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Abstract 
Providing numerical solutions to differential equations in cases 
where analytical solutions are not available is of great 
importance. Recently, obtaining more accurate numerical 
solutions with artificial neural network-based machine learning 
methods are seen as promising developments for numerical 
solutions of differential equations. In this paper, a low-cost, 
orthogonal embedding-based network with fast training by 
simple gradient descent algorithm is proposed to obtain 
numerical solutions of differential equations. This architecture 
is essentially a two-layer neural network that takes orthogonal 
polynomials as input. The efficiency and accuracy of the method 
used in this paper are demonstrated in various problems and 
comparisons are made with other methods. It is observed that 
the proposed method stands out especially when compared 
with high-cost solutions. 
 
Keywords: Non-linear ordinary differential equations; Numerical 
approximation; Artificial neural networks; Orthogonal polynomials.

Öz 
Analitik çözümlerin mevcut olmadığı durumlarda diferansiyel 
denklemler için nümerik çözümler elde etmek büyük önem 
taşımaktadır. Son zamanlarda, yapay sinir ağı tabanlı makine 
öğrenmesi yöntemleriyle daha tutarlı nümerik çözümlerin elde 
edilmesi diferansiyel denklemlerin nümerik çözümleri için ümit 
verici gelişmeler olarak görülmektedir. Bu makalede, 
diferansiyel denklemlerin nümerik çözümlerini elde etmek için 
basit gradyan düşüm algoritması ile hızlı eğime sahip düşük 
maliyetli bir ortogonal gömme tabanlı ağ önerilmektedir. Bu 
mimari, temelde, ortogonal polinomları girdi olarak alan iki 
katmanlı bir sinir ağıdır. Bu makalede kullanılan yöntemin 
verimliliği ve tutarlılığı, çeşitli problemlerde gösterilmiş ve diğer 
yöntemlerle karşılaştırmalar yapılmıştır. Kullanılan yöntemin, 
özellikle yüksek maliyetli çözümlerle karşılaştırıldığında öne 
çıktığı görülmüştür. 
 
Anahtar Kelimeler: Doğrusal olmayan adi diferansiyel denklemler; 
Nümerik yaklaşım; Yapay sinir ağları; Ortogonal polinomlar.

  

 

1. Introduction 

Many disciplines, especially physics and economics, 

express their most important problems in the form of 

differential equations. The differential equation modeling 

the independent and dependent variables present in the 

phenomena along with the conditions that we know are 

true for the given independent variable formulate the 

initial value problem. The general initial value problem is 

𝐺 (𝑥, 𝑦(𝑥), 𝑦′(𝑥), … , 𝑦(𝑛)(𝑥)) = 0 (1) 

subject to the conditions 𝑦(𝑥0) = 𝑦0, 𝑦(𝑥0
′ ) = 𝑦0

′ ,…, 

𝑦(𝑥0
(𝑛−1)

) = 𝑦0
(𝑛−1)

 where 𝑥 ∈ ℝ. Our objective is to 

compute 𝑦(𝑥). Analytic solutions are limited to certain 

classes of differential equations, and they are mostly not 

available, so we are obliged to come up with different 

methodologies. Numerical methods, building the bridge 

between mathematics and real-life phenomena, has 

become an effective approach in the absence of an 

analytic solution. Classical methods such as Euler's and 

Runge-Kutta are useful, yet they require heavy 

computation and extensive math when applied to higher 

order problems. The resulting approximation being only 

discrete and not continuous is another limitation for 

these classical methods (Strang, 2007). Lately, neural 

network based methods are being proposed to overcome 

the obstacles before solving differential equations 

(Meade and Fernandez, 1994). The neural network based 

approximation is a continuous approximation of the 

unknown function and it is in closed, differentiable form 

(Lagaris et al., 1998; Hornik et al., 1989). This 

approximation can also handle differential equations with 

singularity (Chakraverty and Mall, 2017). Methodology of 

the neural network based solution is easy to implement 

and is of low computational demand when an effective 

architecture design is provided. The robustness of neural 

networks make them applicable to both ordinary and 

partial differential equations and system of ordinary or 

*Makale Bilgisi / Article Info 
Alındı/Received: 30.09.2024 
Kabul/Accepted: 04.01.2025 

Yayımlandı/Published: 10.06.2025 

https://dergipark.org.tr/tr/pub/akufemubid
https://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0009-0006-8211-5718
https://orcid.org/0000-0002-1704-3694
https://creativecommons.org/licenses/by-nc/4.0/


 Orthogonal Embedding-Based Artificial Neural Network Solutions to Ordinary Differential Equations, UÇAR and TALİ 

490 

partial differential equations with trivial changes to the 

theory. 

