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 As mental and neurological disorders continue to rise globally, research utilizing artificial 

intelligence to analyse and classify differences in EEG signals is growing rapidly. This study 

utilises six machine learning algorithms for detecting schizophrenia (SZ) using multichannel 

EEG signals. In the initial phase of this study, pre-processing is carried out, followed by the 

application of 13 distinct feature extraction techniques. The extracted features are subsequently 

classified using various machine learning algorithms, leading to classification accuracies up to 

1.00 in four algorithms including Decision Tree, Random Forest, Support Vector Machines 

(SVM) and Gradient Boosting. In addition, 5-fold cross-validation is applied to increase the 

reliability of the study. The findings indicate that the study achieved remarkable success and 

demonstrates the potential for effectively detecting schizophrenia using EEG signals. 
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Şizofreni tespiti için makine öğrenmesi algoritmalarının karşılaştırmalı analizi 
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 Zihinsel ve nörolojik bozukluklar küresel olarak artmaya devam ederken, EEG sinyallerindeki 

farklılıkları analiz etmek ve sınıflandırmak için yapay zekadan yararlanan araştırmalar hızla 

artmaktadır. Bu çalışmada, çok kanallı EEG sinyallerini kullanarak şizofreniyi (SZ) tespit etmek 

için altı farklı makine öğrenimi algoritması kullanılmaktadır. Bu çalışmanın ilk aşamasında, ön 

işleme gerçekleştirilmekte ve ardından 13 farklı özellik çıkarma tekniği uygulanmaktadır. 

Çıkarılan özellikler daha sonra çeşitli makine öğrenimi algoritmaları kullanılarak 

sınıflandırılmış ve Karar Ağacı, Rastgele Orman, Destek Vektör Makineleri (DVM) ve Gradyan 

Güçlendirme olmak üzere dört algoritmada 1.00'e varan sınıflandırma doğrulukları elde 

edilmiştir. Ayrıca, çalışmanın güvenilirliğini artırmak için 5 kat çapraz doğrulama 

uygulanmıştır. Bulgular, çalışmanın kayda değer bir başarı elde ettiğini ve EEG sinyallerini 

kullanarak şizofreniyi etkili bir şekilde tespit etme potansiyelini ortaya koyduğunu 

göstermektedir. 
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Makine Öğrenmesi 

Sınıflandırma 

Şizofreni 

 

1. INTRODUCTION 

Schizophrenia (SZ) is a chronic and severe mental disorder that affects how a person thinks, feels, and behaves. Characterized by 

symptoms such as hallucinations, delusions, and cognitive impairments, it poses significant challenges for diagnosis and 

treatment[1]. According to the World Health Organization (WHO), schizophrenia is a serious condition that affects over 21 million 

people globally[2]. However, the WHO has also indicated that schizophrenia is treatable, and early or post-diagnosis interventions 

can help determine its severity and stage. Identifying and treating schizophrenia is crucial, as it significantly disrupts thinking, 
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memory, perception, and various daily activities. Traditional diagnostic methods rely heavily on clinical interviews and symptom 

assessments, which can be subjective and time-consuming. In recent years, there has been a growing interest in leveraging 

technological advancements to improve the accuracy and efficiency of schizophrenia diagnosis. 

 

One promising approach involves the use of electroencephalography (EEG) signals. EEG is a non-invasive method that records 

electrical activity of the brain, providing real-time insights into neural function. It has been widely used in the study of various 

neurological and psychiatric disorders. The complexity and high-dimensional nature of EEG data, however, present substantial 

challenges for traditional analytical techniques[3]. 

 

This is where deep learning comes into play. Deep learning, a subset of machine learning, employs neural networks with multiple 

layers to automatically learn and extract features from complex datasets. It has demonstrated remarkable success in fields such as 

image and speech recognition, natural language processing, and biomedical signal analysis. Applying deep learning to EEG data for 

the detection of schizophrenia holds great promise, potentially leading to more accurate, objective, and rapid diagnostic tools[4]. 

1.1. Related Work  

One of the studies which focuses on detection of SZ employed a hybrid framework that integrated brain effective connectivity 

images derived from EEG signals with pre-trained CNN-LSTM models to differentiate schizophrenia (SZ) patients from healthy 

controls. Utilizing Transfer Entropy (TE) to estimate directed causalities in brain information flow from EEG signals, the study 

achieved an accuracy of 99.90% with the EfficientNetB0-LSTM model, outperforming previous SZ detection studies. TE effective 

connectivity images revealed differences in information flow between SZ patients and healthy individuals, with SZ patients showing 

lower information flow values across most brain channels compared to healthy subjects. These findings suggest that SZ patients 

have reduced TE (information flow) in various brain channels, indicating potential differences in brain functionality between SZ 

patients and normal individuals. Overall, the hybrid model excelled in analyzing brain function and detecting SZ patients, 

demonstrating its effectiveness in distinguishing SZ patients from healthy controls based on EEG signals[5]. 

