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   Abstract 
 

Electrical Impedance Tomography (EIT) is a noninvasive imaging technique used to estimate the 

internal conductivity distribution of a region that is either unknown or inaccessible. This is achieved 

by applying electrical currents to the region and measuring the resulting boundary voltages. The 

forward problem in EIT is typically solved using the Finite Element Method (FEM), and 

regularization techniques are employed to stabilize the ill-posed inverse problem during image 

reconstruction. This study evaluated the performance of two widely used image reconstruction 

algorithms: the delta conductivity method and the Jacobian (JAC)-based method. Both algorithms 

were tested on seven phantom images with varying levels of complexity to assess their effectiveness 

in different scenarios. The average Peak Signal-to-Noise Ratio (PSNR) and Mean Structural 

Similarity Index (MSSIM) were 35.71 dB and 0.93, respectively, indicating high reconstruction 

quality. However, the complexity of the images, such as intricate textures or multiple inclusions, 

resulted in reduced reconstruction accuracy. Although, both the delta conductivity and JAC methods 

proved effective in EIT image reconstruction, the JAC method shows superior performance in more 

challenging cases. 

 
 

 

 

1. Introduction* 

 

Electrical impedance tomography (EIT) is a non-

destructive imaging technique used to estimate the 

electrical conductivity of an unknown or inaccessible 

region. It is widely employed in applications where direct 

conductivity measurement within a domain is impractical 

or impossible. Instead, boundary measurements of 

electrical potentials are utilized, and the internal 

conductivity distribution is inferred through mathematical 

inversion techniques. This approach is particularly 

beneficial in medical imaging [1, 2]. 

One of the fundamental challenges in EIT is that the 

inversion problem is typically ill-posed, a concept first 

formalized by Jacques Hadamard. An ill-posed problem, as 

opposed to a well-posed one, fails to satisfy one or more of 

the following conditions: 1) the existence of a solution, 2) 

the uniqueness of the solution, and 3) the stability of the 

solution to small perturbations in the input data. The ill-
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posed nature of the EIT inverse problem arises because 

there are generally more unknown conductivity parameters 

than available measurements. Consequently, small errors in 

the data can lead to large deviations in the estimated 

conductivity, requiring careful regularization and robust 

computational methods for reliable solutions [3, 4]. 

Various reconstruction algorithms have been 

developed for EIT in the literature. Due to the highly ill-

posed nature of EIT, achieving noise-robust 

reconstructions requires regularization techniques in nearly 

all methods. Traditional imaging approaches typically 

incorporate prior information to stabilize the inversion 

process, achieved through various regularization 

techniques [5-7]. These methods generally involve discrete 

approximations of the forward model, followed by solving 

a finite-dimensional minimization problem using iterative 

algorithms. Among these, gradient-based methods are 

commonly employed due to their ability to handle large-

scale problems efficiently. 

A linearized model is often employed to simplify the 

inversion process in such iterative methods. Linearization 

helps reduce the problem's computational complexity but 

2667-484X © This paper published in Kocaeli Journal of Science and Engineering is licensed under a Creative 

Commons Attribution-NonCommercial 4.0 International License 

https://doi.org/10.34088/kojose.517520
https://doi.org/10.34088/kojose.517520
https://orcid.org/0000-0003-4593-917X
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Ibrahim OZ. / Koc. J. Sci. Eng., 8(1): (2025) 38-51 

39 

introduces challenges in achieving high-resolution 

reconstructions, especially when noise is present in the 

data. Regularization plays a critical role here by ensuring 

the inversion remains stable, even under noisy conditions. 

Popular regularization techniques include Tikhonov 

regularization, total variation regularization, and L2/L1 

norms. These techniques allow the algorithms to fit the 

data in a balanced way and maintain smoothness or 

sparsity in the reconstructed images. 

In contrast to iterative approaches, several direct 

algorithms have been developed, offering faster 

computation by bypassing the need for forward 

simulations. Examples of these methods include the 

factorization method, the D-bar method, Calderón's 

method, and the direct sampling method [8-11]. These 

methods rely on different mathematical frameworks and do 

not require iterative refinement, making them more 

computationally efficient. 

While iterative reconstruction methods with 

regularization offer improved accuracy and robustness in 

noisy conditions, they are computationally expensive. On 

the other hand, direct algorithms like Calderón's method 

provide faster results but with lower resolution, 

highlighting the trade-off between computational 

efficiency and reconstruction quality. 

In typical EIT experiments, a set of electrodes is 

distributed along the boundary of the region of interest. In 

geophysical applications, these electrodes are often placed 

on the earth's surface, whereas in medical contexts, they 

are positioned around the body. The electrodes serve a dual 

purpose: they inject electrical current into the domain and 

measure the resulting voltages at various points on the 

boundary. Multiple current injection patterns are employed 

to obtain sufficient data for reconstructing the internal 

conductivity distribution. L distinct injection patterns are 

usually performed for a system comprising L electrodes, 

each resulting in L voltage measurements. This process 

yields a total of 𝐿×𝐿 measurements, which are used in the 

inversion process to estimate the conductivity distribution 

[12, 13] 

To model and solve the forward problem in EIT, the 

Finite Element Method (FEM) is commonly used. Given 

the conductivity and the applied current, the forward 

problem involves computing the voltage distribution on the 

domain's boundary. In implementing the forward problem, 

we initially adopted a simplified electrode model, where 

current is assumed to flow into and out of the imaging 

domain, Ω, through specific boundary nodes that serve as 

electrodes. Although this approach simplifies the problem, 

it does not consider all practical considerations. A more 

accurate representation is provided by the Complete 

Electrode Model (CEM), which incorporates the finite size 

and impedance of the electrodes [14].  