There are various machine learning based methods for 

solving initial value problems. The least squares support 

vector machine methodology from statistical learning 

literature is successfully applied on differential equations 

(Mehrkanoon et al., 2012). The fundamental neural 

network, i.e. multilayer perceptron with nonlinear 

activation functions, is considered a universal 

approximator. In this regard Cybenko (1989) shows that a 

single hidden layer along with the sigmoid function can 

approximate any continuous function with support in the 

unit hypercube, to an arbitrary degree. Later on, Pinkus 

(1999) reviews the answers of questions in approximation 

theory of neural networks. Malek and Beidokhti (2006) 

use a hybrid method mixing neural networks and Nelder-

Mead optimization method. Wen et al. (2022) combines 

neural networks and the Lie group applications on 

differential equations. In Schiassi et al. (2021), the Theory 

of Functional Connections (TFC) is used to create an 

expression that utilizes neural networks, and this reduces 

the training solely to a simple least-squares, since the only 

parameters tuned by this methodology are the output 

weights. An advancement on the classic neural networks 

are orthogonal networks using the orthogonal 

polynomials as hard-coded activation functions. Most 

basic of these architectures is equivalent to the 

Chebyshev collocation method with optimized 

coefficients (Mall and Chebyshev, 2014). Legendre 

polynomials which are also the foundation of our 

proposal here are previously applied in the work of Mall 

and Chakraverty (2016). A more complex version include 

the repeated use of orthogonal layers in deeper neural 

networks (Parand et al., 2024). In particular, Günel and 

Gör (2022) examine the swarm intelligence methods 

employing neural networks for solving Dirichlet boundary 

problems. A survey of neural network methods along with 

radial basis function methods for solving differential 

equations is the work of Kumar and Yadav (2011). Knoke 

and Wick (2021) present some numerical tests for the 

sensitivity of the objective function to show that some 

misleading initial weights can minimize the cost function 

while not satisfying the equation. 

We propose an orthogonal embedding based artificial 

neural network with simple adjustments providing the 

following contributions: 

1. Robust methodology of our proposal makes the 

solution applicable to problems from any discipline. 

2. The appropriate utilization of Legendre polynomial 

based orthogonal representations lead to a low demand, 

fast runtime exceeding the accuracy of highly demanding 

deep architectures. 

3. The efficient backpropagation results in easy 

convergence by basic gradient descent with constant 

learning rate.  

We start by introducing the mathematical properties and 

formulate the architecture methodology in Section 2. In 

Section 3 the method is applied to some initial value 

problems. The Section 4 discusses the results and 

concludes the proposal. 

 

2. Methods  

In this section we discuss the Legendre polynomials, 

formulate the architecture and present the optimization 

procedure. Among the many ways to obtain 

approximations are series expansions. The most 

fundamental method in this regard is Taylor's series, 

which is a useful method since one can easily calculate the 

expansion coefficients. Orthogonal polynomial 

expansions are also used to obtain approximations and 

the theory is well studied to show that they possess useful 

properties for numerical analysis (Snyder, 1966). We first 

define the Legendre polynomials, then note that they 

fundamentally form an orthogonal basis, which will help 

us obtain useful representations of input scalars. 

 

2.1 Legendre polynomials  

Consider the below differential equation, namely 

Legendre's differential equation. 

(1 − 𝑥2)𝑃𝑛
′′(𝑥) − 2𝑥𝑃𝑛(𝑥) + 𝑛(𝑛 + 1)𝑃𝑛(𝑥) = 0 (2) 

The solutions 𝑃𝑛(𝑥) to the differential equation (2) are 

called the Legendre polynomials. The polynomials 𝑃𝑛(𝑥) 

are defined explicitly as 

𝑃𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛 (𝑥2 − 1)𝑛. (3) 

The first five Legendre polynomials which we will use in 

order to create our embeddings are as the following: 

𝑃0(𝑥) = 1,  

𝑃1(𝑥) = 𝑥,  

𝑃2(𝑥) =
1

2
(3𝑥2 − 1),  

𝑃4(𝑥) =
1

2
(5𝑥3 − 3𝑥). 
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The polynomials given above are graphed in Figure 1. 

 
Figure 1. The first five of the Legendre polynomials. 

