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ABSTRACT. In this paper, we obtain PE7, NDET, lgDET, fop E7, mag-
netic curves, Lorentz force equations and geometric phases for Darboux frame
of a spacelike curve with non-lightlike principal normal lying on a lightlike
surface, null Darboux frame on a timelike surface, 1GDF and 2GDF in the
tangential direction. Later, we derive intrinsic directional derivatives in ,
U — lines directions for IGDF on a lightlike surface. Finally, we present geo-

metric phases and magnetic curves in i, U — lines directions for 1IGDF on a
lightlike surface.

1. INTRODUCTION

Geometric phase, also known as Berry phase, is occurs when a quantum system
undergoes cyclic variation, and the final state of the system depends not only on
the initial and final conditions but also on the path taken [1]. The interaction
between the electric field and geometric phase has important implications in quan-
tum computing, condensed matter physics, and quantum information processing
and optik. This concept has gained crucial interest in last years. The investiga-
tion of the electric field change has contributed to the development of materials of
science, condensed matter physics and plasma physics [2-9].

In recent times, numerous authors have presented new Darboux frames. Balakr-
ishnan presented certain moving space curves are endowed with a geometric phase
for the Darboux frame in Euclidean 3-space [10]. Later, Ertug presented the vari-
ation of electric field with respect to Darboux triad in Euclidean and Minkowski
3-spaces [11,12]. Alessio et al. [13] have studied null Darboux frame {T,V,N}
derivative formulas on a timelike surface:

T ky 0 Ky T
(1.1) A% = 0 —K; -7 A%
N |- T, —k, O N
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where the geodesic curvature x; = (T7, V), the geodesic torsion 7, = (N, V),
the normal curvature k} = (T, N), tangential direction 7 and
(T,T) = 0 = (V,V)= (I,N) = (N,V)=0,(N,N)= (T,V)=1, TxV = N,

VxN =V, NxT=T:

Topbasg et al. [14] introduced Darboux frame {T, u, U} derivative equations of
a spacelike curve on null surface in the tangential direction 7 in R? for Darboux
frame on lightlike surface [14]:

T 0 E0kn  E0Kg T
(1.2) L = —krg €07y 0 L
U/ —kn 0 —eo7y U

where the geodesic curvature k4 = (u, T+), the geodesic torsion 7, = (U, uy) and
the normal curvature &, = (U, T,) and

(T,T) =1, (U,U) = (u,p) = (T, ) = (T, U) =0, (U, ) =g = £1 and Txp =
eop, pxU =T, UxT = ¢yU.

Djordjevi¢ and Nesovic introduced the first kind generalized Darboux frame
(1GDF) derivative formulas of 1GDF on a lightlike surface in the tangential di-
rection 7 in R} as the following [15]:

'T 0 51?571 51}5!] T
(1.3) il o= R a7 0 i
U _Rn 0 _Eng U

-
where {’i‘ =T+wU, g = —sl%T—ﬁ—%u - Elg’—zU, U= CU} ,w # 0, ¢ # 0 are dif-

. . . . ~ 2
ferentiable functions, generalized geodesic curvature kg = %—l—z—:l wg — wg g 4eq wz—g”",

the generalized geodesic torsion 74 = 74 — e1@Wky — 51%, the generalized normal
curvature k, = Cknp,

<TT> —1, <ﬁ,ﬁ> = (A1) = <Tﬁ> - <T‘I~J> — 0, <ﬁ,ﬁ> —e, = +1, Txji =
eifi, ixU =T, UxT =, U.

Furthermore, Djordjevi¢ and Nesovic introduced the second kind generalized
Darboux frame {T = T*=T, u* = %p, U* = (U } derivative formulas of 2GDF
on lightlike surface in the tangential direction 7 in R? [15]:

T* 0 €1CKZn< €1% T*
(1.4) w* = - ely-—eal) 0 p
v/, —Chin 0 —e1(ry —e1F) U

where generalized geodesic curvature %", generalized geodesic torsion 7, —¢; %’ and

generalized normal curvature (k.
Magnetic curves which a divergence free vector field were studied in [16-20]. Intrin-
sic directional derivatives have been investigated in [21-28].

