
Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2025; 6(1); 29-36

*Sorumlu Yazar

*(altin.rukiye@gmail.com) ORCID ID 0000-0001-7593-2775

e-ISSN: 2717-8579

Geliş Tarihi: 29/09/2024; Kabul Tarihi: 27/05/2025 Bilgisayar Bilimleri ve Teknolojileri Dergisi

Araştırma Makalesi

Improving Computational Thinking Skills with the Collaboration of Computer Science
and Mathematics

Rukiye ALTIN*1,

1University of Kiel, Department of Computer Science, Kiel, Germany

 ABSTRACT

Keywords:
Computational Thinking
Computer Science
K12
ICT
Programming

 The importance of Computational Thinking (CT) skills has gained significant attention in
K-12 education, with several research studies highlighting the key role of CT in today’s
education. To enhance students' CT skills, various approaches have been integrated into
education, with the incorporation of computer science (CS) being the most popular. This
approach not only exposes students to CT but also teaches problem-solving concepts that
benefit both CS and CT. Furthermore, CT involves problem-solving processes that include
specific dispositions and characteristics essential for developing basic computer
applications, making it a necessity for students to both conceptualize and apply these
skills. The current study aims to examine the influence of programming skills by teaching
CT through the integration of mathematics in an interdisciplinary exercise. This
experimental research involved four experimental groups and four control groups, with
an overall sample size of N = 188. The groups were randomly assigned. The study results
indicated that teaching programming by integrating mathematics as an interdisciplinary
approach improves both students' programming and CT skills. This study is important
as it provides lesson plans for a secondary school programming course that had a
positive effect on students' programming learning.

Bilgi İşlemsel Düşünme Becerilerinin Bilgisayar Bilimi ve Matematik İş birliği ile
Geliştirilmesi

 ÖZ
Anahtar Kelimeler:
Bilgi İşlemsel Düşünme
Bilgisayar Bilimi
K12
Bilişim Teknolojileri
Programlama

 Bilgi İşlemsel Düşünme (CT) becerilerinin önemi, K-12 eğitiminde önemli bir dikkat
çekmiştir ve birçok araştırma çalışması, günümüz eğitiminde CT'nin oynadığı kilit rolü
vurgulamaktadır. Öğrencilerin CT becerilerini geliştirmek için çeşitli yaklaşımlar eğitime
entegre edilmiştir ve bilgisayar biliminin (CS) entegrasyonu en popüler yaklaşım haline
gelmiştir. Bu yaklaşım, öğrencileri sadece CT ile tanıştırmakla kalmaz, aynı zamanda
hem CS hem de CT için faydalı olan problem çözme kavramlarını öğretir. Ayrıca, CT,
temel bilgisayar uygulamalarının geliştirilmesi için gerekli olan belirli eğilim ve
özellikleri içeren problem çözme süreçlerini içerir ve bu nedenle öğrencilerin bu
becerileri hem kavramsallaştırması hem de uygulaması için bir gerekliliktir. Bu çalışma,
disiplinlerarası yaklaşım ile matematiğin bilgisayar bilimleri dersine entegre edilmesi ile
öğrencilerin CT becerilerinin etkisini incelemeyi amaçlamaktadır. Bu deneysel
araştırma, dört deney grubu ve dört kontrol grubu olmak üzere toplamda N = 188 kişilik
bir örneklemle yürütülmüştür. Gruplar rastgele atanmıştır. Araştırma sonuçları,
matematiğin disiplinler arası bir yaklaşımla entegrasyonu yoluyla programlama
öğretiminin, öğrencilerin hem programlama hem de CT becerilerini geliştirdiğini
göstermiştir. Bu çalışma, ortaokul düzeyinde bir programlama dersi için olumlu bir etki
yaratan ders planları sunduğundan önemlidir.