 

2.2 Orthogonality and completeness 

Now we state a theorem to show the orthogonality and 

completeness of Legendre polynomials. The Legendre 

polynomials are orthogonal with 𝑤(𝑥) = 1 on the 

interval [−1,1], i.e. 

∫ 𝑃𝑛(𝑥)
1

−1
𝑃𝑚(𝑥)𝑑𝑥 =

2

2𝑛+1
𝛿𝑚𝑛 (4) 

where 𝛿𝑚𝑛 is the Kronecker delta. Morevover, the 

Legendre polynomials are complete. We refer to Lebedev 

(1965) for orthogonality and Weidmann (1980) for 

completeness proof. 

2.3 Orthogonal embedding-based artificial neural 

network  

Initially, the real continuous space of the problem domain 

is discretized into 𝐷 from which the input 𝑥 ∈ 𝐷 ⊂ ℝ is 

received. In the first layer of the architecture, the 

orthogonal embedding represents the input 𝑥 by the 

orthogonal basis the Legendre polynomials exhibit. The 

evaluated Legendre polynomials are then fed into a two-

layer neural network whose hidden layers are the same 

size as the orthogonal embedding, parameterized by 𝐩, 

with sigmoid activation function. Denoting the operations 

of the linear layers with matrices 𝐿𝐩
1  and 𝐿𝐩

2 , respectively, 

we obtain the formulation below for the architecture 

output. 

𝑁𝐩(𝑥) = 𝐿𝐩
2𝐿𝐩

1

[
 
 
 
 
𝑃0(𝑧)

𝑃1(𝑧)

𝑃2(𝑧)

𝑃3(𝑧)

𝑃4(𝑧)]
 
 
 
 

 (5) 

where 𝑧 = tanh(𝑥). 

The computation of the orthogonal embedding is fast and 

the optimization is only required for the small neural 

network using these representations. Although small, this 

network can learn powerful approximations working on 

the orthogonal representations of inputs. 

 
Figure 2. Orthogonal embedding-based artificial neural 
network. Here (5,5) and (5,1) denote the matrix dimensions of 

linear transformations 𝐿𝐩
1  and 𝐿𝐩

2 , respectively. 

2.4 Approximation  

We formulate the approximation of 𝑦(𝑥), namely �̂�𝐩(𝑥), 

using the appropriate trial solution form. For a first-order 

differential equation, we write 

�̂�𝐩(𝑥) = 𝑦0 + 𝑥𝑁𝐩(𝑥) (6) 

and for a second-order differential equation we write 

�̂�𝐩(𝑥) = 𝑦0 + 𝑥𝑦0
′ + 𝑥2𝑁𝐩(𝑥). (7) 

Substituting the appropriate trial solution in the equation 

(1) we obtain the following optimization problem. 

1

2
∑ 𝐺 (𝑥𝑖 , �̂�𝐩(𝑥𝑖), �̂�𝐩′(𝑥𝑖), … , �̂�𝐩

(𝑛)(𝑥𝑖))
2

= 0𝑁
𝑖=1  (8) 

The optimization objective is accomplished by the 

gradient descent algorithm. The principle is to update the 

parameters 𝐩 based on the gradient of the function we 

aim to optimize, namely 

𝐹𝐩(𝑥) =
1

2
∑ 𝐺 (𝑥𝑖, �̂�𝐩(𝑥𝑖), �̂�𝐩′(𝑥𝑖), … , �̂�𝐩

(𝑛)(𝑥𝑖))
2

𝑁
𝑖=1 . (9) 

At each step we compute 

∇𝐩𝐹𝐩 =
𝑑𝐹

𝑑�̂�
∇𝐩�̂�𝐩, (10) 

then perform the update 

𝐩 = 𝐩 − 𝛾∇𝐩𝐹𝐩 (11) 

where 𝛾 is the learning rate tuning the update magnitude. 

In our numerical applications, learning rate can remain 

constant throughout the iterations, thus providing a 

simple low-cost training procedure. 

3. Results and Discussions  

In this section we consider some initial value problems to 

illustrate the efficiency of our method. First three 

examples are ordinary Lane-Emden type equations. The 

fourth example is a nonlinear ordinary Riccati type 

equation. Our method takes 20-equidistant points from 
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the problem domain and outputs a continuous 

approximation of the unknown function. We perform the 

computations on 2.20GHz Intel Xeon CPU with 12 

gigabytes of memory. 

