

*Sorumlu Yazar/Corresponding Author: Tolga Recep UÇAR e-posta/e-mail: tucar24@ku.edu.tr

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi
Afyon Kocatepe University – Journal of Science and Engineering

https://dergipark.org.tr/tr/pub/akufemubid

Araştırma Makalesi / Research Article
e-ISSN: 2149-3367 DOI: https://doi.org/10.35414/akufemubid.1558289
AKÜ FEMÜBİD 25 (2025) 031303 (489-496) AKU J. Sci. Eng. 25 (2025) 031303 (489-496)

Orthogonal Embedding-Based Artificial Neural Network
Solutions to Ordinary Differential Equations

Adi Diferansiyel Denklemlerin Ortogonal Gömme Tabanlı Yapay
Sinir Ağı Çözümleri

Tolga Recep UÇAR1* , Hasan Halit TALİ2,3

1 Koç University, Graduate School of Sciences and Engineering, Department of Mathematics, İstanbul, Türkiye
2 Haliç University, Department of Mathematics, İstanbul, Türkiye
3 Galata University, Faculty of Engineering, Department of Computer Engineering, İstanbul, Türkiye

 © 2025 The Authors | Creative Commons Attribution-Noncommercial 4.0 (CC BY-NC) International License

Abstract
Providing numerical solutions to differential equations in cases
where analytical solutions are not available is of great
importance. Recently, obtaining more accurate numerical
solutions with artificial neural network-based machine learning
methods are seen as promising developments for numerical
solutions of differential equations. In this paper, a low-cost,
orthogonal embedding-based network with fast training by
simple gradient descent algorithm is proposed to obtain
numerical solutions of differential equations. This architecture
is essentially a two-layer neural network that takes orthogonal
polynomials as input. The efficiency and accuracy of the method
used in this paper are demonstrated in various problems and
comparisons are made with other methods. It is observed that
the proposed method stands out especially when compared
with high-cost solutions.

Keywords: Non-linear ordinary differential equations; Numerical
approximation; Artificial neural networks; Orthogonal polynomials.

Öz
Analitik çözümlerin mevcut olmadığı durumlarda diferansiyel
denklemler için nümerik çözümler elde etmek büyük önem
taşımaktadır. Son zamanlarda, yapay sinir ağı tabanlı makine
öğrenmesi yöntemleriyle daha tutarlı nümerik çözümlerin elde
edilmesi diferansiyel denklemlerin nümerik çözümleri için ümit
verici gelişmeler olarak görülmektedir. Bu makalede,
diferansiyel denklemlerin nümerik çözümlerini elde etmek için
basit gradyan düşüm algoritması ile hızlı eğime sahip düşük
maliyetli bir ortogonal gömme tabanlı ağ önerilmektedir. Bu
mimari, temelde, ortogonal polinomları girdi olarak alan iki
katmanlı bir sinir ağıdır. Bu makalede kullanılan yöntemin
verimliliği ve tutarlılığı, çeşitli problemlerde gösterilmiş ve diğer
yöntemlerle karşılaştırmalar yapılmıştır. Kullanılan yöntemin,
özellikle yüksek maliyetli çözümlerle karşılaştırıldığında öne
çıktığı görülmüştür.

Anahtar Kelimeler: Doğrusal olmayan adi diferansiyel denklemler;
Nümerik yaklaşım; Yapay sinir ağları; Ortogonal polinomlar.

1. Introduction

Many disciplines, especially physics and economics,

express their most important problems in the form of

differential equations. The differential equation modeling

the independent and dependent variables present in the

phenomena along with the conditions that we know are

true for the given independent variable formulate the

initial value problem. The general initial value problem is

𝐺 (𝑥, 𝑦(𝑥), 𝑦′(𝑥), … , 𝑦(𝑛)(𝑥)) = 0 (1)

subject to the conditions 𝑦(𝑥0) = 𝑦0, 𝑦(𝑥0
′) = 𝑦0

′ ,…,

𝑦(𝑥0
(𝑛−1)

