𝑠𝑚𝑛 = Δ10(Δ01𝑠𝑚𝑛) = Δ01(Δ10𝑠𝑚𝑛)  

                = 𝑠𝑚𝑛 − 𝑠𝑚,𝑛−1 − 𝑠𝑚−1,𝑛 + 𝑠𝑚−1,𝑛−1,  
Δ10𝑠𝑚𝑛 ≔ 𝑠𝑚𝑛 − 𝑠𝑚−1,𝑛,  
Δ01𝑠𝑚𝑛 ≔ 𝑠𝑚𝑛 − 𝑠𝑚,𝑛−1  

for all 𝑚, 𝑛 ∈ ℕ. 
 

The double logarithmic Kronecker identity for a sequence (𝑠𝑚𝑛) are defined via 

(𝑉𝑚𝑛
11(Δ11𝑠)) as follows: 

 𝑠𝑚𝑛 − σ𝑚𝑛
10 (𝑠) − σ𝑚𝑛

01 (𝑠) + σ𝑚𝑛
11 (𝑠) = 𝑉𝑚𝑛

11(Δ11𝑠), 
where 

𝑉𝑚𝑛
11(Δ11𝑠) ≔

1

ℓ𝑚ℓ𝑛
∑ ∑ ℓ𝑖−1ℓ𝑗−1

𝑛

𝑗=1

𝑚

𝑖=1

Δ11𝑠𝑖𝑗 

for all 𝑚, 𝑛 ∈ ℕ (see [27, 28]). The double sequence (𝑉𝑚𝑛
11(Δ11𝑠)) is the (ℓ, 1,1) mean of 

((𝑚 + 1)(𝑛 + 1)ℓ𝑚−1ℓ𝑛−1Δ11𝑠𝑚𝑛) and it is called the logarithmic generator sequence 

of (𝑠𝑚𝑛) in the sense (1,1). 
 

Throughout this work, we assume an ordered linear space (𝑋, ≤) over ℝ denoting the 

zero element by 𝑜 and a given non-negative element by τ. We also consider that (𝑠𝑚𝑛) is 

an element of double sequences class in 𝑋. 
 

Now, we give concepts of 𝑃-convergence and slow decrease with respect to logarithmic 

summability in certain senses for double sequences in 𝑋. In the literature, the term “slow 

decrease” was defined by Schmidt [29] in the case of the Cesàro summability of real 

sequences. Motivated by the definition of “slow decrease” with respect to Cesàro 

summability, Móricz [10] introduced the concept of slow decrease of a real sequence with 

respect to summability (ℓ, 1).  
 

A double sequence (𝑠𝑚𝑛) in 𝑋 is said to be 𝑃-convergent to ξ ∈ 𝑋, relative to τ ∈ 𝑋, if 
for all ε > 𝑜 there exists 𝑛0 = 𝑛0(ε) ∈ ℕ such that 

−ετ ≤ 𝑠𝑚𝑛 − ξ ≤ ετ whenever 𝑚, 𝑛 > 𝑛0. 
 

A double sequence (𝑠𝑚𝑛) in 𝑋 is said to be slowly decreasing with respect to logarithmic 

summability in sense (1,1), relative to τ ∈ 𝑋, if for all ε > 𝑜 there exist 𝑛0 = 𝑛0(ε) ∈ ℕ, 

and λ = λ(ε) > 1 such that 

𝑠𝑖𝑗 − 𝑠𝑖𝑛 − 𝑠𝑚𝑗 + 𝑠𝑚𝑛 ≥ −ετ whenever 𝑛0 ≤ 𝑚 < 𝑖 ≤ 𝑚λ  and  𝑛0 ≤ 𝑛 < 𝑗 ≤ 𝑛λ, 

and slowly decreasing with respect to logarithmic summability in sense (1,0), relative to 

τ ∈ 𝑋, if  
𝑠𝑖𝑛 − 𝑠𝑚𝑛 ≥ −ετ whenever 𝑛0 ≤ 𝑚 < 𝑖 ≤ 𝑚λ  and  𝑛0 ≤ 𝑛, 
and slowly decreasing with respect to logarithmic summability in sense (0,1), relative to 

τ ∈ 𝑋, if  
𝑠𝑚𝑗 − 𝑠𝑚𝑛 ≥ −ετ whenever 𝑛0 ≤ 𝑚  and  𝑛0 ≤ 𝑛 < 𝑗 ≤ 𝑛λ. 