For each of the examples the optimization of model 

parameters is demonstrated through the graph of the 

entries in 𝐿𝐩
2 , denoted in the figures as  

𝑤𝑖
1 ≔ (𝐿𝐩

2 )𝑖 .  (12) 

3.1 Standard Lane-Emden with 𝒈(𝒚) = 𝟏  

𝑦′′(𝑥) +
2

𝑥
𝑦′(𝑥) + 1 = 0 (13) 

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 0. The exact 

solution of this initial value problem is 

𝑦(𝑥) = 1 −
𝑥2

3!
. (14) 

In Table 1 we compare our approximations with the 

approximations presented by ChNN (Mall and Chebyshev, 

2014). In Table 2 we compare them with the results of 

Parand et al. (2024). Both comparisons make it clear that 

our method can produce highly accurate approximations 

while remaining low-cost. Table 3 tests the approximation 

on some randomly generated points to demonstrate the 

smoothness of the result. In Figure 3 we compare our 

estimated graph for the unknown function with the exact 

solution (14). We give a summary in Table 4. In Figure 4 

we see that the optimization successfully converges to 

some specific values from random initialization. 

Table 1. Comparison with ChNN for example 3.1. 

Input Exact ChNN Proposed 

method 

Absolute 

error 

0 1.0000 1.0000 1.0000 0 

0.1 0.9983 0.9993 0.9983 2.38e-06 

0.2 0.9933 0.9901 0.9933 2.98e-06 

0.3 0.9850 0.9822 0.9850 8.34e-07 

0.4 0.9733 0.9766 0.9733 1.78e-07 

0.5 0.9583 0.9602 0.9583 6.37e-06 

0.6 0.9400 0.9454 0.9400 1.78e-07 

0.7 0.9183 0.9139 0.9183 3.69e-06 

0.8 0.8933 0.8892 0.8933 3.39e-06 

0.9 0.8650 0.8633 0.8650 4.76e-07 

1.0 0.8333 0.8322 0.8333 3.45e-06 

Table 2. Comparison with Parand et al. for example 3.1. 

Input Exact Parand 

et al. 

Proposed 

method 

Absolute 

error 

0 1.0000 0.9999 1.0000 0 

0.01 0.999983 0.999974 0.999984 2.38e-07 

0.02 0.999933 0.999925 0.999934 5.96e-07 

0.05 0.999583 0.999575 0.999585 2.02e-06 

0.10 0.998333 0.998321 0.998336 2.38e-06 

0.50 0.958333 0.958322 0.958340 6.37e-06 

1.00 0.833333 0.833326 0.833337 3.45e-06 

Table 3. Absolute errors on example 3.1. for randomly 
generated points. 

Input Exact Proposed 

method 

Absolute 

error 

0.2840 0.9866 0.9866 8.92e-05 

0.7554 0.9049 0.9049 4.67e-05 

0.8290 0.8855 0.8854 1.48e-05 

0.7711 0.9009 0.9009 3.63e-05 

0.6168 0.9366 0.9366 7.56e-06 

 

 
Figure 3. Comparison of the proposed solution with exact 
solution for example 3.1. 
 

Table 4. Comparison of methods for example 3.1. 

Method Number of 

parameters 

Optimization 

algorithm 

Mean 

squared 

error 

ChNN 5 Gradient 

descent 

9.36e-06 

Parand et al. 550 Adam 1.04e-10 

Proposed 30 Gradient 

descent 

(constant 

learning 

rate) 

6.64e-12 

 

 
Figure 4. Convergence of the model parameters for example 3.1. 

The convergence time for the solution of example 3.1. is 

5 seconds. 
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3.2 Standard Lane-Emden with 𝒈(𝒚) = 𝒚𝟓(𝒙) 

𝑦′′(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑦5(𝑥) = 0 (15) 

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 0. The exact 

solution of this initial value problem is  

𝑦(𝑥) = (1 +
𝑥2

3
)−

1

2. (16) 

As above we make comparison with ChNN (Mall and 

Chebyshev, 2014) and Parand et al. (2024) in Table 5 and 

6, respectively. In Table 7, we give some randomly 

generated examples to prove continuity. Figure 5 

contains the graph of our estimation and the graph of the 

exact solution (16). The efficient usage of neural network 

parameters can be observed in Table 8. The convergence 

performance of the simple gradient descent with 

constant learning rate is visible in Figure 6. 

 

Table 5. Comparison with ChNN for example 3.2. 