In section 1, we give introduction. In Section 2, 3 and 4, we obtain PE, NDET,lgDET,
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*6DE,, Lorentz force equations and magnetic curves in the tangential direction.
We derive intrinsic directional derivatives in the @, U —lines directions for IGDF on
a lightlike surface. Later, we present 1, U—magnetic curves and geometric phases

in the @, U — lines directions for IGDF on a lightlike surface .

9. PE, NPE, '9PE, anDp “9PES

DE+ for Darboux frame on a lightlike surface in the tangential direc-
tion

In general form, the change of the electric field PE for Darboux frame of a space-
like curve with non-lightlike principal normal lying on a lightlike surface can be
expressed

(2.1) PE;r=a T+ a,u+ asU.
Assume that

(2.2) (PE,T) =0.

(2.3) <DE,DE> = const.

From Egs.(1.2), (2.1), (2.2) and (2.3), the followings are obtained:

(2.4) ay = —gkn <DE7 M> — €Ky <DE7 U> .

(2.5) as =G <DE,U>, as = —¢ <DE,,u>

Here, ¢; is a parameter. Assume that, <DE,U> #£0, <DE,,u> # 0. If Egs.(2.4) and

(2.5) are substituted in Eq.(2.1), then

J(PE)
oT

(2.6) = PEr = —co(kin ("E,p) + 1y ("E,U))T
+<1 <DE, U> H—s1 <DE7 ,U> U

is obtained. ¢ <DE, U> S <DE, u> U denotes the rotation around T for Darboux
frame with a nonnull principal normal lying on a lightlike surface. For ¢; = 0,

(2.7) PEr = —&o(kn (PE, 1) + k4 ("E,U))T

Lorentz force equation P® of the electric field vector PE for Darboux frame of
a spacelike curve with a nonlightlike principal normal lying on a lightlike surface is
described by

(2.8) Po(PE) = Er = A xPE.
From Eq.(2.8), Lorentz force equations of {T, u, U} are given by
(2.9) Po(T) = eohppteor,U
(2.10) Po(u) = —k,THeosiU

(2.11) Pop(U) = —k,T—coq1p
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From Eq.(2.9), (2.10), (2.11), the magnetic vector field is obtained:
A1=¢T—knpu+r,U

In the general form, it can given by

(2.12) DE = o (B, U) prteo (B 1) U
Via Egs.(2.12), it is derived
(2.13) PE, = pleo(BU)r+14(E,U))

+U(eo (E, 1) 7 — 79 (B, 1))
—e0T(x, (PE, ) + kg (PE,U))
Comparing Eqs.(2.7) and (2.13), it can be obtained
(2'14) <E? /’L>T = EoTy <E? /’L>
(2.15) (B\U); = —eo1q(E,U)

Geometric phase around T for the frame {T, u, U} on lightlike surface via Egs.(2.14)
and (2.15) is eo7y.

NDPE for null Darboux frame on timelike surface in the tangential
direction

The change of electric field NPE for null Darboux frame on a timelike surface
in the 7 — lines direction is given by

SNPE)  yp
Assume that
(2.17) (NPE,N) =0,
(2.18) <NDE,NDE> = const.