) = 𝑦0
(𝑛−1)

 where 𝑥 ∈ ℝ. Our objective is to

compute 𝑦(𝑥). Analytic solutions are limited to certain

classes of differential equations, and they are mostly not

available, so we are obliged to come up with different

methodologies. Numerical methods, building the bridge

between mathematics and real-life phenomena, has

become an effective approach in the absence of an

analytic solution. Classical methods such as Euler's and

Runge-Kutta are useful, yet they require heavy

computation and extensive math when applied to higher

order problems. The resulting approximation being only

discrete and not continuous is another limitation for

these classical methods (Strang, 2007). Lately, neural

network based methods are being proposed to overcome

the obstacles before solving differential equations

(Meade and Fernandez, 1994). The neural network based

approximation is a continuous approximation of the

unknown function and it is in closed, differentiable form

(Lagaris et al., 1998; Hornik et al., 1989). This

approximation can also handle differential equations with

singularity (Chakraverty and Mall, 2017). Methodology of

the neural network based solution is easy to implement

and is of low computational demand when an effective

architecture design is provided. The robustness of neural

networks make them applicable to both ordinary and

partial differential equations and system of ordinary or

*Makale Bilgisi / Article Info
Alındı/Received: 30.09.2024
Kabul/Accepted: 04.01.2025

Yayımlandı/Published: 10.06.2025

https://dergipark.org.tr/tr/pub/akufemubid
https://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0009-0006-8211-5718
https://orcid.org/0000-0002-1704-3694
https://creativecommons.org/licenses/by-nc/4.0/

 Orthogonal Embedding-Based Artificial Neural Network Solutions to Ordinary Differential Equations, UÇAR and TALİ

490

partial differential equations with trivial changes to the

theory.

There are various machine learning based methods for

solving initial value problems. The least squares support

vector machine methodology from statistical learning

literature is successfully applied on differential equations

(Mehrkanoon et al., 2012). The fundamental neural

network, i.e. multilayer perceptron with nonlinear

activation functions, is considered a universal

approximator. In this regard Cybenko (1989) shows that a

single hidden layer along with the sigmoid function can

approximate any continuous function with support in the

unit hypercube, to an arbitrary degree. Later on, Pinkus

(1999) reviews the answers of questions in approximation

theory of neural networks. Malek and Beidokhti (2006)

use a hybrid method mixing neural networks and Nelder-

Mead optimization method. Wen et al. (2022) combines

neural networks and the Lie group applications on

differential equations. In Schiassi et al. (2021), the Theory

of Functional Connections (TFC) is used to create an

expression that utilizes neural networks, and this reduces

the training solely to a simple least-squares, since the only

parameters tuned by this methodology are the output

weights. An advancement on the classic neural networks

are orthogonal networks using the orthogonal

polynomials as hard-coded activation functions. Most

basic of these architectures is equivalent to the

Chebyshev collocation method with optimized

coefficients (Mall and Chebyshev, 2014). Legendre

polynomials which are also the foundation of our

proposal here are previously applied in the work of Mall

and Chakraverty (2016). A more complex version include

the repeated use of orthogonal layers in deeper neural

networks (Parand et al., 2024). In particular, Günel and

Gör (2022) examine the swarm intelligence methods

employing neural networks for solving Dirichlet boundary

problems. A survey of neural network methods along with

radial basis function methods for solving differential

equations is the work of Kumar and Yadav (2011). Knoke

and Wick (2021) present some numerical tests for the

sensitivity of the objective function to show that some

misleading initial weights can minimize the cost function

while not satisfying the equation.

We propose an orthogonal embedding based artificial

neural network with simple adjustments providing the

following contributions:

1. Robust methodology of our proposal makes the

solution applicable to problems from any discipline.

2. The appropriate utilization of Legendre polynomial

based orthogonal representations lead to a low demand,

fast runtime exceeding the accuracy of highly demanding

deep architectures.

3. The efficient backpropagation results in easy

convergence by basic gradient descent with constant

learning rate.

We start by introducing the mathematical properties and

formulate the architecture methodology in Section 2. In

Section 3 the method is applied to some initial value

problems. The Section 4 discusses the results and

concludes the proposal.