Notice that when 𝑋 is the real linear space ℝ with its usual order, relative to 1, then these 

definitions reduce to the classical definitions of 𝑃-convergence and slow decrease of 

double sequences with respect to logarithmic summability in certain senses. 
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In a general ordered linear space (𝑋, ≤), we consider a given series ∑ ∑ 𝑎𝑚𝑛
∞
𝑛=0

∞
𝑚=0  with 

its double sequence of partial sums (𝑠𝑚𝑛). The logarithmic means of (𝑠𝑚𝑛) are defined 

by (4). 

 

 

3. Main results 

 

In this section, we formulate our main result for the (ℓ, 1,1) summable double sequences 

in (𝑋, ≤) as follows: 

 

Theorem 4. Let (𝑋, ≤) be an ordered linear space over the real numbers. Suppose that a 

sequence (𝑠𝑚𝑛) is (ℓ, 1,1), (ℓ, 1,∗) and (ℓ,∗ ,1) summable to ξ ∈ 𝑋, relative to τ ∈ 𝑋. If 
(𝑠𝑚𝑛) is slowly decreasing with respect to logarithmic summability in senses (1,1), (1,0), 
and (0,1), relative to τ ∈ 𝑋, then (𝑠𝑚𝑛) is 𝑃-convergent to ξ, relative to τ ∈ 𝑋. 
Proof:Without loss of generality, we suppose that ξ = 𝑜. Otherwise, we consider the 

series 

(𝑎00 − ξ) + ∑ 𝑎𝑚0

∞

𝑚=1

+ ∑ 𝑎0𝑛

∞

𝑛=1

+ ∑ ∑ 𝑎𝑚𝑛

∞

𝑛=1

∞

𝑚=1

. 

Set the double sequence (𝑡𝑚𝑛
11 ) as  

𝑡𝑚𝑛
11 ≔ ∑ ∑ ℓ𝑖−1ℓ𝑗−1

𝑛

𝑗=1

𝑚

𝑖=1

Δ11𝑠𝑖𝑗                                                                                                   (5) 

for all 𝑚, 𝑛 ≥ 1. Since we have  

Δ11σ𝑚𝑛
11 = σ𝑚𝑛

11 − σ𝑚−1,𝑛
11 − σ𝑚,𝑛−1

11 + σ𝑚−1,𝑛−1
11 =

𝑡𝑚𝑛
11

(𝑚 + 1)ℓ𝑚ℓ𝑚−1(𝑛 + 1)ℓ𝑛ℓ𝑛−1
 (6) 

for 𝑚, 𝑛 ≥ 1, it follows from (6) that 

𝜎
[𝑚𝜆],[𝑛𝜆]
11 − 𝜎

[𝑚𝜆],𝑛
11 − 𝜎

𝑚,[𝑛𝜆]
11 + 𝜎𝑚𝑛

11 = ∑ ∑ Δ11

[𝑛𝜆]

𝑗=𝑛+1

[𝑚𝜆]

𝑖=𝑚+1

𝜎𝑖𝑗
11                                                     

= ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
𝑡𝑖𝑗

11

[𝑛𝜆]

𝑗=𝑛+1

[𝑚𝜆]

𝑖=𝑚+1

                                          (7) 

for λ >  1 where [𝑚λ] denotes the integer part of 𝑚λ. Let ε > 𝑜 be given. Define ε′ =

ε/ζ, where ζ = [2λ2/(λ − 1)]2 for λ > 1.  It is known that (𝑠𝑚𝑛) is slowly decreasing 

with respect to logarithmic summability in senses (1,1), (1,0), and (0,1), relative to τ ∈
𝑋,  there exist 𝑛1 = 𝑛1(ε′), 𝑛2 = 𝑛2(ε′) ∈ ℕ and λ > 1 such that 