From Eqgs.(1.1), (2.16), (2.17) and (2.18), it can be obtained

(219) bl = G2 <NDE, V> 5 b2 = —q2 <N’D]E)7 T>
(2.20) by = r,(VPE,V) -7 (NPE,T)

where ¢, is a parameter. Assume that <NDE7 V> £ 0, <NDE7 T> # 0. If Egs.(2.19),
(2.20) are substituted in Eq.(2.16), then

(2.21) NPEr = o(MPE, V)T - (VPE, T)V
+(r} (VPE, V) — 72 (VPE, T) )N

S <NDE, V> T - ¢ <NDE, T> V denotes the rotation around N for null Darboux
frame on a timelike surface. For ¢ = 0,

(2.22) NPEr = (s (VPE, V) -7 (VPE, T))N

Null Darboux Lorentz force equation ¥YP® of the electric field vector for null Dar-
boux frame on timelike surface is described by
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(2.23) NPHIN(E) =NP B = Ay xVPE

Via Egs.(2.21) and (2.23), Lorentz force equations of the frame {T,V,N}
(2.24) NPHINI(T) = GT+kEN

(2.25) NPeNI(V) = —m'N-@V

(2.26) NPOII(N) = 7T-r,V

Via Egs.(2.23), (2.24), (2.25) and (2.26), null Darboux magnetic field vector is
derived
Ag=— T;T‘FCQN_H:;V

In the general form,

(2.27) NPE = (MPE, V) T+ (NPE,T)V
With the aid (2.27), it is obtained
(2.28) NPEr = T((NPE V), +r,(VPEV))

+V((MPE,T), — 5y (NPE,T))
+N(s (NPE V) — 77 (NPE,T))
Comparing Eqs.(2.22) and (2.28), the followings are obtained
(PEV), = - (PEV)
(PETY, — K (VPET)
Geometric phase around N for the frame {T, V,N} is .

'9PE, for 1GDF on lightlike surface in the tangential direction

The change of electric field 1gDET for 1GDF on lightlike surface in the tangential
direction 7 is given by

(2.29) PRy =T + c,fi + ¢sU.
Consider

(2.30) <19'DE,T> —0
(2.31) <191’E,1973 E> = const.

From Egs.(1.3), (2.29), (2.30) and (2.31), the followings are obtained :

(2.32) c1 = —€1 (C/Qn <1gDE7ﬁ> + (% + 51% — % + &1 W2Kn) <1gDE,ﬁ>>

1 ~ 1 .
(2.33) =3 (PET), o=} ("9PE)

where 31 is a parameter. For 31 = 0, Eqs.(2.32), (2.33) are rewritten in Eq.(2.29),
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(2.34)
98y — o1 (G (PR + (22 40T - Ty o T (PR 0) ) T

Lorentz force equation of electric field vector for 1IGDF on lightlike surface in the
tangential direction is described

(2.35) 'GP ('9PE) ='9P B = A3x 9PE
As is the magnetic vector field. From Eq.(2.35), Lorentz force equations of 1GDF

in the tangential direction can be given by

wr  WTg @2k,

GDG(T) (Y — ~ “Tr %y U
(2.36) o )(T) Elgfﬁn,u—i—al(c +e1 R c +e1 5 )U
o2k
~ w @T, K\ o ~
(231 PeNGE) = (P TE - T e ) TenlU
(2.38) 9Po(N(U) = —(r,T—eslfi
In the general form,
(2.39) B =1 (VB U) v (PE ) U
With the aid (2.39), it is obtained
IQDET = ﬁ(gl <1QDE,[7>T+(Tg—Elwmn—gl?)<lgpﬁ,ﬁ>>
O (e (975 1y /oD p ~
(2.40) +U (51( E.p) —(1g —e1wk, — €1 ?) < E,,u>)
2
e, T '9Pg 5 T _ Yy T ey [topg
alT(cfcn< E,u>+<C tal - TR ety )( EU))
Comparing Eqs.(2.34) and (2.40), it can be derived
g 2\ _ N _ . STy e
(2.41) < E,,u>7_ = ei(1y —e1wkn — €1 R )< E, >
DED) — er e o T 1905
(2.42) < E,U> = e1(ry —e1wkn — €1 R )< E, U>

From Eqs.(2.41) and (2.42), geometric phase around T in the T — lines direction

for 1GDF on lightlike surface is (17 — wky, — %T)

gDET for 2GDF in the tangential direction on lightlike surface

The change of the electric field 2‘gDET for 2GDF on lightlike surface in the
T — lines direction can be written by

2gp

(2.43) Er = diT* + d,pu* + d3U*.
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Assume that

(2.44) <2gDE, T*> =0

(2.45) <2gDE,2gD E> = const.