2. Methods

In this section we discuss the Legendre polynomials,

formulate the architecture and present the optimization

procedure. Among the many ways to obtain

approximations are series expansions. The most

fundamental method in this regard is Taylor's series,

which is a useful method since one can easily calculate the

expansion coefficients. Orthogonal polynomial

expansions are also used to obtain approximations and

the theory is well studied to show that they possess useful

properties for numerical analysis (Snyder, 1966). We first

define the Legendre polynomials, then note that they

fundamentally form an orthogonal basis, which will help

us obtain useful representations of input scalars.

2.1 Legendre polynomials

Consider the below differential equation, namely

Legendre's differential equation.

(1 − 𝑥2)𝑃𝑛
′′(𝑥) − 2𝑥𝑃𝑛(𝑥) + 𝑛(𝑛 + 1)𝑃𝑛(𝑥) = 0 (2)

The solutions 𝑃𝑛(𝑥) to the differential equation (2) are

called the Legendre polynomials. The polynomials 𝑃𝑛(𝑥)

are defined explicitly as

𝑃𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛 (𝑥2 − 1)𝑛. (3)

The first five Legendre polynomials which we will use in

order to create our embeddings are as the following:

𝑃0(𝑥) = 1,

𝑃1(𝑥) = 𝑥,

𝑃2(𝑥) =
1

2
(3𝑥2 − 1),

𝑃4(𝑥) =
1

2
(5𝑥3 − 3𝑥).

 Orthogonal Embedding-Based Artificial Neural Network Solutions to Ordinary Differential Equations, UÇAR and TALİ

491

The polynomials given above are graphed in Figure 1.

Figure 1. The first five of the Legendre polynomials.

2.2 Orthogonality and completeness

Now we state a theorem to show the orthogonality and

completeness of Legendre polynomials. The Legendre

polynomials are orthogonal with 𝑤(𝑥) = 1 on the

interval [−1,1], i.e.

∫ 𝑃𝑛(𝑥)
1

−1
𝑃𝑚(𝑥)𝑑𝑥 =

2

2𝑛+1
𝛿𝑚𝑛 (4)

where 𝛿𝑚𝑛 is the Kronecker delta. Morevover, the

Legendre polynomials are complete. We refer to Lebedev

(1965) for orthogonality and Weidmann (1980) for

completeness proof.

2.3 Orthogonal embedding-based artificial neural

network

Initially, the real continuous space of the problem domain

is discretized into 𝐷 from which the input 𝑥 ∈ 𝐷 ⊂ ℝ is

received. In the first layer of the architecture, the

orthogonal embedding represents the input 𝑥 by the

orthogonal basis the Legendre polynomials exhibit. The

evaluated Legendre polynomials are then fed into a two-

layer neural network whose hidden layers are the same

size as the orthogonal embedding, parameterized by 𝐩,

with sigmoid activation function. Denoting the operations

of the linear layers with matrices 𝐿𝐩
1 and 𝐿𝐩

2 , respectively,

we obtain the formulation below for the architecture

output.

𝑁𝐩(𝑥) = 𝐿𝐩
2𝐿𝐩

1

[

𝑃0(𝑧)

𝑃1(𝑧)

𝑃2(𝑧)

𝑃3(𝑧)

𝑃4(𝑧)]

 (5)

where 𝑧 = tanh(𝑥).

The computation of the orthogonal embedding is fast and

the optimization is only required for the small neural

network using these representations. Although small, this

network can learn powerful approximations working on

the orthogonal representations of inputs.

Figure 2. Orthogonal embedding-based artificial neural
network. Here (5,5) and (5,1) denote the matrix dimensions of

linear transformations 𝐿𝐩
1 and 𝐿𝐩

2 , respectively.

2.4 Approximation

We formulate the approximation of 𝑦(𝑥), namely �̂�𝐩(𝑥),

using the appropriate trial solution form. For a first-order

differential equation, we write

�̂�𝐩(𝑥) = 𝑦0 + 𝑥𝑁𝐩(𝑥) (6)

and for a second-order differential equation we write

�̂�𝐩(𝑥) = 𝑦0 + 𝑥𝑦0
′ + 𝑥2𝑁𝐩(𝑥). (7)

Substituting the appropriate trial solution in the equation

(1) we obtain the following optimization problem.