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2025; 6(1); 29-36

 30
Bilgisayar Bilimleri ve Teknolojileri Dergisi

1. INTRODUCTION

Today’s living keeps us connected to computers

and computer applications more than ever.
Consequently, computer science, as a discipline, has
become extremely significant and those with
computer science skills such as programming are in
high demand to fill positions in numerous areas of
modern life where such skills are required. Also,
according to Dagdilelis et al. (2004) students who
are learning programming at a young age get better
at problem solving skills because it helps their
critical thinking. On the other hand, computation
means solving a problem step by step and showing
the solution in a way that a computer can understand
and use. Scholars note that the concept of
"computational thinking" (CT), often described as
thinking in ways similar to a computer, has existed
since the 1950s, alongside the broader notion of
problem-solving (PS) (Haseski, Ilic, & Tuğtekin,
2018; International Society for Technology in
Education & Computer Science Teachers
Association, 2011; Kalelioğlu, Gülbahar, & Kukul,
2016; Tran, 2019).

It is stated that CT means finding ways to
understand and solve problems using tools like
computers to find, study, and show information.
(CSTA, 2011). Consequently, CT can be defined as the
ability to solve problems by applying fundamental
concepts such as abstraction, developing step-by-
step strategies through algorithms, and
collaborating with others on tasks grounded in real-
world contexts. CT is a way to solve problems that
can have more than one right answer. Researchers
highlight that CT can be used to solve many
problems by making guesses, predictions, and using
simple ideas, abstraction (Baytak and Land, 2011a;
Grover and Pea, 2013; Schulte et. al., 2025; Wing,
2006). While programming is often considered a key
component in developing CT skills, it is argued that it
is not the sole pathway. and also it emphasized that
CT should also be supported through activities that
promote higher-order thinking skills (Grover and
Pea, 2013). Selby and Woollard (2013) explain that
CT involves two main skill areas: problem-solving
and computer science. Important skills within CT
include logical thinking, creating step-by-step
instructions (algorithmic thinking), problem-
solving, analyzing and generalizing information,
designing systems, automating tasks, making models
and simulations, visualizing data, and understanding
basic computer science concepts.

According to scholars, CT skills can grow not
just by programming and solving problems, but also
by using pictures to understand ideas
(visualization), linking problems to real life, fixing
errors in code (debugging), and using simple ideas
(abstraction). (Armoni, 2012; Wing, 2008; Baytak
and Land, 2011a; Altin et. al., 2021; Maloney et al.,
2010; Nowak et al., 2002). Following past research,
this study wants to test how learning computer

science and using math as a second subject can help
students improve their CT skills.

1.1. Linking Computer Science Education to

Computational Thinking Competencies

Computational thinking (CT) means
understanding ideas that help people learn and
solve problems. One way to build CT is by
learning programming because programming
gives a positive impact on achieving CT aspects
(Selby and Woollard, 2013). It also helps people
understand how others behave in the
community. Therefore, learning to program is
valuable not only because it equips students with
the ability to solve real-world, everyday
problems, but also because it enhances their
understanding of various behaviors exhibited by
individuals within their communities (Howland
et al., 2009, Altin et. al., 2021). Programming is
also considered vital within society, as it enables
learners to address practical, real-life challenges.
Those who acquire knowledge of computational
languages develop the skills needed to engage
effectively with computers and technology-based
systems. According to Wing (2008) many fields in
science and engineering are interacting with
computers in their nature and this interaction
creates a natural link that makes us understand
the relation between systems and deeper CT.
These benefits strongly support the learning and
development of CT in education.
Learning how to program and improving
computer skills are closely connected to each
other. Computer skills help learners understand
programming better, and learning programming
helps students gain advanced computer skills.
These skills can then be applied to solve
problems in real life. Programming and computer
skills work well together and help students learn
and grow (Cansu and Cansu, 2019). Wing (2006)
explains that even though CT and computer
science are not the same, students can get better
at CT while they learn to program.

Students also learn to think by using CT they gain
during learning. Researchers agree that
programming helps develop metacognitive skills,
which are essential for CT. This is because
programming helps students connect new
information with what they already know
(Depryck, 2016; Wing, 2006; Allsop, 2019;
Romero et al., 2017). Moreover, programming
aspects such as sequence, conditional operations,
debugging, loops are involving metacognitive
skills such as evaluating, modifying, reflecting
and understanding the nature of the problem
(All- sop, 2019). Nouri et al. (2020) indicate that
even though programming has been part of
education in K-12, it took a new meaning today
by including CT in it and teachers started to look
for new ways of teaching methods to develop

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2025; 6(1); 29-36

 31
Bilgisayar Bilimleri ve Teknolojileri Dergisi

both CS and CT skills at the same time. Therefore,
learning programming largely depends on
students’ computational skills knowledge, and
therefore computational skills are a significant
part of learning programming. However, to
facilitate learning programming to young
students, new teaching methods are required.
Therefore, these two aspects depend on each
other to achieve the desired educational goals.