𝑠𝑖𝑛 − 𝑠𝑚𝑛 ≥ − (
ε′

40
) τ        whenever   𝑛1 < 𝑚 < 𝑖 ≤ 𝑚λ  and  𝑛1 ≤ 𝑛, 

𝑠𝑚𝑗 − 𝑠𝑚𝑛 ≥ − (
ε′

40
) τ        whenever   𝑛2 < 𝑛 < 𝑗 ≤ 𝑛λ  and  𝑛2 ≤ 𝑚, 

 

and additionally there exist 𝑛0 = 𝑛0(ε′) = min{ 𝑛1, 𝑛2} ∈ ℕ and λ > 1 such that 

𝑠𝑖𝑗 − 𝑠𝑖𝑛 − 𝑠𝑚𝑗 + 𝑠𝑚𝑛 ≥ − (
ε′

40
) τ   whenever   𝑛0 < 𝑚 < 𝑖 ≤ 𝑚λ,   𝑛0 < 𝑛 < 𝑗 ≤ 𝑛λ. 

 

Since (σ𝑚𝑛
11 ) is 𝑃-convergent to 𝑜, relative to τ ∈ 𝑋, it follows from (7) that 
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− (
ε′

40
) τ ≤ ∑ ∑

1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
𝑡𝑖𝑗

11 ≤ (
ε′

40
) 𝜏 

[𝑛λ]

𝑗=𝑛+1

                               

[𝑚λ]

𝑖=𝑚+1

(8) 

 

 

for sufficiently large 𝑚, 𝑛. Define the double sequence (γ𝑚𝑛) as 

γ𝑚𝑛 ≔ ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

 

for sufficiently large 𝑚, 𝑛. Then, we obtain 

γ𝑚𝑛𝑡𝑚𝑛
11 = ∑ ∑

1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
𝑡𝑚𝑛

11

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

 

= ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
𝑡𝑖𝑗

11

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
(𝑡𝑚𝑗

11 − 𝑡𝑚𝑛
11 )

[𝑛𝜆]

𝑗=𝑛+1

[𝑚𝜆]

𝑖=𝑚+1

 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1

(𝑡𝑖𝑛
11 − 𝑡𝑚𝑛

11 )

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
(𝑡𝑖𝑗

11 − 𝑡𝑖𝑛
11 − 𝑡𝑚𝑗

11 + 𝑡𝑚𝑛
11 )

[𝑛𝜆]

𝑗=𝑛+1

[𝑚𝜆]

𝑖=𝑚+1

 

≤ (
ε′

20
) τ − ∑ ∑

1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
(𝑡𝑚𝑗

11 − 𝑡𝑚𝑛
11 )

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1

(𝑡𝑖𝑛
11 − 𝑡𝑚𝑛

11 )

[𝑛𝜆]

𝑗=𝑛+1

[𝑚𝜆]

𝑖=𝑚+1

 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
(𝑡𝑖𝑗

11 − 𝑡𝑖𝑛
11 − 𝑡𝑚𝑗

11 + 𝑡𝑚𝑛
11 )

[𝑚λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

                              (9) 

for sufficiently large 𝑚, 𝑛. It is clear that 

𝑡𝑚𝑛
11 = ∑ ∑ ℓ𝑖−1

𝑛

𝑗=1

𝑚

𝑖=1

ℓ𝑗−1Δ11𝑠𝑖𝑗 = ∑ ℓ𝑖−1 ∑ ℓ𝑗−1 

𝑛

𝑗=1

𝑚

𝑖=1

Δ01(Δ10𝑠𝑖𝑗) 

= ∑ ℓ𝑖−1 (ℓ𝑛Δ10𝑠𝑖𝑛 − ∑
1

(𝑗 + 1)
Δ10

𝑛

𝑗=0

𝑠𝑖𝑗)

𝑚

𝑖=1

 

 