From Eqgs.(1.4), (2.43), (2.44) and (2.45), it can be derived:

(2.46) dy = —e1Crin <2Q’DE, U*> - 51%9 <297’E,M*>
(2.47) dy = 3 <29DE,U*>, ds = —cs <2gDE,,u*>

¢3 is a parameter. Assume that <2gDE,U*> # 0, <29DE,H*> # 0. If Egs.(2.46)
and (2.47) are substituted in Eq.(2.43), then

(2.48) PEr = —ei(Chn (9P ) + ? (*9PE, U )T
e <2gDE’ U*> ,LL*fgg <2gDE, M*> U*

S3 <29DE, U*> w—gs <29DE, ,u*> U* denotes the rotation around T*. For ¢3 =0,
(2.49) PEr = 1 (Crn (B 17) + % (*9PE, U )T"

2QD
Lorentz force equation &) of the electric field vector “9PE in the tangential
direction can be described by

26D
(2.50) (M (*9PE) ="9P B+ = Ayx “9PE,

From Eq.(2.50), Lorentz force equations of 2GDF in the tangential direction are
given by:

2

gD

(251) (I)(T)(T*) = 51<’€7LN*+€1%U*
26D

(2.52) oM (") = f%T*ﬂ:lcgU*
2gD

(2.53) dT(U*) = —(Cr,Tr—e1g3u*

(2.54) A4:51§3T*—§nnu*+%U*

is the magnetic vector field satisfying Eqs.(2.51), (2.52) and (2.53). Also,

(2.55) PE =¢, <QGDE’ U*>N*+€1 <2gDE, u*>U*
Via Eq.(2.55), it can be obtained
ngET — —e1(Chn <29DE,,LL*> n % <2gDE,U*>)T*
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St (51 <291’E, U*>T + (15 — 1) <29DE, u>) (2.56)

+U* (51 <29DE7 u*>T (7 — €1°F) <2gDE, u>)
Comparing Eqs.(2.49) and(2.56) ,

(2.57) <2QDE,H*>T = el(rg—sl%)<2QDE,u*>
(2.58) <29DE,U*>T = —gl(fg—el%) <29DE,U*>

From Eqs.(2.57) and (2.58), geometric phase around T* for 2GDF in the tangential
direction is &1 (74 — 51%).
3. MAGNETIC CURVES FOR DARBOUX FRAMES
V —magnetic curves for null Darboux frame in the 7 — lines direction

Let a be a distinguished curve on timelike surface with null Darboux frame. «
is called V-magnetic curve if it satisfied null Darboux Lorentz force equation

(3.1) Vi =NP o(V)(V) = A;xV

Here, Aj is magnetic vector field. It can be written by

(3.2) NPHWV)(T) = 13 T415V + 13N
From Eqgs.(1.1), (3.1) and (3.2), it can be derived

(3.3) <ND<I><V> (T), > = =0

(3.4) (MPeI(T), V) = u=x,

(3.5) <ND<I>(V > = 13 =q

¢4 is a function. If Eqgs.(3.3), (3.4) and (3.5) are substituted Eq.(3.2),
(3.6) NPoV)(T) = kT + 4N

obtained. Also,

(3.7) NPV (N)=1: T~V

As = *T;T*C4V+KZN

p—magnetic curves for 1GDF on lightlike surface in the 7 — lines di-
rection

« is called pi-magnetic curve for 1GDF on lightlike surface if it satisfied the
Lorentz force equation

. 1
(3.8) fir = 9P @DE(fi) = Xy xJi

Furthermore, it can be written by

(3.9) GPH(TE(T) = j, T+jofi + jsU
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Via Egs.(1.3), (3.8) and (3.9), it can be derived