1

2
∑ 𝐺 (𝑥𝑖 , �̂�𝐩(𝑥𝑖), �̂�𝐩′(𝑥𝑖), … , �̂�𝐩

(𝑛)(𝑥𝑖))
2

= 0𝑁
𝑖=1 (8)

The optimization objective is accomplished by the

gradient descent algorithm. The principle is to update the

parameters 𝐩 based on the gradient of the function we

aim to optimize, namely

𝐹𝐩(𝑥) =
1

2
∑ 𝐺 (𝑥𝑖, �̂�𝐩(𝑥𝑖), �̂�𝐩′(𝑥𝑖), … , �̂�𝐩

(𝑛)(𝑥𝑖))
2

𝑁
𝑖=1 . (9)

At each step we compute

∇𝐩𝐹𝐩 =
𝑑𝐹

𝑑�̂�
∇𝐩�̂�𝐩, (10)

then perform the update

𝐩 = 𝐩 − 𝛾∇𝐩𝐹𝐩 (11)

where 𝛾 is the learning rate tuning the update magnitude.

In our numerical applications, learning rate can remain

constant throughout the iterations, thus providing a

simple low-cost training procedure.

3. Results and Discussions

In this section we consider some initial value problems to

illustrate the efficiency of our method. First three

examples are ordinary Lane-Emden type equations. The

fourth example is a nonlinear ordinary Riccati type

equation. Our method takes 20-equidistant points from

 Orthogonal Embedding-Based Artificial Neural Network Solutions to Ordinary Differential Equations, UÇAR and TALİ

492

the problem domain and outputs a continuous

approximation of the unknown function. We perform the

computations on 2.20GHz Intel Xeon CPU with 12

gigabytes of memory.

For each of the examples the optimization of model

parameters is demonstrated through the graph of the

entries in 𝐿𝐩
2 , denoted in the figures as

𝑤𝑖
1 ≔ (𝐿𝐩

2)𝑖 . (12)

3.1 Standard Lane-Emden with 𝒈(𝒚) = 𝟏

𝑦′′(𝑥) +
2

𝑥
𝑦′(𝑥) + 1 = 0 (13)

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 0. The exact

solution of this initial value problem is

𝑦(𝑥) = 1 −
𝑥2

3!
. (14)

In Table 1 we compare our approximations with the

approximations presented by ChNN (Mall and Chebyshev,

2014). In Table 2 we compare them with the results of

Parand et al. (2024). Both comparisons make it clear that

our method can produce highly accurate approximations

while remaining low-cost. Table 3 tests the approximation

on some randomly generated points to demonstrate the

smoothness of the result. In Figure 3 we compare our

estimated graph for the unknown function with the exact

solution (14). We give a summary in Table 4. In Figure 4

we see that the optimization successfully converges to

some specific values from random initialization.

Table 1. Comparison with ChNN for example 3.1.

Input Exact ChNN Proposed

method

Absolute

error

0 1.0000 1.0000 1.0000 0

0.1 0.9983 0.9993 0.9983 2.38e-06

0.2 0.9933 0.9901 0.9933 2.98e-06

0.3 0.9850 0.9822 0.9850 8.34e-07

0.4 0.9733 0.9766 0.9733 1.78e-07

0.5 0.9583 0.9602 0.9583 6.37e-06

0.6 0.9400 0.9454 0.9400 1.78e-07

0.7 0.9183 0.9139 0.9183 3.69e-06

0.8 0.8933 0.8892 0.8933 3.39e-06

0.9 0.8650 0.8633 0.8650 4.76e-07

1.0 0.8333 0.8322 0.8333 3.45e-06

Table 2. Comparison with Parand et al. for example 3.1.

Input Exact Parand

et al.