EIDORS (Electrical Impedance Tomography and 

Diffuse Optical Reconstruction Software) is an open-

source software suite for research and development in EIT 

and related imaging techniques. EIDORS provides a 

comprehensive platform for simulating, reconstructing, and 

visualizing EIT data, making it a valuable tool for 

academic and industrial applications. The software 

supports a range of functionalities, including forward and 

inverse problem solving, mesh generation, and electrode 

modeling, which are crucial for accurate image 

reconstruction in EIT [15]. 

By offering various reconstruction algorithms, 

including direct methods and regularization techniques, 

EIDORS enables users to implement and compare different 

approaches for solving the ill-posed nature of the EIT 

inverse problem. EIDORS also supports multi-frequency 

EIT, allowing researchers to investigate the frequency-

dependent behavior of materials. Its flexibility and 

extensive documentation make it widely used in medical 

imaging, geophysical explorations, and industrial non-

destructive testing. Using EIDORS, researchers can 

efficiently evaluate the performance of various algorithms 

and improve the accuracy of conductivity reconstructions 

in EIT. 

 

2. Modeling and Image Reconstruction 

 

This study uses the following steps for modeling and 

image reconstruction. Figure 1 presents the flowchart 

illustrating the key steps: input data preparation, 

implementation of the delta conductivity algorithm, 

application of the Jacobian (JAC) algorithm, image 

reconstruction processes, result comparisons, and 

performance evaluation. 

 

 
Figure 1. A flowchart outlining the steps of the study. 

 

In EIT, the forward problem involves computing the 

voltage distribution at the domain's boundary, given the 

internal conductivity distribution and the applied current. 

The governing equation for the forward problem in EIT is 

derived from Ohm's Law and the conservation of current 

[16, 17].   

The continuity equation for the electric potential can 

describe the mathematical formulation of the forward 

problem;  

∇ ⋅ (σ(x)∇u(x)) = 0,    in    Ω   (1) 

where: 

   



Ibrahim OZ. / Koc. J. Sci. Eng., 8(1): (2025) 38-51 

40 

• 𝜎(𝑥) is the electrical conductivity at position 𝑥 

inside the domain Ω, 

• 𝑢(𝑥) is the electric potential at position 𝑥, 

• ∇⋅ represents the divergence operator, and 

• ∇𝑢(𝑥) is the gradient of the electric potential, which 

gives the electric field. 

 

By solving this forward problem, the voltage 

distribution on the boundary is obtained, and this 

information is later used in the inverse problem to estimate 

the internal conductivity distribution. 

 

2.1. Boundary Conditions 

 

The boundary conditions for this problem are defined 

on the boundary ∂Ω, where electrodes are placed to inject 

current and measure voltage. For the simplified electrode 

model, we assume that the current flows through boundary 

nodes, which serve as electrodes [18, 19]. The total current 

injected through each electrode satisfies: 

 

 ∫ σ
∂U

∂n
ds = Il for k1 = 1,2, … . . , L

ek
  (2) 

 

where: 

• 𝑒𝑘   is the region on the boundary where the  

• 𝑘th electrode is located, 

• ∂𝑢/∂𝑛 represents the normal derivative of the 

potential at the boundary (i.e., the current density), 

• 𝐼𝑘  is the current injected through the 𝑘-th electrode,  

• 𝐿 is the number of electrodes 

  

 Grounding or reference electrode condition: To resolve 

the potential uniquely, we impose a reference potential 

condition, usually by grounding one of the electrodes 

on a reference electrode or part of ∂Ω. 

 

2.2. Finite Element Method (FEM) 

Discretization 

 

In practical EIT simulations, the FEM is used to solve 

the above system numerically. The domain  Ω is 

discretized into elements, and the continuous problem is 

converted into a discrete system. Using FEM, the problem 

is transformed into a linear system and can be expressed: 

 

K(σ)U = F  (3) 

 

Where;  

• K(σ) is stiffness matrix  that depends on the 

conductivity distribution of 𝜎(𝑥). 

• U is the vector of nodal potentials. 

• F is the vector of nodal current injections 

corresponding to the boundary conditions. 

 

 

2.3. Image Reconstruction (Inverse Problem) 

 

In EIT, the image reconstruction process refers to 

estimating the internal conductivity distribution 𝜎(𝑥) 

within a domain from boundary voltage measurements. 

The inverse problem is also called image reconstruction, 

which can be described as; 

 

𝜎 = 𝐹 (⋅) ⋅ U      (4) 

 

where 𝐹 (⋅) denotes the mapping relation between the 

boundary-measured voltages U and the interior 

conductivity distribution 𝜎.  

Various methods can be employed to regularize the 

inversion, including perturbation-based reconstruction 

using changes in conductivity (often called Δ conductivity) 

and JAC-based approaches [20-22].  

