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Abstract. In this paper, we deal with Hill’ s equation with symmetric single
well potential. We find the lower and upper boundaries of the difference be-

tween Dirichlet and Neumann eigenvalues of Hill’ s equation. We also calculate

the eigenvalues of Hill’ s equation with two mixed problems, asymptotically.

1. Introduction

We consider the following differential equation

(1.1) y′′ (t) + [λ− q (t)] y (t) = 0

where λ is a real parameter and q (t) is a real-valued, continuous and periodic
function with period a. We also accept that q (t) is a symmetric single well potential
with mean value zero. By a symmetric single well potential on [0, a] , we mean
a continuous function q (t) on [0, a] which is symmetric about t = a

2 and non-

increasing on
[
0, a2

]
, so we can say that q(t) = q(a − t) and q′(t) exist because of

monotony. In literature, a lot of researchers deal with this equation with various
boundary conditions, various potentials and they find eigenfunctions, eigenvalues,
the expression of Green’ s function and instability intervals. Some of those are [1]-
[14]. Here we calculate the lower and upper boundaries of the difference between
Dirichlet and Neumann eigenvalues of (1.1). We also obtain the eigenvalues of (1.1)
with mixed problems.

Let us explain the these problems in the following section (More details can be
seen in [11]):

2. Preliminaries

We begin with the general second-order equation
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(2.1) a0(x)y′′(x) + a1(x)y′(x) + a2(x)y(x) = 0

in which the coefficients ar(x) are complex-valued, piecewise continuous, and peri-
odic, all with the same period a. Thus

ar(x+ a) = ar(x) (0 ≤ r ≤ 2)

where a is a non-zero real constant. It is also assumed that the left and right-
hand limits of a0(x) at every point are non-zero, so that the usual theory of linear
differential equations without singular points applies.

The name of Hill’ s equation is given to the equation

(2.2) {P (x)y′(x)}′ +Q(x)y(x) = 0

where P (x) and Q(x) are real-valued and have the same period a. In addition, it
is assumed that P (x) is continuous and nowhere zero and that P ′(x) and Q(x) are
piecewise continuous. Thus (2.2) is a particular case of (2.1) and it is named after
G. W. Hill following his work on it 1877.

When we write p(x) instead of P (x) and Q(x) involves a real parameter λ in the
form

Q(x) = λs(x)− q(x)

where s(x) and q(x) are piecewise continuous with period a and there is a constant
s > 0 such that s(x) ≥ s. (2.2) is now

(2.3) {p(x)y′(x)}′ + {λs(x)− q(x)} y(x) = 0.

In order to indicate the depence on λ which occurs in (2.3), we write φ1(x, λ)
and φ2(x, λ) for the solutions of (2.3) which satisfy the initial conditions

φ1(0, λ) = 1, φ′1(0, λ) = 0; φ2(0, λ) = 0, φ′2(0, λ) = 1.

Let us define the discriminant as

(2.4) D(λ) := φ1(a, λ) + φ′2(a, λ).

Although the parameter λ is taken to be real here, it is sometimes necessary to
allow it to be complex. Whether λ is real or complex, φ1(x, λ) and φ2(x, λ), and
their x− derivatives are, for fixed x, analytic functions of λ. Hence, by (2.4), D(λ)
is an analytic function of λ. Since, in particular, D(λ) is a continuous function of λ,
the values of λ for which |D(λ)| < 2 for an open set on the real λ−axis. This set,
which as we shall see is not empty, can be expressed as the union of a countable
collection of disjoint open intervals. (2.3) is stable when λ lies in these intervals,
and the intervals are therefore called the stability intervals of (2.3). Similarly, the
intervals in which |D(λ)| > 2 are called the instability intervals of (2.3). Finally,
the intervals formed by the closures of the stability intervals are, those in which
|D(λ)| ≤ 2the conditional stability intervals of are called (2.3). [11] establishes the
existence of the stability and instability intervals and gives a precise description of
them.