Threekunprapa and Yasri (2020) say that the
connection between CT and computer science is
like the connection between shapes and
functions in a flowchart, which helps show how a
program works. In other words, CS and CT are
connected naturally. Studies show that computer
science helps people use skills like algorithmic
thinking, critical thinking, and problem-solving
because these skills are part of CT and can be
used to solve real-life problems. (Anderson,
2016; Czerkawski and Lyman, 2015; Ioannidou et
al., 2011; Israel et al., 2015; Wing, 2006).
According to Grover and Pea (2013) CT focuses
on breaking down a problem into manageable
disparate parts and then generalizing it into
patterns, which is largely the same as happens in
computer science when correcting coding errors
through debugging and the application of
recursive thinking. Li et al. (2020) highlight that
programming is considered as difficult to
understand and in the same way improving CT
skill is seemed as difficult, therefore, connecting
these two fields is a way of making both easier to
not just understand the depth of but to improve
the skills in both computer science and
CT. Computer science contributes to the
development of CT skills, as both disciplines
emphasize problem-solving through analytical
reasoning and innovative approaches. To connect
programming with computational skills, learners
must be able to articulate clear, detailed
instructions and translate them into sequential
steps suitable for developing the intended
program. The program developed can then be
used to solve problems in professional settings.
An additional aspect involves envisioning a
system made up of various components that
outline the scope the program is intended to
address. These program components can be
different, but they shouldn't have overlapping
functions (Kurilovas and Dagiene, 2016).
Systems designed this way should be easy for
users to understand and operate. Learning to
program also requires grasping complex systems
and their behaviors, which becomes evident
through the interplay between CT and the
acquisition of programming languages. System
designers are expected to build models that
transparently demonstrate their functionality
and offer insights relevant to the original
problem. More broadly, CT encompasses the

logical organization and examination of data.
After a thorough understanding and analysis of a
problem, potential solutions can be formulated to
address it.

"According to Barr and Stephenson (2011),
computer science plays a vital role in society by
enhancing algorithmic thinking through
problem-solving. This, in turn, supports the
adoption of CT practices, facilitated by the field’s
inherently interdisciplinary nature. Kong et al.
(2020) the three components; sequences, loops
and conditions come from computer science
serving CT components directly because it
enables young learners to connect their
perspective with the digital
world. Hemmendinger (2010) also emphasized
that computer science and CT overlap in several
core competencies, including analysis, modeling,
system development, and error detection and
correction (debugging). Therefore, when
educators design a computer science course, they
often inherently incorporate elements of CT. The
instructional approach to CT aligns with teaching
fundamental algorithms, as both involve
interpreting and constructing step-by-step
solutions to problems in a logical and reflective
manner (Lu & Fletcher, 2009). Research has
mostly focused on how to improve different skills
areas through interdisciplinary collaboration.
The significance of programming in teaching CT
is well established, as it contributes not only to
the development of essential 21st-century
competencies (Sirakaya & D, 2019) but also to the
enhancement of algorithmic thinking skills.
These skills include the ability to approach
problems methodically, create simulations,
visualize solutions, and identify and correct
errors through debugging (Kazimoglu et al.,
2012). By incorporating computer science into
K–12 education, students are exposed to
opportunities that extend beyond learning to
code. They also engage in structured problem-
solving processes that lie at the heart of CT. This
integration supports the cultivation of logical
reasoning, creativity, and persistence—key
attributes that underpin both CT and broader
academic and real-world success (Kong et al.,
2020; Angeli & Giannakos, 2020).

2. METHOD

2.1. Research Design

This research investigates the impact of
integrating programming instruction with
mathematics on the development of CT skills among
secondary school students. The central research
question examines how different instructional
strategies—specifically, a traditional teaching
approach (TA) compared to an interdisciplinary
approach (IA)—affect students’ acquisition of these
skills. Adopting a design-based research (DBR)

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2025; 6(1); 29-36

 32
Bilgisayar Bilimleri ve Teknolojileri Dergisi

framework, the study employs a quasi-experimental
design to structure its methodology. Statistical
analyses were conducted using t-tests to compare
the outcomes across the different instructional
conditions.