 

2.3.1. Image Reconstruction Using Delta 

Conductivity (Perturbation-Based Method) 

 

The delta conductivity method involves updating the 

conductivity distribution 𝜎(𝑥) iteratively, based on small 

perturbations or changes in the boundary measurements. 

This technique is used when the initial guess for the 

conductivity distribution is close to the true distribution, 

and a minor correction is required to improve the estimate. 

 

Algorithm Δ-Conductivity based Image 

Construction 

1. Initialization: 

• Set the initial guess for the conductivity 

distribution 𝜎←𝜎0 

• Define the forward model 𝐹(𝜎), representing the 

relation between the conductivity 𝜎 and the 

measured /simulated voltage data. 

• Define a regularization matrix 𝑅 (e.g., identity 

matrix on prior knowledge). 

2. Forward Problem Simulation: 

• Compute the predicted voltage data based on the 

current estimate of conductivity:  

𝑉𝑝𝑟𝑒𝑑 ← 𝐹 (𝜎) 

• Calculate the difference between the measured 

and predicted voltages: 

Δ𝑉←𝑉𝑚𝑒𝑎𝑠 − 𝑉𝑝𝑟𝑒𝑑 

3. Compute Δ-Conductivity Sensitivity (Δ𝜎): 

• Compute the sensitivity of the voltage data to 

change in conductivity matrix Δ(𝜎), which 

models changes in the conductivity needed to 

reduce the difference in voltage: 

Δ𝜎=( 𝐽𝑇 𝐽 + 𝜆 R )−1 𝐽𝑇 Δ 𝑉 
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4. Update Conductivity Distribution: 

• Update the conductivity distribution by adding 

the calculated delta conductivity: 

𝜎←𝜎+Δ: 

5. Check for Convergence: 

• Compute the norm of the delta conductivity   

∣∣Δ𝜎∣∣<𝜖 

• If the norm of the update ∣∣Δ𝜎∣∣ is smaller than 

the defined tolerance ϵ, terminate the 

algorithm. 

6. Repeat Iteration: 

• If convergence is not achieved, return to Step 2 

and repeat the process until the reconstruction 

stabilizes. 

 

The delta-conductivity method iteratively updates the 

conductivity distribution by calculating changes based on 

the difference between the measured and predicted 

voltages. In each iteration, the change in conductivity (Δσ) 

is computed to minimize this voltage discrepancy. 

Regularization is critical in stabilizing the reconstruction 

process, particularly in noisy conditions, by preventing 

overfitting to the data. The algorithm continues to iterate, 

refining the conductivity estimates until the updates 

become sufficiently small, ensuring convergence to an 

accurate solution while maintaining robustness against 

noise. 

 

2.3.2. Image Reconstruction Using JAC 

Method 

 

The Jacobian matrix 𝐽 plays a critical role in 

reconstructing the conductivity distribution in EIT. It 

represents the sensitivity of boundary voltage 

measurements to small changes in the conductivity 

distribution. The Jacobian is typically computed as part of 

the forward  problem solution using FEM. 

  

Algorithm JAC-based Image Construction 

1. Initialization: 

• Set the initial guess for the conductivity 

distribution 𝜎←𝜎0 

• Define the forward model 𝐹(𝜎), representing the 

relation between the conductivity 𝜎 and the 

measured voltage data. 

• Define a regularization matrix 𝑅(e.g., identity 

matrix for Tikhonov regularization). 

2. Forward Problem Simulation: 

• Compute the predicted voltage data based on the 

current estimate of conductivity:  

𝑉𝑝𝑟𝑒𝑑 ← 𝐹 (𝜎) 

• Compute the difference between the measured 

and predicted voltages: 

Δ𝑉←𝑉𝑚𝑒𝑎𝑠 − 𝑉𝑝𝑟𝑒𝑑 

3. Jacobian Calculation: 

• Compute the Jacobian matrix  𝐽(𝜎), which 

represents the sensitivity of the voltage data 

with respect to changes in the conductivity: 

𝐽←∂𝐹(𝜎)/∂𝜎 

4. Solve for Conductivity Update: 

• Use the Jacobian and a regularization method to 

compute the conductivity update Δ𝜎: 

Δ𝜎=( 𝐽𝑇 𝐽 + 𝜆 R )−1 𝐽𝑇 Δ 𝑉 

• Update the conductivity estimate: 

𝜎 =𝜎+Δ𝜎 

5. Check for Convergence: 

• Calculate the norm of the conductivity update 

∣∣Δ𝜎∣∣: 

∣∣Δ𝜎∣∣<𝜖 

• If the change in conductivity is smaller than the 

tolerance 𝜖, terminate the algorithm. 

6. Repeat Iteration: 

• If convergence is not achieved, return to Step 2 

and repeat the process until the solution 

converges. 

 

The Jacobian-based image reconstruction algorithm 

in EIT begins with inputting measured voltage data 𝑉𝑚𝑒𝑎𝑠 

from boundary electrodes, an initial guess for the 

conductivity distribution F(σ) that simulates the voltage 

data based on a given conductivity distribution. The 

conductivity update is solved by minimizing the error in 

voltage data. This process repeats until the change in 

conductivity falls below the convergence threshold, at 

which point the reconstructed conductivity distribution is 

returned as the output.  