The periodic eigenvalue problem comprises (2.3), considered to hold in [0, a], and
the periodic boundary conditions
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y(a) = y(0), y′(a) = y′(0)

and the eigenvalues λn of this problem satisfy

λ0 ≤ λ1 ≤ λ2 ≤ · · · , and λn −→∞ as n −→∞.
Also, λn are the zeros of the function D(λ)− 2 and that a given λn is a double

eigenvalue if and only if

φ2(a, λn) = φ′1(a, λn) = 0.

The semi-periodic (or called as anti-periodic) eigenvalue problem comprises (2.3),
considered to hold in [0, a], and the semi-periodic boundary conditions

y(a) = −y(0), y′(a) = −y′(0)

and the eigenvalues µn of this problem satisfy

µ0 ≤ µ1 ≤ µ2 ≤ · · · , and µn −→∞ as n −→∞.
Also, µn are the zeros of the function D(λ) + 2 and that a given µn is a double
eigenvalue if and only if

φ2(a, µn) = φ′1(a, µn) = 0.

We also know [11]

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤ λ3 ≤ · · · .

We denote also by Λn and νn respectively the eigenvalues in the two eigenvalue
problems which comprise (2.3), considered to hold in [0, a] , and the two sets of
boundary conditions

(2.5) y(0) = y(a) = 0

and

(2.6) y′(0) = y′(a) = 0.

The equation (2.5) is named as Dirichlet condition, whereas (2.6) is named as
Neumann condition. Also from [11], n = 0, 1, 2, · · ·

(2.7) µ2n ≤ Λ2n ≤ µ2n+1, λ2n+1 ≤ Λ2n+1 ≤ λ2n+2,

(2.8) µ2n ≤ ν2n+1 ≤ µ2n+1, λ2n+1 ≤ ν2n+2 ≤ λ2n+2.

Let us apply to (2.3) the Liouville transformation

t =

∫ x

0

[s(u)/p(u)]
1/2

du, z(t) = [p(x)s(x)]
1/4

y(x).

The transformed equation is

(2.9) z′′ + [λ−Q(t)z(t)] = 0
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where

Q(t) = q(x)− [p(x)]
1/4

[s(x)]
−3/4 d

dx
p(x)

d

dx
[p(x)s(x)]

−1/4
.

It can be seen that the parameter λ is unchanged. Also, the periodic and semi-
periodic boundary conditions for the x− interval [0, a] are transformed into bound-
ary conditions of the same type for the corresponding t− interval. Hence, the
periodic (λn) and semi-periodic (µn) eigenvalues for (2.9) are the same as for (2.3).
We note that Q(t) is r times differentiable if qr(x), pr+2(x) and sr+2(x) all exist
and we can’t apply the Liouville transformation if p′′ and q′′ do not exist.

3. The Results

In this part, we provide our results. Firstly, let us give two mixed problem with
Hill’ s equation for t ∈ [0, a/2]:

The Mixed Problem 1

y′′ (t) + [λ− q (t)] y (t) = 0

y′(0) = y(a/2) = 0,

and its eigenvalue is denoted as λM1 ;
The Mixed Problem 2

y′′ (t) + [λ− q (t)] y (t) = 0

y(0) = y′(a/2) = 0,

and its eigenvalue is denoted as λM2 .

Theorem 3.1. The lower and upper boundaries of the difference between Dirichlet
and Neumann eigenvalues of (1.1) on [0, a] satisfy, as n→∞

i)

− a

(2n+ 1)
2
π2

∣∣∣∣∣
∫ a/2

0

q′ (t) sin

(
2(2n+ 1)π

a
t

)
dt

∣∣∣∣∣+ o
(
n−3

)
≤ Λ2n − ν2n+1

≤ a

(2n+ 1)
2
π2

∣∣∣∣∣
∫ a/2

0

q′ (t) sin

(
2(2n+ 1)π

a
t

)
dt

∣∣∣∣∣+ o
(
n−3

)
,

ii)
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− a

8 (n+ 1)
2
π2

∣∣∣∣∣
∫ a/2

0

q′ (t) sin

(
4(n+ 1)π

a
t

)
dt

∣∣∣∣∣+ o
(
n−3

)
≤ Λ2n+1 − ν2n+2

≤ a

8 (n+ 1)
2
π2

∣∣∣∣∣
∫ a/2

0

q′ (t) sin

(
4(n+ 1)π

a
t

)
dt

∣∣∣∣∣+ o
(
n−3

)
.