2.2. Procedures

The idea of the study had applied to secondary

school students for eight weeks. A total of eight 7th
grade classes were randomly assigned to either an
EG or a CoG. The instructional content, including
lesson plans and teaching materials, was designed by
the researcher. Two ICT teachers from the same
school implemented the lessons, each delivering the
content to their assigned groups according to the
planned instructional approach. The researcher was
mentoring the ICT teachers during the process and
informing them frequently about the application of
the lesson plans. In this study, the experimental
group (EG) received instruction in the Small Basic
programming language with integrated
mathematical content. The problems used in the
lessons were drawn from the official seventh-grade
mathematics textbook utilized by the students. In
contrast, the control group (CoG) was taught Small
Basic using a traditional instructional method,
emphasizing programming concepts such as syntax
and structure without interdisciplinary integration.
The intervention spanned eight weeks, totaling 16
hours of instruction. During the initial two weeks,
both groups followed the same introductory lesson
plan designed to familiarize students with the Small
Basic environment. This phase also included the
administration of a pretest. Over the next four weeks,
the instructional paths diverged: the EG engaged
with lessons that incorporated mathematical
problem-solving, while the CoG continued with
conventional programming instruction. In the final
week, the pretest was re-administered as a posttest
to assess changes in CT skills and compare learning
outcomes between the two groups.

2.3. Participant

The study sample consisted of a total of 188 seventh-
grade secondary school students attending a private
school in Ankara, Turkey. The population of the
secondary school is 980 and the total population of
the school including kindergarten. primary and high
school is around 4000. The participants were aged
from 12 to 13 years old. Each group- both the
experimental and control groups- had 94 students in
total, and the gender division was done equally at
50%. The academic levels of the classes were
considered similar because the school follows a
policy of creating academically balanced classes by
grouping students with similar GPA scores. Both
groups were taught by two ICT teachers who had the
same teaching approach and were working in the

same school. A demographic summary of the
participant students is provided in Table 1.

Table 1. Demographic Summary of the Students

 Group 𝑵 % Valid

%

Cumulative
%

Experimental

Group (EG)

E1

E2

E3

E4

24

24

24

22

12.8

12.8

12.8

11.7

12.8

12.8

12.8

11.7

12.8

25.5

38.3

50.0

Control

Group (CoG)

C1

C2

C3

C4

24

23

24

23

12.8

12.2

12.8

12.2

12.8

12.2

12.8

12.2

62.8

75.0

87.8

100.0

2.4. Data Collection

Quantitative data were gathered using the
Computational Thinking Skills Self-Efficacy Scale
(CTSSES), originally developed by Gülbahar et al.
(2019). To evaluate students’ progress in CT, the
same scale was administered again as a posttest
following the instructional period. The original
development of the scale involved a sample of 952
secondary school students from various regions
across Turkey. Through their analysis, the authors
identified five underlying dimensions, resulting in a
39-item instrument formatted on a 5-point Likert
scale.

It is reported that a Kaiser-Meyer-Olkin (KMO)
coefficient of .966 and a Bartlett’s Test of Sphericity
with a significance value below .05 (Gülbahar et al.,
2019). These results confirmed the suitability of the
data for factor analysis, as the KMO exceeded the
minimum threshold of .50 and the Bartlett test was
statistically significant. The exploratory factor
analysis revealed a five-factor structure for the
original 39-item scale but in this study three items
were excluded, resulting in a finalized scale with 36
items. The corrected item-total correlations ranged
between .386 and .632, while Cronbach’s Alpha
values ranged from .762 to .930, demonstrating
strong internal consistency and reliability.

3. RESULTS

To address the research question, the results
from the CTSSES were analyzed for both the
experimental and CoGs. To assess whether
significant differences existed between pretest and
posttest scores, a paired-samples t-test was
performed independently for each group. This test
helped identify any changes in the average scores
within each group. Furthermore, independent
samples t-tests were conducted to compare the
pretest and posttest scores of the experimental and
CoGs, allowing for the evaluation of mean differences
between the two teaching approaches.