(3.10) <1gD<I><T>ﬂ("I“), "I“> = =0
(3.11) (19PeTHT),T) = 5 g = e
(3.12) <1qu’(T)ﬁ(’f)7/7> = €13 = Js =¢€1Ckn
If Egs.(3.10), (3.11) and (3.12) are rewritten in (3.9),
IPOTI(T) = ey3%7 + E1(% + 51% - % +e1 w;gn)ﬁ
As similar,
1gD<I>(T)’7(I~J) = 2T —e1(ry — e1@Wkn — €1 C?T)INJ

is derived. The magnetic field vector
~ ~ 2 ~ ~
X1 = =510+ (¢ + e B = T+ e Fpn )U + (1 — €100k — 51%)T
is obtained.

ﬁfmagnetic curves for 1GDF on lightlike surface in the 7 — lines di-
rection _

« is called U—magnetic curve for 1GDF on lightlike surface if it satisfied the
Lorentz force equation for 1GDF
(3.13) Uy =92 07Y(U) = X,xU
where }~(2 is magnetic field vector Let a be a spacelike curve 1GDF on lightlike
surface. We get,

(3.14) 19047 (T = 0, T4vafi + 03U
Via Egs.(3.13) and (3.14), it can be obtained

(3.15) <197’<1>”)6(T),T> -
(3.16) <1gD<I>(T)0(’f), fJ> = €102 = v2 = €1(kn
(317) <1gD(I)(T)G (T),ﬁ> = £1V3 = V3 = 613?

If Egs.(3.15), (3.16) and (3.17) are substituted in Eq.(3.14 ), then

(T)T ~ ~
'9Dg U(T) = slﬁ’U + e1Ckn i

As similarly,

1 (TG~ ~ -
9P )U(,u) = —3T+ (Tg — 1@k, — alcl)u

¢
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4. INTRINSIC DIRECTIONAL DERIVATIVES FOR 1GDF ON A LIGHTLIKE SURFACE
AND MAGNETIC CURVES

9DV ig called the gradient operator for 1GDF on lightlike surface. It can be
written by
L R I LA
oT Mo T e
where ’7‘, 1 and U are the arc length coordinates on the ’7‘, i —lines and~ﬁ —lines
for 1GDF. %, % and % are the intrinsic directional derivatives in T — lines,
1 — lines and U — lines directions. The divergence vector for 1GDF is

. -~ ~ ST ST ~
gD ;g: _ gD _ 77
dwa< V,T> 51<5[7,,u>+51<6ﬁ,U>

where N N
o (282, 0 - (85)
(4.1) 9P divii = (19PV,fi) =~y + 1 <§Zﬁ >
: - . 5U
GD ;: _ 16D .~ oY ~
(4.2) div0 < v, U> = —Rnter < = ,u>

AT () *y(ﬁ) are total moments of the ’i‘, 1L, U fields of spacelike curve for IGDF
on lightlike surface. Intrinsic directional derivatives in i and U lines directions for
1GDF on lightlike surface are obtained

T (T0) _~m) 117
4 = O(ﬁ) - o g . .
(4.3) 572 Kol = avt kgt divp 10 1
[8) —p(TU) 0 —(Fg + 97 divpp) | LU

(4.4) i
5 T 0 7(17) gl(p(%ﬁ) [T
TR =] T 9P i) 0 i
U —e1y®) 0 (Fn + 97 divU) LU

Geometric phase in i1 — lines direction for 1GDF on lightlike surface

1
In the general form, the change of the electric field %ZEI) for 1GDF on lightlike
surface in p — lines direction is
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5('9PE) .
(4.5) (6/7) =9PE;=LT+1L,i+130.
Assume that
(4.6) <1gDE,T> ~0
(4.7 <1gDE,1gD E> = const.
Here,
4.8 I = —e,0 T ('9PE 3\ 4 (@ ('9PE T .
P 12
1 ~ 1 .
(4.9) b=3("PE0), &= ("PEf)
When Eqgs.(4.6), (4.7) are written in Eq.(4.5),
5('9PE =6y /1 _ o /1 AN
(4.10) (6/7) — (_5190(7’U)< gDE,u> +,Y(M)< gDE,U>)T