Proposed

method

Absolute

error

0 1.0000 0.9999 1.0000 0

0.01 0.999983 0.999974 0.999984 2.38e-07

0.02 0.999933 0.999925 0.999934 5.96e-07

0.05 0.999583 0.999575 0.999585 2.02e-06

0.10 0.998333 0.998321 0.998336 2.38e-06

0.50 0.958333 0.958322 0.958340 6.37e-06

1.00 0.833333 0.833326 0.833337 3.45e-06

Table 3. Absolute errors on example 3.1. for randomly
generated points.

Input Exact Proposed

method

Absolute

error

0.2840 0.9866 0.9866 8.92e-05

0.7554 0.9049 0.9049 4.67e-05

0.8290 0.8855 0.8854 1.48e-05

0.7711 0.9009 0.9009 3.63e-05

0.6168 0.9366 0.9366 7.56e-06

Figure 3. Comparison of the proposed solution with exact
solution for example 3.1.

Table 4. Comparison of methods for example 3.1.

Method Number of

parameters

Optimization

algorithm

Mean

squared

error

ChNN 5 Gradient

descent

9.36e-06

Parand et al. 550 Adam 1.04e-10

Proposed 30 Gradient

descent

(constant

learning

rate)

6.64e-12

Figure 4. Convergence of the model parameters for example 3.1.

The convergence time for the solution of example 3.1. is

5 seconds.

 Orthogonal Embedding-Based Artificial Neural Network Solutions to Ordinary Differential Equations, UÇAR and TALİ

493

3.2 Standard Lane-Emden with 𝒈(𝒚) = 𝒚𝟓(𝒙)

𝑦′′(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑦5(𝑥) = 0 (15)

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 0. The exact

solution of this initial value problem is

𝑦(𝑥) = (1 +
𝑥2

3
)−

1

2. (16)

As above we make comparison with ChNN (Mall and

Chebyshev, 2014) and Parand et al. (2024) in Table 5 and

6, respectively. In Table 7, we give some randomly

generated examples to prove continuity. Figure 5

contains the graph of our estimation and the graph of the

exact solution (16). The efficient usage of neural network

parameters can be observed in Table 8. The convergence

performance of the simple gradient descent with

constant learning rate is visible in Figure 6.

Table 5. Comparison with ChNN for example 3.2.

Input Exact ChNN Proposed

method

Absolute

error

0 1.0000 1.0000 1.0000 0

0.10 0.9983 0.9981 0.9983 4.82e-06

0.20 0.9934 0.9935 0.9934 5.36e-07

0.30 0.9853 0.9899 0.9853 5.96e-08

0.40 0.9744 0.9712 0.9744 9.59e-06

0.50 0.9607 0.9684 0.9608 1.18e-05

0.60 0.9449 0.9411 0.9449 1.84e-06

0.70 0.9271 0.9303 0.9272 7.27e-06

0.80 0.9078 0.9080 0.9078 3.45e-06

0.90 0.8874 0.8830 0.8873 7.86e-06

1.00 0.8660 0.8651 0.8660 5.00e-06

Table 6. Comparison with Parand et al. for example 3.2.

Input Exact Parand

et al.

Proposed

method

Absolute

error

0 1.0000 1.0000 1.0000 0

0.01 0.999983 0.999976 0.999984 3.57e-07

0.02 0.999933 0.999927 0.999934 1.07e-06

0.05 0.999584 0.999579 0.999588 3.93e-06

0.10 0.998338 0.998332 0.998342 4.82e-06

0.50 0.960769 0.960762 0.960781 1.18e-05

1.00 0.866025 0.866022 0.866030 5.00e-06

Table 7. Absolute errors on example 3.2. for randomly
generated points.

Input Exact Proposed

method

Absolute

error

0.6596

0.4847

0.8548

0.2336

0.8425

0.9345

0.9630

0.8967

0.9910

0.8993

0.9345

0.9630

0.8967

0.9910

0.8992

7.27e-06

2.61e-05

2.43e-05

6.97e-06

2.06e-05

Figure 5. Comparison of the proposed solution with exact
solution for example 3.2.

Table 8. Comparison of methods for example 3.2.

Method Number of

parameters

Optimization

algorithm

Mean

squared

error

ChNN 5 Gradient

descent

1.21e-05

Parand et al. 550 Adam 5.87e-11

Proposed 30 Gradient

descent

(constant

learning

rate)

3.74e-11

Figure 6. Convergence of the model parameters for example 3.2.