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2025; 6(1); 29-36

 33
Bilgisayar Bilimleri ve Teknolojileri Dergisi

The results of both group students’ CTSSES
pretest and posttest are presented in Table 2.

Table 2. Results of paired t-test

Group Scale M Sd t df p

Exp Pre-

test

40.29 13.81 -

9.775

93 .000

Post

Test

58.74 11.87

Cont Pre-

test

44.57 16.11 0.595

93 .553

Post

Test

43.31 13.51

*p<0.05

As shown in Table 2, the EG had a mean pretest score
of X = 40.29 (SD = 13.81) on the CTSSES, while the
CoG’s mean pretest score was slightly higher at X =
44.57 (SD = 16.11). Following the instructional
intervention, the EG’s average score increased
substantially to X = 58.74 (SD = 11.87), whereas the
CoG’s average decreased slightly to X = 43.31 (SD =
13.51). These findings suggest that the intervention
had a notable positive impact on the CT skills of
students in the EG. In contrast, students in the CoG
showed a modest decline in their posttest scores
compared to the pretest.

The t-test analysis showed that the EG's average
score on the CTSSES increased by 18.45 points from
pretest to posttest. In contrast, the CoG's average
score decreased by 1.26 points. This suggests a
significant improvement in the EG's CT skills
compared to the CoG.

The results of the paired-samples t-test indicated a
statistically significant difference between the EG’s
pretest and posttest scores (t(93) = -9.775, p < .01),
suggesting a substantial enhancement in their CT
self-efficacy as a result of the intervention. In
contrast, no statistically significant difference was
observed between the CoG’s pretest and posttest
mean scores. These findings suggest that the
traditional instructional approach did not lead to
measurable gains in the CoG’s information
processing and CT skills.

An independent samples t-test was subsequently
performed to examine whether there were
significant differences in average scores between the
EGs and CoGs. Table 3 presents the results of this
analysis, comparing participants' self-efficacy in CT
skills according to their group assignment
(experimental vs. control).

In this study, an independent samples t-test was
performed to find out if the differences in mean
scores between the EG and CoG is significant or not.
As shown in Table 3, the analysis revealed a

significant difference in both pretest (t(186) = -1.96,
p < .05) and posttest (t(186) = 8.32, p < .05) scores.
Prior to the intervention, the EG reported lower self-
efficacy in CT compared to the CoG. However,
following the instructional intervention, the EG’s
scores increased significantly, surpassing those of
the CoG.

Table 3. Results of the Independent Samples t-Test
Between Groups

Scale Group M Sd X2-X1 p

Pre Exp 40.29 13.81 -4.28 .05

Cont 58.74 16.11

Post Exp 44.57 11.87 15.44 .00

Cont 43.31 13.51

*p<0.05

The results of the independent samples t-test indicate
a statistically significant difference in the pretest and
posttest mean scores on the CTSSES. These findings
suggest that integrating coding instruction with an
interdisciplinary approach, specifically through
mathematics, had a positive effect on students' self-
efficacy related to CT skills.

4. DISCUSSION

This study explored the impact of programming

instruction on enhancing CT skills through an
interdisciplinary approach that integrated
mathematics. Analysis of the results from both the
independent samples t-test and paired samples t-
tests revealed that students in the EG demonstrated
a significant improvement in their CT self-efficacy.
Specifically, their average score on the posttest was
notably higher than on the pretest. In contrast, the
CoG exhibited a slight decline in average scores from
pretest to posttest. Quantitatively, the EG showed an
average gain of +18.45 points, while the CoG showed
a decrease of -1.26 points. These results indicate a
substantial improvement in the EG’s CT skills
following the intervention. Furthermore, when
posttest scores were compared across groups,
students in the EG clearly outperformed those in the
CoG. These findings suggest that teaching coding
through an interdisciplinary framework, particularly
by integrating mathematics, can effectively enhance
students’ self-efficacy in CT.