 

2.4. Evaluation Metrics 

 

In EIT, several metrics are commonly employed to 

assess the quality of the reconstructed image, including the 

image correlation coefficient (CC) and the relative error 

(RE). The RE quantifies the difference in conductivity 

between the reconstructed and original images. At the 

same time, the CC measures the correlation between them, 

providing insight into how closely the reconstructed image 

matches the original [23, 35]. 

In this study, two prominent image quality metrics, 

Peak Signal-to-Noise Ratio (PSNR) and Mean Structural 

Similarity Index Measure (MSSIM), were employed to 

assess image reconstruction performance in EIT. These 

metrics provide complementary insights into the fidelity 

and structural integrity of the reconstructed images. 
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PSNR has been used to evaluate the quality of the 

reconstructed image. The PSNR is a metric that quantifies 

the peak error between the reconstructed and original 

images in decibels (dB) [24-27]. It is particularly useful for 

data represented in terms of bits per sample or bits per 

pixel. A higher PSNR value indicates better image quality, 

with a PSNR above 40 dB suggesting that the 

reconstructed image is nearly indistinguishable from the 

original. The following equation defines the PSNR: 

 

PSNR = 10log10(
max2

MSE
)                         (5) 

 

max: color depth. For 8 bits max=28-1=255, and mean 

square error can be calculated with Equation 6; 

       

MSE =
1

mn
∑ ∑ |X(i, j) − Xc(i. j)|2n=1

j=0
m=1
i=0   (6) 

 

Where, M and N represent the size of the image, X 

represents the given input image and Xc represents the 

reconstructed image. 

To evaluate the quality of the reconstructed images, 

we employ two metrics: the Relative Image Error (RIE) to 

quantify the accuracy of the estimated conductivity values 

and the Mean Structural Similarity Index (MSSIM) to 

assess the structural similarity between the ground truth 

and the reconstructed images. The RIE is defined as 

follows: 

 

𝑅𝐼𝐸 =
‖𝐷𝑒−𝐷𝑟‖

‖𝐷𝑟‖
    (7) 

 

where De   represents the reconstructed image, while  

𝐷𝑟  denotes the ground truth image. The subscripts  

𝑒 and 𝑟 correspond to the estimated EIT image and the 

ground truth image, respectively.  

While PSNR focuses on pixel-wise differences, the 

Mean Structural Similarity Index Measure (MSSIM) 

assesses image quality by comparing the structural 

information between the original and reconstructed images. 

MSSIM evaluates luminance, contrast, and structural 

similarity, offering a more perceptually meaningful 

assessment of image quality [28,29]. The MSSIM is 

defined as: 

 

MSSIM =
1

N
∑

(2𝛍e𝛍r+C1)(2𝛗e,r+C2)

(𝛍e
2𝛍r

2+C1)(𝛗e
2+𝛗𝑟

2+C2)
    (8) 

 

where the summation is over all pixels of the EIT 

image. μe and μr are the local means. φe and φr are local 

standard deviations. φer denotes the cross-covariance 

between the estimated EIT image and the ground truth 

image. C1 and C2 represent constants. 

By utilizing both PSNR and MSSIM, we 

comprehensively evaluate the image reconstruction quality 

in EIT. PSNR quantifies the overall error magnitude, while 

MSSIM provides insight into how well the reconstruction 

preserves structural information. Combining these two 

metrics allows for a more robust assessment, ensuring that 

the reconstructed image minimizes pixel-wise errors and 

retains the original's important structural features. 

  

3. Dataset and Simulation Setup 

 

In this study, a circular phantom with a radius of 1 cm 

was employed as the domain for EIT simulations. A total 

of 16 evenly spaced electrodes were placed around the 

boundary of the phantom to inject current and measure 

voltages. The opposite current injection technique was 

adopted for data collection, which involves injecting 

current through one electrode and receiving it from another 

electrode positioned directly opposite on the boundary. 

Specifically, in this configuration, current is first 

injected from the first electrode and received at the ninth 

electrode (the opposite electrode on the circular boundary). 

The corresponding voltage differences between all other 

electrode pairs are then measured, capturing the potential 

distribution across the domain. After this initial 

measurement, the current injection and reception points are 

shifted to the next electrode pair and repeated. The 

electrodes are systematically shifted around the boundary, 

ensuring comprehensive coverage of voltage data for all 

possible electrode configurations [30-32]. 

This method is advantageous because it provides a 

wide range of voltage measurements for a given current 

pattern, enhancing the sensitivity of the reconstruction 

algorithm to variations in conductivity within the phantom. 

Figure 2 illustrates the current injection pattern and the 

voltage measurement scheme used in the experiment. This 

opposite current injection method generates a detailed and 

robust dataset, which is critical for accurate image 

reconstruction in EIT. 

 
Figure 2. Schematic diagram of a 16-electrode phantom, 

illustrating opposite current injection and the measurement 

/ simulation of voltage values. 
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FEM was applied to solve the problems in EIT, the 

domain was discretized into a mesh consisting of 664 

nodes. These nodes form the vertices of the elements that 

define the mesh structure, which, in this case, results in a 

total of 1244 elements, as illustrated in Figure 3. Each 

element, typically triangular in shape for 2D FEM analysis, 

serves as a small subregion where the conductivity and 

potential distribution are approximated. 