1 ~\ 1 o\ ~
+33 < GDE,U> [i—35 < gDE,u> U

where 31 is a parameter. 3%(19DE><’T) is the rotation around T for 1GDF on
lightlike surface in g — lines direction.
When 33 = 0, Eq.(4.10) is derived as the following:

i(9PE)

(4.11) 5

='9P Eg = (—e1p7Y) <19DE,ﬁ> +4 <lgDE,fJ>)’f‘
Lorentz force equation 'GDH(R) of '9PE in it — lines direction is described

(4.12) 'GP ("9PE) = 9P B; = Yy x 9PE

With Eqs.(4.11) and (4.12), Lorentz force equations of 1GDF on lightlike surface
in the p—lines direction are derived :

(4.13) 19D@(ﬁ)(fi‘) — 51()0(7'(7)/7,7(/7)6
(4.14) PRI () = ey P T+eli
(4.15) PG (T) = o TODT—ey5h0
Here

Y1 =33T T - 21070
the magnetic vector field satisfies Egs.(4.13), (4.14) and (4.15).

p—magnetic curves in the p—lines direction for 1GDF on lightlike
surface
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The curve is called pg-magnetic curve 1GDF on lightlike surface in the p—lines
direction if it satisfied Lorentz force equation

1gD¢(ﬁ)ﬁ(lj) = ey D) = Yoxfi

Consider

(4.16) 'OPGIR(T) = Iy T+lofi + 15U
(4.17) <1973<1> 2 ,T> - L, =0

(4.18) < ngI)(“)“ ,U> = 2=y =e13
(4.19) < 9P (M (T ,u> P A N ()

33 is parameter. If Eqs.(4.17), (4.18) and (4.19) are substituted in Eq.(4.16)
GG (T) = 2132 — 4P T

As similarly,

'OPME(T) = — (7, + 9P divi)U — 32T
Thus,
Yo = —e1(fy + 90 divi) T — 53fi + 2190

ﬁ—magnetic curves 1GDF on lightlike surface in the g —lines direction

The curve is called ﬁfmagnetic curve if it satisfied the Lorentz force equation
1GDF on lightlike surface in the g — lines direction

lgp _—

(4.20) U; = oMY(U)=YsxU
It can be written by

lgp

(4.21) oMU (T) = hyT+hofi + hsU
Using Eqgs.(4.20) and (4.21), it can be obtained

(4.22) <1g”q><ﬁﬂ7(i),T> - =0
(4.23) < 9D¢(ﬁ)ﬁ(’i‘)7ﬁ> = erthyo = hy = €1<P(7~—l7)
(4.24) < (#)U( ), M> = ¢e1h3 = hy =155

35 is a parameter. Via Eqs.(4.22), (4.23) and (4.24), Eq.(4.21) is rewritten by

=t

") (T) =e133U + 61%’(%6)!7
As similar,

P & @T (5 3T 4 (7 49D divil)ii
Q¥ () = =35 T+(Kg + 77 divp)p.
5('9PE)

T in U — lines direction for 1GDF on lightlike surface
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1 ~
ICTE) g 1GDF in U — lines direction in the general form on lightlike surface
is given by
5('9PR ~ _ ~
(4.25) (&_7) =9 Ey = AT+ f,ii + f3U.
Assume that
(4.26) <IGDE,T> —0
(4.27) <1gDE,1gD E> = const.