In a study conducted by Fields, Liu and Kafai

(2017), it was observed that teachers improved
students’ CT skills through computer-assisted
instruction and programming. Also, a study applied
by Jun, Han and Kim (2017), as a result of the
experimental process with students using coding
programs, has been shown that design-based
learning improves CT in some of the elementary
school students. In conclusion, the findings of this
study provide strong evidence that integrating a
second discipline—such as mathematics—into

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2025; 6(1); 29-36

 34
Bilgisayar Bilimleri ve Teknolojileri Dergisi

programming instruction can significantly enhance
students’ CT skills. This research contributes
meaningfully to the field by demonstrating an
effective approach for making computer science
more accessible and engaging for younger learners.
It also underscores the value of interdisciplinary
strategies in supporting the development of core
competencies such as problem-solving and
algorithmic thinking. Consistent with existing
literature, this study highlights a promising method
for bridging CT and computer science education. By
contextualizing programming within a familiar
academic subject, the learning process becomes
more meaningful, and the connection between the
real world and the computational domain becomes
easier for students to grasp. As a result,
interdisciplinary instruction proves to be more
effective than traditional methods in fostering CT
skills. By working with mathematics teachers during
the preparation of lesson plans, it has been noticed
that students will be challenged with problem
solving more than the traditional methods because
first they need to understand the nature of
mathematical problems then they have to involve
programming into it to solve the problem. Scholars
widely agree that studying computer science and
learning a programming language can enhance a
range of individual skills, particularly those related
to algorithmic thinking, critical thinking, and
problem-solving, which are central components of
CT (Anderson, 2016; Ioannidou et al., 2011; Israel et
al., 2015; Wing, 2006). The overall results of this
study align with that consensus, providing evidence
that programming plays a significant role in
fostering the development of CT skills.

5. LIMITATION

Several limitations took the part in the study.

First, working with young groups made the duration
of the study longer, approximately one year. Second,
the number of participants in the study became
limited because some parents did not give
permission for their children to be part of the study.
Third, as this study took place in a private school, due
to the hierarchical regulations, to make changes in
the curriculum took longer than it could take in a
state school. That made the duration of study longer
than expected. Another limitation of the study is that
as the study was applied in a private school, it only
reflects the results of students in private school
context.

6. CONCLUSION

Thanks to this significant research, the results

explicitly show that including mathematics into
programming course in K-12 level, improves
students’ CT skills. CT is defined as the process of
understanding a problem and devising innovative
solutions using computer science principles and

techniques (Wing, 2008). In an increasingly
technology-driven world, both computer science and
CT have become essential societal competencies.
Kale et al. (2018) noted that the World Economic
Forum projected a significant shift in the job market
by 2020, with many traditional roles becoming
obsolete due to the rise of robotic technologies.
However, this transformation is also expected to
generate over two million new employment
opportunities in emerging fields. Given the growing
importance of computer science and CT, driven by
rapid technological advancements in industry and
the transformative effects of the COVID-19
pandemic, there is an urgent need to cultivate CT
skills in the younger generation.

To address this growing need, computer science

must be integrated into K–12 education—not only to
enhance students’ problem-solving and algorithmic
thinking but also to foster the development of CT
skills. Several scholars have emphasized that current
opportunities within K–12 settings remain
insufficient to adequately support students in
acquiring these essential skills (Gülbahar & Kukul,
2016; Guzdial, 2016; Kale et al., 2018; Wing, 2008).
As computer science knowledge and CT skills
become increasingly essential for future generations,
it is crucial for schools, educators, and policymakers
to update national curricula and incorporate
interdisciplinary teaching strategies. Furthermore,
to make computer science more accessible to
younger learners, its complexity should be reduced
to create more effective pathways for developing CT.
The current study has highlighted an important
strategy in establishing a link between CT skills
acquisition and computer science, and that teaching
programming along with a second discipline such as
mathematics can increase the level of learners’ CT
skills more than by teaching purely by traditional
methods. It is suggested that this increased learning
due to the connection between the comprehension of
today’s students with the real world and the
computing world. This study proved the need for
including mathematics into programming
curriculum as well as creating lesson plans and
designing materials in line with the currently
planned Curriculum to improve students’ CT. After
incorporating the necessary changes into the lesson
plans and instructional materials—specifically by
integrating relevant mathematical problems with
input from mathematics teachers—it was observed
during implementation that students in the
interdisciplinary group faced greater challenges
with mathematics-related problem-solving
compared to those taught using traditional methods.
This difference can be attributed to the added
cognitive demand: students first needed to
comprehend the nature of the mathematical
problem before attempting to develop a
programming-based solution.