The convergence time for the solution of example 3.2. is

30 seconds.

3.3 Lane-Emden with 𝒈(𝒚) = −𝟐(𝟐𝒙𝟐 + 𝟑)

𝑦′′(𝑥) +
2

𝑥
𝑦′(𝑥) − 2(2𝑥2 + 3)𝑦(𝑥) = 0 (17)

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 0. The exact

solution of this initial value problem is

𝑦(𝑥) = 𝑒𝑥2
. (18)

 Orthogonal Embedding-Based Artificial Neural Network Solutions to Ordinary Differential Equations, UÇAR and TALİ

494

Table 9 and 10 compare the obtained results with ChNN

(Mall and Chebyshev, 2014) and Parand et al. (2024),

respectively. In Table 11 we present examples for points

not present among the training points. Table 12 compares

the methods. Figure 7 shows the graph of the exact

solution (18) and the estimated solution obtained by our

method. The succcessful convergence is observed in

Figure 8.

Table 9. Comparison with ChNN for example 3.3.

Input Exact ChNN Proposed

method

Absolute

error

0 1.0000 1.0000 1.0000 0

0.10 1.0101 1.0094 1.0101 1.97e-05

0.20 1.0408 1.0421 1.0408 2.01e-05

0.30 1.0942 1.0945 1.0942 1.70e-05

0.40 1.1735 1.1598 1.1735 2.58e-05

0.50 1.2840 1.2866 1.2840 2.02e-05

0.60 1.4333 1.4312 1.4334 2.98e-05

0.70 1.6323 1.6238 1.6323 3.01e-05

0.80 1.8965 1.8924 1.8965 2.95e-05

0.90 2.2479 2.2392 2.2480 5.12e-05

1.00 2.7183 2.7148 2.7183 5.17e-05

Table 10. Comparison with Parand et al. for example 3.3.

Input Exact Parand

et al.

Proposed

method

Absolute

error

0.00 1.0000 1.0001 1.0000 0

0.01 1.0001 1.0002 1.0001 1.54e-06

0.02 1.0004 1.0005 1.0004 5.00e-06

0.05 1.0025 1.0026 1.0025 1.63e-05

0.06 1.0036 1.0037 1.0036 1.87e-05

0.07 1.0049 1.0050 1.0049 2.00e-05

0.10 1.0101 1.0101 1.0101 1.97e-05

0.20 1.0408 1.0409 1.0408 2.01e-05

0.30 1.0942 1.0942 1.0942 1.70e-05

0.40 1.1735 1.1736 1.1735 2.58e-05

0.50 1.2840 1.2841 1.2840 2.02e-05

1.00 2.7183 2.7185 2.7183 5.17e-05

Table 11. Absolute errors on example 3.3. for randomly

generated points.

Input Exact Proposed

method

Absolute

error

0.5694

0.0545

0.9987

0.5940

0.6833

1.1423

1.0016

1.2980

1.0691

1.1653

1.1423

1.0016

1.2981

1.0691

1.1653

2.14e-05

1.21e-05

2.01e-05

2.55e-05

2.24e-05

Figure 7. Comparison of the proposed solution with exact

solution for example 3.3.

Table 12. Comparison of methods for example 3.3.

Method Number of

parameters

Optimization

algorithm

Mean

squared

error

ChNN 5 Gradient

descent

3.44e-05

Parand et al. 2291 Adam 1.22e-08

Proposed 30 Gradient

descent

(constant

learning

rate)

9.22e-10

Figure 8. Convergence of model parameters for example 3.3.

The convergence time for the solution of example 3.3. is

24 seconds.

3.4 Riccati equation

Consider the Riccati equation

𝑦′(𝑥) = 𝑦(𝑥) − 2𝑦2(𝑥) (19)

with initial condition 𝑦(0) = 1. The exact solution of this

initial value problem is

𝑦(𝑥) =
1

2−𝑒−𝑥. (20)

 Orthogonal Embedding-Based Artificial Neural Network Solutions to Ordinary Differential Equations, UÇAR and TALİ

495

The problem is previously solved by Gülsü and Sezer

(2006) using the Taylor matrix method. We compare the

errors of methods in Table 13. Our proposal achieves to

exceed previous accuracies without heavy mathematics

of the Taylor matrix method. Table 14 test the estimation

on some new points to prove continuity. In Figure 9 we

present the estimated graph and the exact solution (20).