Via Eqgs.(4.26) and (4.27), it can be obtained:
(4:28) fi = @™ (“9PET) + 4@ (*9PEji))

(4.29) L= ("PEU), fy =35 (PEji)
where 3} is a parameter. If Eqs.(4.26), (4.27) are written in Eq.(4.25), then
3('9PE) gD (Th) /6P p T3 @) /10D +\ A
(130) T2 = PRy = (e T ("PEU) +4O ("9PEI)T
1 ~\ 1 \ ~
+31 ('9PEU) ji—3} ('9PEji) U
35 <19DE,ﬁ> -3 <1gDE7ﬁ> U gives the rotation around T for 1GDF on lightlike
surface in the in U — lines direction. When 35 =0, Eq.(4.30) is
'6DR - - ~ ~
(431) 5(6[7) :1QD ]3[7 _ _(51410(7—#) <19DE,U> _ ,Y(U) <1QDE717>)T

(W0

Lorentz force equation '9Dg of "9PE in U — lines direction is given by

(4.32) ‘9P " (9PR) Z'9P B = Yix IPE,
With Eqgs.(4.31) and (4.32), Lorentz force equations of 1GDF on lightlike surface
are given by:

(4.33) 2" (T) = A Dfre, o THT

1 (WU Foy A .
(4.34) Pe" (@) = - TP THes3n
(4.35) 1gD<I><H)U([~J') = —e7UT—¢320

Here
Y; = 5§T—€17(U)/7—<P(Tﬁ)ﬁ
magnetic vector field satisfies Eqs.(4.33), (4.34) and (4.35).

p—magnetic curves for 1GDF on lightlike surface in the U — lines di-
rection
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If the curve is called pi-magnetic curve in the U — lines direction if it satisfied
the Lorentz force equation

57 e I _
(4.36) % = '9PeDi(g) = —TAT — (%, +'9P div0)ji
Zl X/Ajj

Consider

1gD¢’(ﬁ)ﬁ(T) = ml’i‘—&-mgﬁ + mgﬁ

(4.37) <1qu> OR (T "I“> = my =0

(4.38) <19D(I>(U)u ﬁ> = 2=omy= o(TH)

(4.39) <19D<I>(U fJ> = eymp = my = 152
Via Eqs.(4.37), (4.38) and (4.39), it is obtained

(4.40) IPHOI(T) = &350 + e1p T T
As similarly,
(4.41) GPOA(T) = —32T + (7 + 9P div0)U

Here, the magnetic vector field

Z1 = —e1(Fn + 9P divO)T — 520+ TP T
satisfies Eqs.(4.36), (4.40) and (4.41).
U-— magnetic curves for 1GDF on lightlike surface in the U — lines
direction N
If the curve is called U—magnetic curve for 1GDF on lightlike surface, if it
satisfied the Lorentz force equation in the U — lines lines

(4.42) U, =97 O0(T) = Z,xTU
It can be written by

(4.43) 'GP (T = ny T+nofi + nsU
From Eqs.(4.42) and (4.43), it can be obtained

(4.44) < 9PV (T ,T> = =0

(4.45) < gD DU > = e1ng = ng =13,

(4.46) ("Pe@U(T),T) = einy = np =77
Via Eqgs.(4.44), (4.45) and (4.46), it is obtained

(447) 1gD(I)((7)(7(ri\) _ 7(5)ﬁ+513§fj
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As similar,
(4.48) PN () = —53T— (K, + 9P divU)ji

Here,

ZQ = (En +19D dwﬁ)'f — 61’}/([7)/7, + 336
satisfies Eqs.(4.42), (4.47) and (4.48).

5. CONCLUSION

In this manuscript, we studied variations of electric fields, geometric phases,
Lorentz force equations and magnetic curves for Darboux frame of a spacelike curve
on null surface, null Darboux frame on timelike surface, first and second kinds
generalized Darboux frames on lightlike surface in the tangential direction. Finally,
we presented geometric phases, Lorentz force equations and magnetic curves via
anholonomic coordinates for the first generalized Darboux frame on lightlike surface.
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