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2025; 6(1); 29-36

 35
Bilgisayar Bilimleri ve Teknolojileri Dergisi

The approach put forward in the current study
is seen as a new methodology for the teaching of
computer science in conjunction with mathematics.
However, further research is needed in order to
examine teachers’ and students’ attitudes towards
the appendage of a second discipline whilst learning
computer programming skills. Also, future research
can examine teachers’ and students’ attitudes
towards the second discipline while learning
programming. In future studies, the number of
second disciplines can be increased to give students
a choice of different problems. Also, the study can be
applied to state schools in future research.

REFERENCES

Allsop, Y. (2019). Assessing computational thinking
process using a multiple evaluation approach.
International Journal of Child-Computer
Interaction, 19, 30–55.
doi:10.1016/j.ijcci.2018.10.004

Anderson, N. D. (2016). A Call for Computational
Thinking in Undergraduate Psychology.
Psychology Learning & Teaching, 15(3), 226–
234. doi:10.1177/1475725716659252

Angeli, C., & Giannakos, M. (2020). Computational
thinking education: Issues and challenges.
Computers in Human Behavior, 105, 106185.
doi:10.1016/j.chb.2019.106185

Armoni, M. (2011). The nature of CS in K--12
curricula. ACM Inroads, 2(4), 19–20.
doi:10.1145/2038876.2038883

Barr, V., & Stephenson, C. (2011). Bringing
computational thinking to K-12. ACM Inroads,
2(1), 48–54. doi:10.1145/1929887.1929905

Baytak, A., & Land, S. M. (2011). An investigation of
the artifacts and process of constructing
computer games about environmental science
in a fifth grade classroom. Educational
Technology Research and Development, 59,
765e782. http://dx.doi.org/10.1007/s11423-
010-9184-z

Baytak, A., & Land, S. M. (2011). An investigation of
the artifacts and process of constructing
computers games about environmental science
in a fifth grade classroom. Educational
Technology Research and Development, 59(6),
765–782. doi:10.1007/s11423-010-9184-z

Brennan, K., & Resnick, M. (2012).Using artifact-
based interviews to study the development of
computational thinking in interactive media
design. AmericanEducational Research
Association Meeting. Vancouver, BC: Canada

Cansu, S. K., & Cansu, F. K. (2019). An Overview of
Computational Thinking. International Journal
of Computer Science Education in Schools, 3(1),
n1.

Czerkawski, B. C., & Lyman, E. W., III (2015).
Exploring issues about computational thinking
in higher education. TechTrends, 59(2), 57e65.

http://dx.doi.org/10.1007/s11528-015-0840-
3.

Dagdilelis, V., Satratzemi, M., & Evangelidis, G.
(2004). Introducing secondary education
students to algorithms and programming.
Education and Information Technologies, 9(2),
159-173.

DePryck, K. (2016, November). From computational
thinking to coding and back. In Proceedings of
the Fourth International Conference on
Technological Ecosystems for Enhancing
Multiculturality (pp. 27-29).

Grover, S., & Pea, R. (2013). Computational thinking
in K-12, a review of the state of the field.
Educational Researcher, 42(1), 38e43.

Gülbahar, Y., Kert, S. B., & Kalelioğlu, F. (2019). Bilgi
işlemsel düşünme becerisine yönelik öz yeterlik
algısı ölçeği: geçerlik ve güvenirlik çalışması.
[Self-efficacy perception scale for
computational thinking skill: validity and
reliability study] Türk Bilgisayar ve Matematik
Eğitimi Dergisi, 10(1), 1-29.

Haseski, H. I., Ilic, U., & Tugtekin, U. (2018). Defining
a New 21st Century Skill-Computational
Thinking: Concepts and Trends. International
Education Studies, 11(4), 29-42.

Hemmendinger, D. (2010). A plea for modesty. ACM
Inroads, 1(2), 4–7.
doi:10.1145/1805724.1805725

Howland, K., Good, J., & Nicholson, K. (2009,
September). Language-based support for
computational thinking. In 2009 IEEE
Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) (pp. 147-150).
IEEE.