Input Exact ChNN Proposed 

method 

Absolute 

error 

0 1.0000 1.0000 1.0000 0 

0.10 0.9983 0.9981 0.9983 4.82e-06 

0.20 0.9934 0.9935 0.9934 5.36e-07 

0.30 0.9853 0.9899 0.9853 5.96e-08 

0.40 0.9744 0.9712 0.9744 9.59e-06 

0.50 0.9607 0.9684 0.9608 1.18e-05 

0.60 0.9449 0.9411 0.9449 1.84e-06 

0.70 0.9271 0.9303 0.9272 7.27e-06 

0.80 0.9078 0.9080 0.9078 3.45e-06 

0.90 0.8874 0.8830 0.8873 7.86e-06 

1.00 0.8660 0.8651 0.8660 5.00e-06 

 
Table 6. Comparison with Parand et al. for example 3.2. 

Input Exact Parand 

et al. 

Proposed 

method 

Absolute 

error 

0 1.0000 1.0000 1.0000 0 

0.01 0.999983 0.999976 0.999984 3.57e-07 

0.02 0.999933 0.999927 0.999934 1.07e-06 

0.05 0.999584 0.999579 0.999588 3.93e-06 

0.10 0.998338 0.998332 0.998342 4.82e-06 

0.50 0.960769 0.960762 0.960781 1.18e-05 

1.00 0.866025 0.866022 0.866030 5.00e-06 

 
Table 7. Absolute errors on example 3.2. for randomly 
generated points. 

Input Exact Proposed 

method 

Absolute 

error 

0.6596 

0.4847 

0.8548 

0.2336 

0.8425 

0.9345 

0.9630 

0.8967 

0.9910 

0.8993 

0.9345 

0.9630 

0.8967 

0.9910 

0.8992 

7.27e-06 

2.61e-05 

2.43e-05 

6.97e-06 

2.06e-05 

 
Figure 5. Comparison of the proposed solution with exact 
solution for example 3.2. 

 
Table 8. Comparison of methods for example 3.2. 

Method Number of 

parameters 

Optimization 

algorithm 

Mean 

squared 

error 

ChNN 5 Gradient 

descent 

1.21e-05 

Parand et al. 550 Adam 5.87e-11 

Proposed 30 Gradient 

descent 

(constant 

learning 

rate) 

3.74e-11 

 

 
Figure 6. Convergence of the model parameters for example 3.2.  

 

The convergence time for the solution of example 3.2. is 

30 seconds. 

 

3.3 Lane-Emden with 𝒈(𝒚) = −𝟐(𝟐𝒙𝟐 + 𝟑)  

𝑦′′(𝑥) +
2

𝑥
𝑦′(𝑥) − 2(2𝑥2 + 3)𝑦(𝑥) = 0 (17) 

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 0. The exact 

solution of this initial value problem is 

𝑦(𝑥) = 𝑒𝑥2
. (18) 
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Table 9 and 10 compare the obtained results with ChNN 

(Mall and Chebyshev, 2014) and Parand et al. (2024), 

respectively. In Table 11 we present examples for points 

not present among the training points. Table 12 compares 

the methods. Figure 7 shows the graph of the exact 

solution (18) and the estimated solution obtained by our 

method. The succcessful convergence is observed in 

Figure 8. 

Table 9. Comparison with ChNN for example 3.3. 

Input Exact ChNN Proposed 

method 

Absolute 

error 

0 1.0000 1.0000 1.0000 0 

0.10 1.0101 1.0094 1.0101 1.97e-05 

0.20 1.0408 1.0421 1.0408 2.01e-05 

0.30 1.0942 1.0945 1.0942 1.70e-05 

0.40 1.1735 1.1598 1.1735 2.58e-05 

0.50 1.2840 1.2866 1.2840 2.02e-05 

0.60 1.4333 1.4312 1.4334 2.98e-05 

0.70 1.6323 1.6238 1.6323 3.01e-05 

0.80 1.8965 1.8924 1.8965 2.95e-05 

0.90 2.2479 2.2392 2.2480 5.12e-05 

1.00 2.7183 2.7148 2.7183 5.17e-05 

 

Table 10. Comparison with Parand et al. for example 3.3. 

Input Exact Parand 

et al. 