= ℓ𝑛 ∑ ℓ𝑖−1

𝑚

𝑖=1

Δ10𝑠𝑖𝑛 − ∑
1

(𝑗 + 1)
∑ ℓ𝑖−1

𝑚

𝑖=1

𝑛

𝑗=0

Δ10𝑠𝑖𝑗 
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= ℓ𝑛 (ℓ𝑚𝑠𝑚𝑛 − ∑
1

(𝑖 + 1)
𝑠𝑖𝑛

𝑚

𝑖=0

) − ∑
1

(𝑗 + 1)

𝑛

𝑗=0

(ℓ𝑚𝑠𝑚𝑗 − ∑
1

(𝑖 + 1)
𝑠𝑖𝑗

𝑚

𝑖=0

) 

 

= ℓ𝑚ℓ𝑛𝑠𝑚𝑛 − ℓ𝑛 ∑
1

(𝑖 + 1)
𝑠𝑖𝑛

𝑚

𝑖=0

− ℓ𝑚 ∑
1

(𝑗 + 1)

𝑛

𝑗=0

𝑠𝑚𝑗 + ∑ ∑
1

(𝑖 + 1)(𝑗 + 1)
𝑠𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

 (10) 

for all 𝑚, 𝑛 ≥ 1. From this point of view, we find 

𝑡𝑚𝑗
11 − 𝑡𝑚𝑛

11 = ℓ𝑚ℓ𝑛(𝑠𝑚𝑗 − 𝑠𝑚𝑛) + ℓ𝑚 ∑
1

(𝑘 + 1)
(𝑠𝑚𝑗 − 𝑠𝑚𝑘)

𝑗−1

𝑘=𝑛+1

 

                + ∑ ∑
1

(𝑟 + 1)(𝑘 + 1)
(𝑠𝑟𝑘 − 𝑠𝑟𝑛)

𝑗

𝑘=𝑛+1

𝑚

𝑟=0

+ ℓ𝑚ℓ𝑗(𝜎𝑚𝑛
10 − 𝜎𝑚𝑗

10 ),                       (11) 

𝑡𝑖𝑛
11 − 𝑡𝑚𝑛

11 = ℓ𝑚ℓ𝑛(𝑠𝑖𝑛 − 𝑠𝑚𝑛) + ℓ𝑛 ∑
1

(𝑟 + 1)
(𝑠𝑖𝑛 − 𝑠𝑟𝑛)

𝑖−1

𝑟=𝑚+1

 

 

                   + ∑ ∑
1

(𝑟 + 1)(𝑘 + 1)
(𝑠𝑟𝑘 − 𝑠𝑚𝑘)

𝑖

𝑟=𝑚+1

𝑛

𝑘=0

+ ℓ𝑖ℓ𝑛(σ𝑚𝑛
01 − σ𝑖𝑛

01),                   (12) 

and 

𝑡𝑖𝑗
11 − 𝑡𝑖𝑛

11 − 𝑡𝑚𝑗
11 + 𝑡𝑚𝑛

11 = ℓ𝑚ℓ𝑛(𝑠𝑖𝑗 − 𝑠𝑖𝑛 − 𝑠𝑚𝑗 + 𝑠𝑚𝑛) 

                        + ∑ ∑
1

(𝑟 + 1)(𝑘 + 1)

𝑗−1

𝑘=𝑛+1

𝑖−1

𝑟=𝑚+1

(𝑠𝑖𝑗 − 𝑠𝑟𝑗 − 𝑠𝑖𝑘 + 𝑠𝑟𝑘) 

                                           +ℓ𝑛 ∑
1

(𝑟 + 1)
(𝑠𝑖𝑗 − 𝑠𝑟𝑗 − 𝑠𝑖𝑛 + 𝑠𝑟𝑛)

𝑖−1

𝑟=𝑚+1

 

                                           +ℓ𝑚 ∑
1

(𝑘 + 1)
(𝑠𝑖𝑗 − 𝑠𝑖𝑘 − 𝑠𝑚𝑗 + 𝑠𝑚𝑘)                            (13)