International Society for Technology in Education &
Computer Science Teachers Association.
(2011). Operational definition of computational
thinking for K-12 education. Retrieved from
https://csta.acm.org/Curriculum/sub/CurrFile
s/CompThinkingFlyer.pdf

Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H., &
Basawapatna, A. (2011, April). Computational
thinking patterns. In Paper presented at the
annual meeting of the American educational
research association. New Orleans, LA.

Israel, M., Pearson, J., Tapia, T., Wherfel, Q., & Reese,
G. (2015). Supporting all learners in school-
wide computational thinking: A cross-case
qualitative analysis. Computers & Education, 82,
263e279.

Kafai, Y., & Burke, Q. (2014). Connected code : why
children need to learn programming. MIT Press.

Kale, U., Akcaoglu, M., Cullen, T., Goh, D., Devine, L.,
Calvert, N., & Grise, K. (2018). Computational
What? Relating Computational Thinking to
Teaching. TechTrends, 62(6), 574-584.

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A
framework for computational thinking based on
a systematic research review.

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2025; 6(1); 29-36

 36
Bilgisayar Bilimleri ve Teknolojileri Dergisi

Kazimoglu, C., Kiernan, M., Bacon, L. & MacKinnon, L.,
2012, Learning Programming at the
Computational Thinking Level via Digital Game-
Play, Procedia Computer Science, 9, 522-531.

Kurilovas, E., & Dagiene, V. (2016). Computational
thinking skills and adaptation quality of virtual
learning environments for learning informatics.
International Journal of Engineering Education,
32(4), 1596-1603

Kong, S.-C., Lai, M., & Sun, D. (2020). Teacher
development in computational thinking: Design
and learning outcomes of programming
concepts, practices and pedagogy. Computers &
Education, 151, 103872.
doi:10.1016/j.compedu.2020.103872

Kwon, D. Y., Kim, H. S., Shim, J. K., & Lee, W. G. (2012).
Algorithmic bricks: a tangible robot
programming tool for elementary school
students. Education.IEEETransactions, 55(4),
474e479

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C.,
Benson, L. C., English, L. D., & Duschl, R. A.
(2020). Computational Thinking Is More about
Thinking than Computing. Journal for STEM
Education Research, 3(1), 1–18.
doi:10.1007/s41979-020-00030-2

Lu, J. J., & Fletcher, G. H. (2009, March). Thinking
about computational thinking. In ACM SIGCSE
Bulletin (Vol. 41, No. 1, pp. 260-264). ACM.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., &
Eastmond, E. (2010). The scratch programming
language and environment. ACM Transactions
on Computing Education (TOCE), 10(4), 16.

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2019).
Development of computational thinking, digital
competence and 21stcentury skills when
learning programming in K-9. Education
Inquiry, 11(1), 1–17.
doi:10.1080/20004508.2019.1627844

Nowak, M. A., Komarova, N. L., & Niyogi, P. (2002).
Computational and evolutionary aspects of
language. Nature, 417(6889), 611-617.

Romero, M., Lepage, A., & Lille, B. (2017).
Computational thinking development through
creative programming in higher education.
International Journal of Educational Technology
in Higher Education, 14(1), 42.

Selby, C., & Woollard, J. (2013). Computational
thinking: the developing definition.(2013). URL
https://eprints. soton. ac. uk/356481.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., &
Clark, D. (2013). Integrating computational
thinking with K-12 science education using
agent-based computation: a theoretical
framework. Education and Information
Technologies, 18, 351e380.

Threekunprapa, A., & Yasri, P. (2020). Unplugged
Coding Using Flowblocks for Promoting
Computational Thinking and Programming
among Secondary School Students.

International Journal of Instruction, 13(3), 207–
222. doi:10.29333/iji.2020.13314a

Tran, Y. (2018). Computational Thinking Equity in
Elementary Classrooms: What Third-Grade
Students Know and Can Do. Journal of
Educational Computing Research, 57(1), 3–31.
doi:10.1177/0735633117743918 Wing, J.
(2006). Computational Thinking.
Communications of The ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and
thinking about computing. Philosophical
Transactions of the Royal Society A:
Mathematical, Physical and Engineering
Sciences, 366(1881), 3717-3725.