 
Figure 3. The images are divided into 1,244 triangles 

(meshes/elements) and contain 664 nodes. 

 

This discretization allows for a detailed numerical 

representation of the continuous conductivity field within 

the phantom. The FEM framework uses these nodes and 

elements to approximate the solution of partial differential 

equations governing the electrical potential distribution. By 

dividing the domain into small, manageable elements, 

FEM provides a robust method for solving complex 

geometries and varying conductivity distributions, 

ensuring accurate simulation of current flow and voltage 

measurements. Figure 3 shows the meshing structure used 

in this study, demonstrating how the computational domain 

is subdivided into smaller elements for analysis. This 

discretization level balances computational efficiency and 

accuracy, which is crucial for capturing the detailed 

conductivity variations required for precise image 

reconstruction. 

 

3.1. Test Images 

 

In this study, a circular domain with a radius of 1 cm 

and a homogeneous conductivity 𝜎=1 S/cm was selected as 

the base model for EIT simulations.  

Figure 4 illustrates the theoretical geometric shapes 

of the test images used in EIT simulations. These shapes 

represent various conductivity inclusions introduced into 

the phantom, designed to evaluate the performance of the 

image reconstruction algorithms. Each test image consists 

of a specific configuration of regions with varying 

conductivity values inserted into a homogeneous 

background. The geometric shapes include circular 

inclusions, single and multiple holes, and arrangements of 

inclusions at different positions within the domain. 

  

Img-1 and Img-2 Img-3 and Img-4 

  

Img-5 and Img-6 Img-7 

 

Figure 4. Theoretical geometric shapes of the test images. 

 

Several variations of test phantoms were generated to 

assess the performance of the image reconstruction 

algorithms. These phantoms were designed by inserting 

regions with different conductivities and geometries into 

the base model. 

Single Circular Inclusion: A circular inclusion with a 

radius  𝑟= 0.6 cm was introduced at the center of the 

domain. Two different conductivities were assigned to this 

inclusion: 𝜎 =5 S/cm, representing a highly conductive 

material (Img-1) and 𝜎 = 0.1 S/cm, representing a poorly 

conductive material (Img-2). 

Single Hole in the Upper Corner: A single inclusion 

was placed at the top corner of the domain, with 

conductivities: 𝜎 =5 S/cm (Img-3) and 𝜎 =0.1 S/cm (Img-

4). 

 

  

Img-1 Img-2 

Figure 5. Theoretical shapes of test images colored 

according to conductivity 
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Img-3 Img-4 

  
Img-5 Img-7 

 

Figure 5. (Cont.) Theoretical shapes of test images colored 

according to conductivity 

 

Double Holes (Diagonal Configuration): Two 

inclusions were positioned, one in the upper right corner 

and the other in the lower left corner. These inclusions 

were assigned the following conductivities: Upper right 

corner: 𝜎 = 5 S/cm (Img-5) and Lower left corner: 𝜎 = 0.1 

S/cm (Img-6). 

Four Holes (Quadrant Configuration): Four 

inclusions were inserted into the domain, one in each 

quadrant. The conductivities were distributed as follows: 

Upper right and lower left: 𝜎 = 5 S/cm and Upper left and 

lower right: 𝜎 = 0.1S/cm (Img-7). 

Figure 5 presents the theoretical shapes of the test 

images used in this study, with each image color-coded 

according to its assigned conductivity values. These test 

images represent different conductivity distributions, 

where regions with varying conductivity levels are 

embedded within a homogeneous background. The color 

scheme highlights the conductivity contrasts, with high-

conductivity regions in dark blue and low-conductivity 

regions in yellow, providing a clear visual representation 

of the spatial variations in electrical properties. 

In this study, the theoretical images were carefully 

designed to serve as benchmarks for evaluating the 

performance of the image reconstruction algorithms. Each 

test image incorporates specific geometric shapes, 

including circular inclusions, single holes, and multiple 

holes, strategically positioned within the domain to 

simulate diverse conductivity patterns. The conductivity 

values of these regions were deliberately varied to create 

distinct contrasts with the homogeneous background, 

posing challenges to the reconstruction process. These 

images were also selected to model the conductivity 

variations typically observed in human tissues, such as 

differences between lesions and other biological structures, 

thereby enhancing the practical relevance of the 

evaluation. This approach ensures a difficult assessment of 

the algorithms' ability to resolve complex and realistic 

conductivity distributions for applications in biomedical 

imaging. 

A Python-based code was developed to solve the 

forward problem, EIT. The forward problem was 

addressed using FEM, where the domain is discretized into 

a mesh of nodes and elements to simulate voltage 

distributions for given conductivity values [33].  

The code was also designed to implement two image 

reconstruction algorithms: the delta conductivity update 

method and the JAC method. These methods iteratively 

update the conductivity distribution based on the difference 

between measured and simulated voltages, and 

regularization techniques were applied to ensure stable 

reconstructions. In addition, the code calculates key 

performance metrics, including PSNR, MSE, and MSSIM, 

to quantitatively assess the quality of the reconstructed 

images. This Python-based solution provides a flexible, 

efficient platform for testing and evaluating various EIT 

algorithms and their accuracy in image reconstruction. 