𝑗−1

𝑘=𝑛+1

 

for sufficiently large 𝑚, 𝑛. From slow decrease with respect to logarithmic summability 

of (𝑠𝑚𝑛) in senses (1,1), (1,0), and (0,1), relative to τ ∈ 𝑋, we have 

𝑠𝑖𝑛 − 𝑠μ𝑛 ≥ − (
ε′

40
) τ        whenever   𝑛1 < 𝑚 < 𝑖 ≤ 𝑚λ,    𝑚 < μ < 𝑖   and  𝑛1 ≤ 𝑛, 

𝑠𝑚𝑗 − 𝑠𝑚ν ≥ − (
ε′

40
) τ        whenever   𝑛2 < 𝑛 < 𝑗 ≤ 𝑛λ,    𝑛 < ν < 𝑗   and  𝑛2 ≤ 𝑚, 

𝑠𝑖𝑗 − 𝑠𝑖ν − 𝑠μ𝑗 + 𝑠μν ≥ − (
ε′

40
) τ        whenever   𝑛0 < 𝑚 < 𝑖 ≤ 𝑚λ,    𝑚 < μ < 𝑖    

and  𝑛0 < 𝑛 < 𝑗 ≤ 𝑛𝜆,    𝑛 < 𝜈 < 𝑗. 
 

Since (𝑠𝑚𝑛) is (ℓ, 1,∗) and (ℓ,∗ ,1) summable to 𝑜 ∈ 𝑋, relative to τ ∈ 𝑋, the differences 

(σ𝑚𝑛
10 − σ𝑚𝑗

10 ) and (σ𝑚𝑛
01 − σ𝑖𝑛

01) are 𝑃-convergent to 𝑜, relative to τ ∈ 𝑋, as 𝑚, 𝑛 → ∞. 

Hence, considering these situations, we attain from (11)-(13) that 
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𝑡𝑚𝑗
11 − 𝑡𝑚𝑛

11 ≥ − (
ε′

40
) τℓ𝑚ℓ𝑛 − (

ε′

40
) τℓ𝑚(ℓ𝑗−1 − ℓ𝑛) − (

ε′

40
) τℓ𝑚(ℓ𝑗 − ℓ𝑛)

− (
ε′

40
) τℓ𝑚ℓ𝑗  

≥ − (
ε′

40
) τℓ𝑚ℓ𝑛 − (

ε′

40
) τℓ𝑚(ℓ𝑗 − ℓ𝑛) − (

ε′

40
) τℓ𝑚(ℓ𝑗 − ℓ𝑛) − (

ε′

40
) τℓ𝑚ℓ𝑗  

= − (
ε′

40
) τℓ𝑚ℓ𝑛 − 2 (

ε′

40
) τℓ𝑚(ℓ𝑗 − ℓ𝑛) − (

ε′

40
) τℓ𝑚ℓ𝑗  

= − (
ε′

40
) τ(3ℓ𝑚ℓ𝑗 − ℓ𝑚ℓ𝑛),                                                                                                 (14) 

𝑡𝑖𝑛
11 − 𝑡𝑚𝑛

11 ≥ − (
ε′

40
) τ(3ℓ𝑖ℓ𝑛 − ℓ𝑚ℓ𝑛)                                                                                (15) 

𝑡𝑖𝑗
11 − 𝑡𝑖𝑛

11 − 𝑡𝑚𝑗
11 + 𝑡𝑚𝑛

11 ≥ − (
ε′

40
) τℓ𝑚ℓ𝑛 − (

ε′

40
) τ(ℓ𝑖−1 − ℓ𝑚)(ℓ𝑗−1 − ℓ𝑛) 

                         − (
ε′

40
) τℓ𝑛(ℓ𝑖−1 − ℓ𝑚) − (

ε′

40
) τℓ𝑚(ℓ𝑗−1 − ℓ𝑛) 

                                          = − (
𝜀′

40
) 𝜏ℓ𝑖−1ℓ𝑗−1,                                                                       (16) 

respectively, and by (14)-(16) 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

(𝑡𝑚𝑗
11 − 𝑡𝑚𝑛

11 ) 