Figure 10 presents the convergence of architecture

parameters.

Table 13. Comparison of methods for example 3.4.

Input Exact Euler’s

Method

(Absolute

Error)

Taylor

Matrix

(Absolute

Error)

Proposed

Method

(Absolute

Error)

0.10 0.9131 5.85e-03 2.94e-07 2.68e-04

0.20 0.8465 8.47e-03 1.48e-04 1.50e-04

0.30 0.7942 1.55e-02 1.97e-03 2.20e-04

0.40 0.7521 9.73e-03 1.11e-02 1.44e-04

0.50 0.7176 9.54e-03 4.14e-02 5.02e-05

Table 14. Absolute errors on example 3.4. for randomly

generated points.

Input Exact Proposed

method

Absolute

error

0.5694

0.0545

0.9987

0.5940

0.6833

0.6973

0.9497

0.6129

0.6907

0.6689

0.6975

0.9507

0.6130

0.6909

0.6691

4.92e-04

9.60e-04

1.97e-04

5.17e-04

4.15e-04

Figure 9. Comparison of the proposed solution with exact

solution for example 3.4.

Figure 10. Convergence of model parameters solving example

3.4.

The convergence time for the solution of example 3.4. is

29 seconds.

4. Conclusion

We have introduced a low-cost method for solving

nonlinear ordinary differential equations which exceeds

the efficiency of previous approaches. This fast

computation of complex unknown functions is achieved

through the fundamental two-layer neural network with

improved representations. Our method evaluates the

corresponding Legendre polynomials in order to compute

an orthogonal representation that work as improved

representations to learn neural network parameters. The

illustrations on various examples show that this method

can achieve better results while also reducing

computational cost. Alongside these improvements, the

proposed method is applicable to a wide range of

problems and the solution is continuous while the input is

discrete. We observe that the illustration of orthogonal

representations as empowering embeddings for simple

neural networks to work on implies further important

research.

Declaration of Ethical Standards
The authors declare that they comply with all ethical standards.

Credit Authorship Contribution Statement

Author 1: Conceptualization, Methodology, Software, Formal analysis,

Investigation, Writing – original draft, Visualization.

Author 2: Conceptualization, Methodology, Software, Formal analysis,

Investigation, Writing – review and editing, Supervision.

Declaration of Competing Interest

The authors have no conflicts of interest to declare regarding the

content of this article.

Data Availability

All data generated or analyzed during this study are included in this

published article.

 Orthogonal Embedding-Based Artificial Neural Network Solutions to Ordinary Differential Equations, UÇAR and TALİ

496

5. References

Chakraverty, S. and Mall, S., 2017. Artificial Neural

Networks for Engineers and Scientists. CRC Press.

 https://doi.org/10.1201/9781315155265

Cybenko, G., 1989. Approximation by superpositions of a

sigmoidal function. Math. Control Signal Systems, 2,

303-314.

 https://doi.org/10.1007/BF02551274

Gülsü, M. and Sezer, M., 2006. On the solution of the

Riccati equation by the Taylor matrix method. Applied

Mathematics and Computation, 176, 414-421.

 https://doi.org/10.1016/j.amc.2005.09.030

Günel, K. and Gör, I., 2022. Solving Dirichlet boundary

problems for ODEs via swarm intelligence.

Mathematical Sciences, 16, 325-341.

 https://doi.org/10.1007/s40096-021-00424-2

Hornik, K., Maxwell, S. and Halbert, W., 1989. Multilayer

feedforward networks are universal approximators.