 

4. Results  

 

In this study, seven distinct test images, labeled from 

Img-1 to Img-7, were analyzed to evaluate the performance 

of the image reconstruction algorithms in EIT. Each of 

these images represents a unique configuration of 

conductivity inclusions within the phantom, designed to 

test the system's ability to detect and accurately reconstruct 

variations in conductivity. The forward problem, which 

involves simulating the voltage measurements based on the 

known conductivity distribution, was solved for each test 

image using FEM. 

FEM was employed to discretize the computational 

domain into a mesh, allowing for an accurate numerical 

solution of the partial differential equations governing the 

current and voltage distributions within the domain. This 

step is critical for generating the simulated voltage data, 

which serves as the input for the inverse problem of 

reconstructing the conductivity distribution. The 

application of FEM ensured that the complex geometries 

and conductivity contrasts present in the test images were 

captured with high precision, providing a reliable basis for 

the subsequent image reconstruction process. 

Figure 6 presents four selected test images from the 

total of seven analyzed in this study, illustrating the 

distribution of equipotential lines calculated by solving the 
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forward problem. Each test image showcases how the 

equipotential lines adapt in response to the size and 

conductivity properties of the inclusions embedded within 

the phantom. 

  

  

Img-1 Img-5 

  
Img-3 Img-7 

Figure 6. Equipotential lines of selected test images. 

 

The equipotential lines represent the spatial 

distribution of electrical potential across the domain, 

providing crucial insights into how current flows through 

areas of varying conductivity. As depicted in the figure, the 

shapes of these lines are significantly influenced by the 

presence of inclusions with different sizes and conductivity 

values. For instance, inclusions with higher conductivity 

create denser equipotential lines, indicating a more 

substantial current flow through those regions. In contrast, 

low-conductivity inclusions result in more widely spaced 

lines, reflecting a reduction in current flow. 

Moreover, the geometry of the inclusions affects the 

overall shape and orientation of the equipotential lines, 

demonstrating how the surrounding medium interacts with 

the introduced variations in conductivity. By analyzing the 

equipotential line distribution, one can infer the location 

and extent of the inclusions and their impact on the overall 

electrical behavior of the phantom. The findings illustrated 

in Figure 6 highlight the intricate relationship between the 

conductive properties of materials and the resultant 

electrical field distribution, underscoring the importance of 

accurate modeling in EIT applications. 

 

  

Img-1 Img-2 

  
Img-5 Img-6 

  

Img-5 Img-7 

Figure 7. Electric fields of selected test images. 

 

Figure 7 illustrates the calculated electric field 

distribution (E) for six of the test images analyzed in this 

study. Each image provides a detailed visualization of how 

the electric field varies across the domain, revealing the 

complex interactions between the injected currents and the 

conductivity distributions within the phantom. 

By examining the electric field distributions depicted 

in Figure 7, one can infer important characteristics about 

the geometry and electrical properties of the inclusions. 

The electric field patterns provide insights into how 

effectively the current flows through different regions, 

which is vital for interpreting the results of the image 

reconstruction algorithms. The variations in electric field 

strength and direction reflect the conductive properties of 

the materials involved and highlight the inclusions' 

influence on the phantom's overall electrical behavior. 

Figure 8 compares reconstructed images derived from 

two distinct test cases. The upper portion of the figure 

showcases the reconstruction of Img-1, using both the delta 

conductivity method and the JAC method. In contrast, the 

lower section of the figure displays the reconstruction 
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results for Img-2, characterized by a significantly lower 

conductivity.  

 

 

 

Figure 8. Reconstructed images of Img-1 and Img-2 using 

the delta conductivity method and JAC method. 

 

For Img-1, the reconstructed images highlight how 

the methods effectively represent the high conductivity 

inclusion, albeit with some discrepancies in terms of the 

precise boundaries and the overall intensity of the 

reconstructed regions. Similarly, for Img-2, the low 

conductivity inclusion presents its own challenges, with 

both methods capturing the inclusion's general shape but 

differing in detail and accuracy. 

Both upper and lower images illustrate the 

reconstruction methods' effectiveness in capturing the 

conductivity inclusions' general shape and features. 

However, while the visually reconstructed images appear 

similar, subtle differences can be observed between them. 

Although both aimed at accurately reconstructing the 

conductivity distribution, the delta conductivity method 

and the JAC method may yield slightly varied results due 

to their differing approaches to handling the forward 

problem and the iterative nature of the reconstruction 

process. 

The upper section of Figure 9 displays the 

reconstructed images for Img-5, a test image with an upper 

right inclusion of high conductivity (σ = 5 S/cm) and a 

lower left inclusion of low conductivity (σ = 0.1 S/cm). 

The delta conductivity and JAC methods were applied to 

this configuration. The reconstructed images appear to 

effectively capture the contrast in conductivity, although 

indirect differences in boundary sharpness and intensity 

can be noted between the two methods. 

 

 

 

Figure 9. Reconstructed images of Img-5 and Img-6 

using the delta conductivity method and JAC method. 

 

In the lower section of Figure 9, the reconstructed 

images for Img-6 are shown. In this case, the configuration 

is similar to Img-5 but with the conductivities reversed: the 

upper right inclusion has low conductivity (σ = 0.1 S/cm) 

and the lower left inclusion has high conductivity (σ = 5 

S/cm). The delta conductivity and JAC methods 

successfully reproduce the general structure of the 

inclusions, though visual discrepancies in resolution and 

edge definition can be observed. This highlights the 

inherent differences in how the two methods handle 

variations in conductivity, with the JAC method generally 

offering smoother transitions at the boundaries compared 

to the delta conductivity approach. 