≤ (
ε′

40
) τ ∑ ∑

3ℓ𝑚

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗−1

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

 

− (
ε′

40
) τ ∑ ∑

ℓ𝑚ℓ𝑛

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

 

≤ (
ε′

40
) τ (3 (

ℓ[𝑚λ]

ℓ𝑚
− 1) (

ℓ[𝑛λ]

ℓ𝑛
− 1) −

ℓ𝑚ℓ𝑛 (ℓ[𝑚λ] − ℓ𝑚) (ℓ[𝑛λ] − ℓ𝑛)

ℓ[𝑚λ]ℓ[𝑚𝜆]−1ℓ[𝑛𝜆]ℓ[𝑛𝜆]−1

) 

≤ (
ε′

40
) 3τ (

ℓ[𝑚λ]

ℓ𝑚
− 1) (

ℓ[𝑛λ]

ℓ𝑛
− 1),                                                                                   (17) 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

(𝑡𝑖𝑛
11 − 𝑡𝑚𝑛

11 ) 

≤ (
ε′

40
) 3τ (

ℓ[𝑚λ]

ℓ𝑚
− 1) (

ℓ[𝑛λ]

ℓ𝑛
− 1),                                                                                   (18) 

and 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
(𝑡𝑖𝑗

11 − 𝑡𝑖𝑛
11 − 𝑡𝑚𝑗

11 + 𝑡𝑚𝑛
11 )

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1
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≤ (
ε′

40
) τ ∑ ∑

1

(𝑖 + 1)ℓ𝑖(𝑗 + 1)ℓ𝑗

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

 

≤ (
ε′

40
) τ (

ℓ[𝑚λ]

ℓ𝑚
− 1) (

ℓ[𝑛λ]

ℓ𝑛
− 1),                                                                                      (19) 

for sufficiently large 𝑚, 𝑛, respectively. From (9) together with (17)-(19), we get  

γ𝑚𝑛𝑡𝑚𝑛
11 ≤ (

𝜀′

40
) 𝜏 − ∑ ∑

1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
(𝑡𝑚𝑗

11 − 𝑡𝑚𝑛
11 )

[𝑛𝜆]

𝑗=𝑛+1

[𝑚𝜆]

𝑖=𝑚+1

 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1

(𝑡𝑖𝑛
11 − 𝑡𝑚𝑛

11 )

[𝑛𝜆]

𝑗=𝑛+1

[𝑚𝜆]

𝑖=𝑚+1

 

− ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
(𝑡𝑖𝑗

11 − 𝑡𝑖𝑛
11 − 𝑡𝑚𝑗

11 + 𝑡𝑚𝑛
11 )

[𝑛𝜆]

𝑗=𝑛+1

[𝑚𝜆]

𝑖=𝑚+1

 

≤ (
𝜀′

40
) 𝜏 + (

𝜀′

40
) 7𝜏 (

ℓ[𝑚𝜆]

ℓ𝑚
− 1) (

ℓ[𝑛𝜆]

ℓ𝑛
− 1) 

≤ (
𝜀′

40
) 𝜏 + (

𝜀′

40
) 28𝜏(𝜆 − 1)2 

≤
3𝜀′𝜏(𝜆 − 1)2

4
                                                                                                                          (20) 

for sufficiently large 𝑚, 𝑛. When we simplify γ𝑚𝑛, we obtain that 

γ𝑚𝑛 = ∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

= ∑ ∑ (
1

ℓ𝑖−1
−

1

ℓ𝑖
) (

1

ℓ𝑗−1
−

1

ℓ𝑗
)

[𝑛λ]

𝑗=𝑛+1

[𝑚λ]

𝑖=𝑚+1

 

         = (
1

ℓ𝑚
−

1

ℓ[𝑚𝜆]

) (
1

ℓ𝑛
−

1

ℓ[𝑛𝜆]

) 

         = (
ℓ[𝑚𝜆] − ℓ𝑚

ℓ𝑚ℓ[𝑚𝜆]

) (
ℓ[𝑛𝜆] − ℓ𝑛

ℓ𝑛ℓ[𝑛𝜆]

), 

and so, 

γ𝑚𝑛ℓ𝑚ℓ𝑛 = (1 −
ℓ𝑚

ℓ[𝑚λ]

) (1 −
ℓ𝑛

ℓ[𝑛λ]

) → (
λ − 1

λ
) (

λ − 1

λ
)  as   𝑚, 𝑛 → ∞. 