Proof. If we subtract (2.8) from (2.7), we reach that

(3.1) µ2n − µ2n+1 ≤ Λ2n − ν2n+1 ≤ µ2n+1 − µ2n,

(3.2) λ2n+1 − λ2n+2 ≤ Λ2n+1 − ν2n+2 ≤ λ2n+2 − λ2n+1.

We also have from [1] that the periodic and semi-periodic eigenvalues of (1.1) on
[0, a] satisfy, as n→∞

λ
1/2
2n+1

λ
1/2
2n+2

=
2 (n+ 1)π

a
∓ a

8 (n+ 1)
2
π2

∣∣∣∣∣
∫ a/2

0

q′ (t) sin

(
4(n+ 1)π

a
t

)
dt

∣∣∣∣∣
− a2

64 (n+ 1)
3
π3

×

[
aq2 (a) + 2a

∫ a/2

0

q (t) q′ (t) dt− 4

∫ a/2

0

tq (t) q′ (t) dt

]
+ o

(
n−3

)
and

µ
1/2
2n

µ
1/2
2n+1

=
(2n+ 1)π

a
∓ a

2 (2n+ 1)
2
π2

∣∣∣∣∣
∫ a/2

0

q′ (t) sin

(
2(2n+ 1)π

a
t

)
dt

∣∣∣∣∣
− a2

8 (2n+ 1)
3
π3

×

[
aq2 (a) + 2a

∫ a/2

0

q (t) q′ (t) dt− 4

∫ a/2

0

tq (t) q′ (t) dt

]
+ o

(
n−3

)
.

If we use this results and equations (3.1) and (3.2), we prove the theorem.
Notice that, the problems are on [0, a], but we can write our solutions on [0, a/2]

because of symmetric single well potential q.
�

Theorem 3.2. The eigenvalues of the Mixed Problem 1 and the Mixed Problem 2
satisfy, as n→∞

i)
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[
λM1

2n

]1/2

=
[
λM2

2n

]1/2
=

(2n+ 1)π

a

− a

2 (2n+ 1)
2
π2
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∫ a/2

0

q′ (t) sin

(
2(2n+ 1)π
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∣∣∣∣∣
− a2
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×

[
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0
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0
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]
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(
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)
,

ii)

[
λM1

2n+1

]1/2

=
[
λM2

2n+1

]1/2
=

(2n+ 1)π

a

+
a

2 (2n+ 1)
2
π2

∣∣∣∣∣
∫ a/2

0

q′ (t) sin

(
2(2n+ 1)π

a
t

)
dt

∣∣∣∣∣
− a2

8 (2n+ 1)
3
π3

×

[
aq2 (a) + 2a

∫ a/2

0

q (t) q′ (t) dt− 4

∫ a/2

0

tq (t) q′ (t) dt

]
+ o

(
n−3

)
.

Proof. Firstly, it can be note that µ is the eigenvalues of Hill’s equation on the
interval [0, a] but the eigenvalues of mixed problems is for Hill’ s equation on the
interval [0, a/2]. [4] doesn’ t entirely give mixed eigenvalues but it gives some
properties for the mixed eigenvalues and proves that, if you have a symmetric
potential

λM1

k = λM2

k = µk

is satisfied. Our potential is symmetric single well, so we can use this equality. From

this equality and µ
1/2
2n and µ

1/2
2n+1 (above given from [1]), we prove the theorem and

hence, we can give asymptotic eigenvalues. �

4. Conclusions

In this study, we find some asymptotic eigenvalues of Hill’s equation. Our po-
tential is symmetric single well, so we show that we can write our results on the
half interval, we don’t need to give asymptotic eigenvalues on the whole interval of
the problem, the half interval is enough.
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