Figure 10 continues the comparison with Img-3 in the 

upper section. This image contains a single inclusion at the 

upper corner of the domain with a high conductivity of σ = 

5 S/cm. The reconstructions using both methods display 

reasonable accuracy in capturing the location and size of 

the inclusion. However, closer inspection reveals that the 

JAC method tends to provide a slightly clearer delineation 

of the inclusion's boundary compared to the delta 

conductivity method, which shows some blurring in the 

transition regions.  
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Figure 10. Reconstructed images of Img-3 and Img-4 

using the delta conductivity method and JAC method. 

 

The lower section of Figure 10 presents the results for 

Img-4, which has a similar configuration to Img-3 but with 

the inclusion assigned a lower conductivity of σ = 0.1 

S/cm. Both reconstruction methods handle the low-

conductivity inclusion reasonably well, but again, the JAC 

method seems to offer better contrast and sharper details in 

comparison to the delta conductivity approach. This 

suggests that the JAC method might be more adept at 

resolving fine features in regions of low conductivity. 

Figure 11 focuses on Img-7, a more complex test 

image featuring four inclusions distributed across the 

domain. The upper right and lower left inclusions have 

high conductivities (σ = 5 S/cm), while the upper left and 

lower right inclusions are characterized by low 

conductivities (σ = 0.1 S/cm). The reconstructed images 

using the delta conductivity and JAC methods capture the 

inclusions' overall structure and positioning. However, the 

JAC method again demonstrates a slight advantage in 

reconstructing finer details and providing a more consistent 

representation of the inclusions' boundaries. 

For Img-7, the delta conductivity method shows some 

smearing and less precise boundary definition, particularly 

in the regions with high conductivity. The JAC method, by 

contrast, delivers more distinct edges and a smoother 

representation of the conductivity gradient between 

inclusions, making it appear more refined and accurate. 

 

 

Figure 11. Reconstructed image of Img-7 using the delta 

conductivity method and JAC method. 

 

These figures provide a detailed visual comparison 

between the delta conductivity method and the JAC 

method across a range of test images with different 

conductivity distributions. While both methods can 

reconstruct the inclusions with reasonable accuracy, the 

JAC method consistently exhibits superior performance in 

terms of boundary sharpness, contrast, and overall clarity. 

This suggests that the JAC method is better suited for 

applications where precise delineation of conductive 

regions is critical, while the delta conductivity method may 

suffice for simpler reconstructions where high precision is 

less crucial. 

Table 1 presents the performance metrics used to 

evaluate the quality of reconstructed images from Img-1 to 

Img-7 in terms of PSNR, MSE, and MSSIM. These 

metrics provide a quantitative assessment of how closely 

the reconstructed images match the theoretical test images, 

offering insights into both the accuracy and quality of the 

reconstruction process. 

 

Table 1. Images PSNR, MSE and MSSIM values. 

Image PSNR dB MSE MSSIM 

Img-1 35.13 19.68 0.91856 

Img-2 35.76 17.26 0.87509 

Img-3 36.76 13.96 0.96722 

Img-4 37.96 10.65 0.96292 

Img-5 34.94 21.68 0.94399 

Img-6 35.55 18.49 0.93712 

Img-7 33.84 26.93 0.88499 

Average 35.71 18.38 0.92713 

 

In Table 1, the PSNR values range from 33.84 dB 

(Img-7) to 37.96 dB (Img-4). On average, the PSNR is 

35.71 dB, suggesting that most reconstructed images 

exhibit high reliability with respect to the original test 

images. However, Img-7 demonstrates a slightly lower 

PSNR, indicating more noise or error in that particular 

reconstruction. 

In Table 1, the MSE values range from 10.65 (Img-4) 

to 26.93 (Img-7), with an average of 18.38 across all 
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images. Img-4, which has the lowest MSE (10.65), reflects 

the highest accuracy, while Img-7, with the highest MSE 

(26.93), shows the least accurate reconstruction. This is 

consistent with Img-7's lower PSNR score, further 

supporting that this image has more deviations from the 

original. 

In Table 1, MSSIM values are generally high, ranging 

from 0.87509 (Img-2) to 0.96722 (Img-3), with an average 

MSSIM of 0.93. The high MSSIM values across the board 

suggest that the reconstruction algorithms effectively 

preserve the original images' structural content, even if 

minor errors exist in pixel intensity (as indicated by PSNR 

and MSE). Img-3, with the highest MSSIM of 0.96722, 

demonstrates the best structural similarity, while Img-2, 

with the lowest MSSIM (0.87509), exhibits slightly 

reduced structural accuracy. 

Figure 12 provides a comparative analysis of image 

quality metrics for the reconstructed test images, 

showcasing both PSNR and SSIM values. 

 

 

 

Figure 12. Test images PSNR and MSSIM graph. 

 

The upper part of Figure 12 presents a bar diagram 

illustrating the PSNR values for each test image, from 

Img-1 to Img-7. This diagram highlights the variations in 

image reconstruction quality across different conductivity 

distributions, with higher PSNR values indicating better 

reconstruction fidelity relative to the original test images. 