Therefore, we reach 

𝑡𝑚𝑛
11

ℓ𝑚ℓ𝑛
=

γ𝑚𝑛𝑡𝑚𝑛
11

ℓ𝑚ℓ𝑛γ𝑚𝑛
≤

3ε′τλ2

4
(

2λ

λ − 1
)

2

≤
3ε′τζ

4
≤

3ετ

4
                                                    (21) 

for sufficiently large 𝑚, 𝑛. If we consider the double weighted Kronecker identity for 
(𝑠𝑚𝑛),  we find  

𝑠𝑚𝑛 = 𝑉𝑚𝑛
11(Δ11𝑠) + σ𝑚𝑛

10 + σ𝑚𝑛
01 − σ𝑚𝑛

11 =
𝑡𝑚𝑛

11

ℓ𝑚ℓ𝑛
+ σ𝑚𝑛

10 + σ𝑚𝑛
01 − σ𝑚𝑛

11                        (22) 

for sufficiently large 𝑚, 𝑛. Since (𝑠𝑚𝑛) is (ℓ, 1,1),  (ℓ, 1,∗) and (ℓ,∗ ,1) summable to 𝑜 ∈
𝑋, relative to τ ∈ 𝑋, the sequences (σ𝑚𝑛

11 ), (σ𝑚𝑛
10 ), and (σ𝑚𝑛

01 ) are 𝑃-convergent to 𝑜, 
relative to τ ∈ 𝑋. As a result, we conclude by (21) and (22) that 

𝑠𝑚𝑛 =
𝑡𝑚𝑛

11

ℓ𝑚ℓ𝑛
+ σ𝑚𝑛

10 + σ𝑚𝑛
01 − σ𝑚𝑛

11 ≤
3ετ

4
+

ετ

12
+

ετ

12
+

ετ

12
= ε𝜏 



BAUN Fen Bil. Enst. Dergisi, 27(1), 241-252, (2025) 
 

251 

for sufficiently large 𝑚, 𝑛. To indicate that 𝑠𝑚𝑛 ≥ −ε ultimately in 𝑚, 𝑛, we consider  

∑ ∑
1

(𝑖 + 1)ℓ𝑖ℓ𝑖−1(𝑗 + 1)ℓ𝑗ℓ𝑗−1
𝑡𝑖𝑗

11

𝑛

𝑗=[𝑛λ]

𝑚

𝑖=[𝑚λ]

 

for all 𝑚, 𝑛 ≥ 1. As a result of the calculations made in parallel with that made in the first 

part of the proof, we complete the second part of the proof and we find 𝑠𝑚𝑛 ≥ −ε for 

sufficiently large 𝑚, 𝑛. Therefore, (𝑠𝑚𝑛) is 𝑃-convergent to ξ, relative to τ ∈ 𝑋. 
 

 

4. Conclusion 

 

In this paper, we extended a Tauberian theorem for the Cesàro summability method due 

to Maddox [23] and the weighted mean summability method due to Çanak [24] in ordered 

spaces to the  (ℓ, 1,1), summability method of double sequences. In an ordered linear 

space (𝑋, ≤) over the real numbers, we proved that if a double sequence (𝑠𝑚𝑛) is 

(ℓ, 1,1), (ℓ, 1,∗) and (ℓ,∗ ,1) summable to ξ ∈ 𝑋, relative to a τ ∈ 𝑋 and slowly decreasing 

with respect to logarithmic summability in senses (1,1), (1,0), and (0,1), relative to τ ∈
𝑋, then it is 𝑃-convergent to ξ, relative to τ ∈ 𝑋. 
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