Neural Network, 2, 359-366.

https://doi.org/10.1016/0893-6080(89)90020-8

Knoke, T. and Wick, T., 2021. Solving differential

equations via artificial neural networks: Findings and

failures in a model problem. Examples and

Counterexamples, 1.

https:/doi.org/10.1016/j.exco.2021.100035

Kumar, M. and Yadav, N., 2011. Multilayer perceptrons

and radial basis function neural network methods for

the solution of differential equations: A survey.

Computers & Mathematics with Applications, 10,

3796-3811.

 https://doi.org/10.1016/j.camwa.2011.09.028

Lagaris, I.E., Likas, A. and Fotiadis, D.I., 1998. Artificial

neural networks for solving ordinary and partial

differential equations. IEEE Trans. on Neural Netw., 9,

987-1000.

https://doi.org/10.1109/72.712178

Lebedev, N.N., 1965. Special Functions and Their

Applications. Prentice-Hall.

Malek, A. and Beidokhti, R.S., 2006. Numerical solution

for high order differential equations using a hybrid

neural network—Optimization method.

Applied Mathematics and Computation, 1, 260-271.

https://doi.org/10.1016/j.amc.2006.05.068

Mall, S. and Chakraverty, S., 2014. Chebyshev Neural

Network based model for solving Lane–Emden type

equations. Applied Mathematics and Computation,

247, 100-114.

 https://doi.org/10.1016/j.amc.2014.08.085

Mall, S. and Chakraverty, S., 2016. Application of

Legendre Neural Network for solving ordinary

differential equations. Applied Soft Computing, 43,

347-356.

 https://doi.org/10.1016/j.asoc.2015.10.069

Meade, A.J. and Fernandez, A.A., 1994. The numerical

solution of linear ordinary differential equations by

feedforward neural networks. Mathematical and

Computer Modelling, 19, 1-25.

https://doi.org/10.1016/0895-7177(94)90095-7

Mehrkanoon, S., Falck, T. and Suykens, J.A.K., 2012.

Approximate Solutions to Ordinary Differential

Equations Using Least Squares Support Vector

Machines. IEEE Trans. Neural Netw. Learn. Syst., 23,

1356-1367.

 https://doi.org/10.1109/TNNLS.2012.2202126

Parand, K., Aghaei, A.A., Kiani, S., Ilkhas Zadeh, T. and

Khosravi, Z., 2024. A neural network approach for

solving nonlinear differential equations of Lane–

Emden type. Engineering with Computers, 40, 953-

969.

 https://doi.org/10.1007/s00366-023-01836-5

Pinkus, A., 1999. Approximation theory of the MLP model

in neural networks. Acta Numerica, 8, 143-195.

 https://doi.org/10.1017/S0962492900002919

Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston,

H., Mortari, D., 2021. Extreme theory of functional

connections: A fast physics-informed neural network

method for solving ordinary and partial differential

equations. Neurocomputing, 457, 334-356.

 https://doi.org/10.1016/j.neucom.2021.06.015

Snyder, M.A., 1966. Chebyshev Methods in Numerical

Approximation. Prentice-Hall.

Strang, G., 2007. Computational Science and Engineering.

Wellesley-Cambridge Press.

 https://doi.org/10.1137/1.9780961408817

Weidmann, J., 1980. Linear Operators in Hilbert Spaces.

Springer-Verlag.

Wen, Y., Chaolu, T. and Wang, X., 1980. Solving the initial

value problem of ordinary differential equations by Lie

group based neural network method. PLOS ONE,

17(4).

 https://doi.org/10.1371/journal.pone.0265992

https://doi.org/10.1201/9781315155265
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/j.amc.2005.09.030
https://doi.org/10.1007/s40096-021-00424-2
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.camwa.2011.09.028
https://doi.org/10.1109/72.712178
https://doi.org/10.1016/j.amc.2006.05.068
https://doi.org/10.1016/j.amc.2014.08.085
https://doi.org/10.1016/j.asoc.2015.10.069
https://doi.org/10.1016/0895-7177(94)90095-7
https://doi.org/10.1109/TNNLS.2012.2202126
https://doi.org/10.1007/s00366-023-01836-5
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1016/j.neucom.2021.06.015
https://doi.org/10.1137/1.9780961408817
https://doi.org/10.1371/journal.pone.0265992