The lower part of Figure 12 displays the corresponding 

MSSIM values for the same set of test images. MSSIM, 

which assesses the mean structural similarity between the 

reconstructed and original images, provides insight into the 

perceptual quality of the reconstructions. Higher MSSIM 

values signify closer texture, contrast, and luminance 

similarity between the reconstructed and original images. 

Earlier studies in the field, primarily concentrated on 

traditional methods like linearized techniques and Gauss-

Newton-based inversion algorithms, which relied on prior 

information and regularization to stabilize the 

reconstruction process [6]. These methods typically 

yielded satisfactory results for relatively simple phantoms 

with low complexity. However, as the complexity of the 

test images increased the performance of these methods 

began to degrade. Such degradation was particularly 

noticeable when the inclusion size and conductivity 

contrasts were small, as the methods struggled to 

accurately capture finer details in the conductivity 

distribution [14]. 

More recent studies explored the use of advanced 

regularization methods. Including non-linear models, 

complex geometries, and multi-frequency data improved 

accuracy in reconstructing phantoms with more complex 

structures and smaller contrasts. However, some 

challenges remained, particularly in reconstructing images 

with intricate textures or multiple inclusions, where the 

reconstruction could still be affected by noise or limited 

resolution [1, 30]. 

Machine learning (ML) models have demonstrated a 

significant advantage over traditional solver algorithms in 

EIT, offering new opportunities for its application in 

industrial processes [2]. In a systematic study, Martı Aller 

and David Mera et. al, compared several ML approaches, 

including Artificial Neural Networks (ANN), Elastic Net 

(EN), Random Forest (RF), K-Nearest Neighbors (KNN), 

AdaBoost (AB), and Gradient Boosting (GB), as inverse 

solvers. These models were assessed from both 

quantitative and qualitative perspectives. While all models 

provided acceptable results, the Gradient Boosting (GB) 

model, which leverages decision tree learners, exhibited 

the best performance, achieving superior metrics with 

minimal statistical dispersion. Additionally, Lin Yang and 

Zhe Li et al. proposed using XGBoost, an advanced 

boosting method, which demonstrated the best overall 

performance for balanced EIT image reconstruction. 

XGBoost also supports parallelization, improving 

computational efficiency while reducing the risk of 

overfitting, positioning it as a promising ML method for 

predictive applications, such as early forecasting of high-

flow nasal cannula (HFNC) outcomes [31]. These studies 

underscore the growing role of machine learning in 

enhancing electroencephalography's capabilities and 

expanding its potential applications [34]. 

The delta conductivity method demonstrated faster 
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convergence, especially when the initial guess was close to 

the true conductivity distribution. However, it was more 

sensitive to noise, requiring higher regularization 

parameters for stable results. In contrast, the Jacobian-

based method provided more stable reconstructions but 

required more iterations and was computationally more 

intensive. 

 

5. Discussion 

 

The study systematically evaluates the performance 

of two widely used image reconstruction algorithms in 

EIT, the delta conductivity update method and the JAC-

based method. The evaluation underscores the importance 

of regularization in stabilizing the inherently ill-posed EIT 

inverse problem. Both methods benefited from the 

inclusion of regularization terms, which mitigated the 

effects of noise in the measured voltages and prevented 

overfitting. Nonetheless, the choice of regularization 

parameter remains a critical factor influencing 

reconstruction quality, necessitating further exploration to 

optimize its selection for different imaging scenarios. 

Another notable observation is the sensitivity of 

reconstruction accuracy to the initial guess of conductivity 

distribution. Both algorithms exhibited faster convergence 

and higher accuracy when the initial guess was closer to 

the true conductivity distribution, highlighting the potential 

advantage of incorporating prior knowledge or adaptive 

initialization strategies in EIT image reconstruction 

workflows. 

Future work could explore hybrid approaches 

combining the strengths of both methods, advanced 

regularization techniques, and machine learning-based 

frameworks to enhance reconstruction accuracy and 

efficiency further. 

 

6. Conclusions  

 

In this study, we quantitatively assessed two widely 

used image reconstruction algorithms: the delta 

conductivity update method and JAC-based method within 

EIT. By evaluating seven test images with varying levels 

of complexity, we compared the performance of these 

algorithms using key image quality metrics. 

The results demonstrated that both methods 

effectively reconstruct the conductivity distribution within 

the phantom, but each has distinct strengths. The JAC-

based method showed improved performance, especially in 

scenarios involving complex geometries and multiple 

inclusions, owing to its ability to handle intricate 

conductivity variations. In contrast, the delta conductivity 

method provided reasonably accurate reconstructions for 

more straightforward images with lower computational 

overhead. On average, the reconstructed images achieved 

PSNR and MSSIM values of 35.71 dB and 0.93, 

respectively, indicating good overall reconstruction quality 

across the test images. However, as image complexity 

increased, the reconstruction accuracy, particularly with 

the delta conductivity method, decreased, underscoring the 

challenge of reconstructing highly detailed or complex 

phantoms in EIT. 

Our findings highlight the need to select an 

appropriate reconstruction method based on the specific 

imaging scenario. Future work could explore the 

integration of more advanced regularization techniques or 

hybrid methods that combine the strengths of both 

algorithms. 
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