Proposed 

method 

Absolute 

error 

0.00 1.0000 1.0001 1.0000 0 

0.01 1.0001 1.0002 1.0001 1.54e-06 

0.02 1.0004 1.0005 1.0004 5.00e-06 

0.05 1.0025 1.0026 1.0025 1.63e-05 

0.06 1.0036 1.0037 1.0036 1.87e-05 

0.07 1.0049 1.0050 1.0049 2.00e-05 

0.10 1.0101 1.0101 1.0101 1.97e-05 

0.20 1.0408 1.0409 1.0408 2.01e-05 

0.30 1.0942 1.0942 1.0942 1.70e-05 

0.40 1.1735 1.1736 1.1735 2.58e-05 

0.50 1.2840 1.2841 1.2840 2.02e-05 

1.00 2.7183 2.7185 2.7183 5.17e-05 

 

Table 11. Absolute errors on example 3.3. for randomly 

generated points. 

Input Exact Proposed 

method 

Absolute 

error 

0.5694 

0.0545 

0.9987 

0.5940 

0.6833 

1.1423 

1.0016 

1.2980 

1.0691 

1.1653 

1.1423 

1.0016 

1.2981 

1.0691 

1.1653 

2.14e-05 

1.21e-05 

2.01e-05 

2.55e-05 

2.24e-05 

 

 
Figure 7. Comparison of the proposed solution with exact 

solution for example 3.3. 

 

Table 12. Comparison of methods for example 3.3. 

Method Number of 

parameters 

Optimization 

algorithm 

Mean 

squared 

error 

ChNN 5 Gradient 

descent 

3.44e-05 

Parand et al. 2291 Adam 1.22e-08 

Proposed 30 Gradient 

descent 

(constant 

learning 

rate) 

9.22e-10 

 

 
Figure 8. Convergence of model parameters for example 3.3. 

 

The convergence time for the solution of example 3.3. is 

24 seconds. 

 

3.4 Riccati equation  

Consider the Riccati equation 

𝑦′(𝑥) = 𝑦(𝑥) − 2𝑦2(𝑥) (19) 

with initial condition 𝑦(0) = 1. The exact solution of this 

initial value problem is 

𝑦(𝑥) =
1

2−𝑒−𝑥. (20) 
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The problem is previously solved by Gülsü and Sezer 

(2006) using the Taylor matrix method. We compare the 

errors of methods in Table 13. Our proposal achieves to 

exceed previous accuracies without heavy mathematics 

of the Taylor matrix method. Table 14 test the estimation 

on some new points to prove continuity. In Figure 9 we 

present the estimated graph and the exact solution (20). 

Figure 10 presents the convergence of architecture 

parameters. 

 

Table 13. Comparison of methods for example 3.4. 

Input Exact Euler’s 

Method 

(Absolute 

Error) 

Taylor 

Matrix 

(Absolute 

Error) 

Proposed 

Method 

(Absolute 

Error) 

0.10 0.9131 5.85e-03 2.94e-07 2.68e-04 

0.20 0.8465 8.47e-03 1.48e-04 1.50e-04 

0.30 0.7942 1.55e-02 1.97e-03 2.20e-04 

0.40 0.7521 9.73e-03 1.11e-02 1.44e-04 

0.50 0.7176 9.54e-03 4.14e-02 5.02e-05 

 

Table 14. Absolute errors on example 3.4. for randomly 

generated points. 

Input Exact Proposed 

method 

Absolute 

error 

0.5694 

0.0545 

0.9987 

0.5940 

0.6833 

0.6973 

0.9497 

0.6129 

0.6907 

0.6689 

0.6975 

0.9507 

0.6130 

0.6909 

0.6691 

4.92e-04 

9.60e-04 

1.97e-04 

5.17e-04 

4.15e-04 

 

 

Figure 9. Comparison of the proposed solution with exact 

solution for example 3.4. 
 

 
Figure 10. Convergence of model parameters solving example 

3.4. 

 

The convergence time for the solution of example 3.4. is 

29 seconds. 

 

4. Conclusion  

We have introduced a low-cost method for solving 

nonlinear ordinary differential equations which exceeds 

the efficiency of previous approaches. This fast 

computation of complex unknown functions is achieved 

through the fundamental two-layer neural network with 

improved representations. Our method evaluates the 

corresponding Legendre polynomials in order to compute 

an orthogonal representation that work as improved 

representations to learn neural network parameters. The 

illustrations on various examples show that this method 

can achieve better results while also reducing 

computational cost. Alongside these improvements, the 

proposed method is applicable to a wide range of 

problems and the solution is continuous while the input is 

discrete. We observe that the illustration of orthogonal 

representations as empowering embeddings for simple 

neural networks to work on implies further important 

research. 
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