 

A research study introduces the use of Multivariate Empirical Mode Decomposition (MEMD) for detecting Schizophrenia (SZ) 

from multichannel EEG signals, coupled with entropy measures computed from the Intrinsic Mode Function (IMF) domain. Five 

entropy measures—Approximate entropy, Sample entropy, Permutation entropy, Spectral entropy, and SVD spectral bands of 

EEG—were derived from the IMF signal, revealing significant differences between SZ and normal subjects (p < 0.01). Advanced 

machine learning classifiers, including Naive Bayes, Linear Discriminant Analysis, Support Vector Machine (SVM), K-Nearest 

Neighbour, Random Forest, and Gradient Boosting Machine, were trained on the feature matrix obtained from these entropy 

measures. Among these, the SVM with a Radial Basis Function (SVM-RBF) kernel showed robust classification performance, 

achieving an overall accuracy of 93% and an F1-score of 93.04% using 95 features. Furthermore, the study reported a detection 

accuracy of 90.66% for SVM when utilizing a reduced feature set of 20 features, demonstrating the method's effectiveness even 

with a minimal number of features for SZ detection. This research outperformed some related studies in SZ detection accuracy and 

underscored the potential of calculating entropy measures from the IMF domain, highlighting the capability of MEMD in managing 

multichannel EEG for SZ detection[6]. 

 

The study developed an Automated Diagnostic Tool (ADT) that utilizes nonlinear feature extraction from EEG signals, t-test based 

feature selection, and validation across various classifiers. The SVM with Radial-Basis-Function (SVM-RBF) classifier achieved 

the highest accuracy of 92.91%, outperforming other classifiers used in the research. The SVM-RBF classifier exhibited superior 

performance with an average accuracy of 92.91% in distinguishing normal EEG patterns from those of individuals with 

schizophrenia, highlighting its effectiveness in classifying the two groups. The findings suggest that the proposed technique 

efficiently differentiates between normal EEG patterns and those associated with schizophrenia, demonstrating the potential for 

automated schizophrenia detection using nonlinear signal processing methods. Future research directions include exploring the use 

of CNN deep learning models in combination with cloud computing for more effective schizophrenia diagnosis, aiming to streamline 

the feature extraction and selection process to enhance diagnostic accuracy[7]. 

  

The paper reported experimental results evaluating a local descriptors-based approach for detecting schizophrenia (SZ) using EEG 

signals, achieving high classification accuracy on two datasets: 92.85% on Dataset-1 and 99.36% on Dataset-2. The methodology 

involved representing EEG signals using the histogram of local variance (HLV) and symmetrically weighted-local binary patterns 

(SLBP) for feature extraction. A correlation-based feature selection algorithm was then applied, followed by classification using an 
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AdaBoost classifier. The results demonstrated that features extracted from EEG channels in the temporal lobe were particularly 

effective in capturing regional variations in EEG signals for SZ detection[8]. 

 

In other paper a method is proposed for detecting schizophrenia (Sz) by analysing multi-channel electroencephalogram (EEG) 

signals. The proposed approach uses multivariate iterative filtering (MIF) to decompose multi-channel EEG data into multivariate 

intrinsic mode functions (MIMFs). These IMFs are grouped based on their mean frequency to separate EEG rhythms (delta, theta, 

alpha, beta, gamma) from the signals. Features, such as Hjorth parameters, are then extracted from these EEG rhythms. The extracted 

features are ranked using a student t-test, and the 30 most discriminative features are selected for classification. Different classifiers, 

including K-nearest neighbours (K-NN), linear discriminant analysis (LDA), and support vector machine (SVM) with various 

kernels, are used to classify Sz and healthy EEG patterns. The method is applied to 19-channel EEG signals recorded from 14 

paranoid Sz patients and 14 healthy subjects. The highest accuracy achieved is 98.9% using the SVM (Cubic) classifier, with 

sensitivity, specificity, positive predictive value (PPV), and area under the ROC curve (AUC) of 99.0%, 98.8%, 98.4%, and 0.999, 

respectively. The proposed MIF approach is computationally more efficient than other multivariate signal decomposition 

algorithms. This paper presents an efficient framework for decomposing multivariate signals and accurately detecting Sz[9]. 

 

Study of Sahu et al. the proposed network utilizes depth-wise separable convolution and attention networks at both high and low 

levels to combine features from 2-D scalogram images obtained through continuous wavelet transform. Depth-wise separable 

convolutions contribute to creating a lightweight framework, while attention techniques focus on significant features and eliminate 

unnecessary computations by filtering out irrelevant features. The proposed method achieves an average classification accuracy of 

99% on the IBIB-PAN dataset and 95% on the EEG data from the basic sensory task in the SZ dataset. Additionally, statistical 

hypothesis testing using Wilcoxon’s Rank-Sum test confirms the model's performance, demonstrating that SCZ-SCAN is 

statistically more efficient than nine state-of-the-art methods. Experimental results indicate that PSFAN outperforms 11 

contemporary methods, highlighting its effectiveness for medical industrial applications[4]. 

  

Another paper introduced a novel framework for automatic schizophrenia detection by extracting graphical features from EEG 

signals. This approach achieved high classification accuracy using both KNN and GRNN classifiers. Noise cancellation of EEG 

channels was performed using the MSPCA method, followed by the application of the PSD technique to plot EEG signals in 

Cartesian space. Fifteen graphical features were extracted to quantify the chaotic behavior of PSD. Among these features, the SDHC 

feature exhibited the highest AUC value for detecting schizophrenia using a KNN classifier. The Cz channel showed the highest 

classification accuracy, suggesting its potential as a biomarker for diagnosing the disorder. The study achieved an average 

classification accuracy of 94.80%, a sensitivity of 94.30%, and a specificity of 95.20% using the KNN classifier with City-block 

distance, demonstrating the effectiveness of the proposed framework for automatic schizophrenia diagnosis [10]. 

 

In the study of Prabhakar It is aimed to classify schizophrenia EEG signals using optimization algorithms and feature extraction 

techniques such as PLS Nonlinear Regression, EM-PCA, and Isomap. Four optimization algorithms were utilized: Flower 

Pollination, Eagle Strategy, Backtracking Search, and Group Search Optimization. The findings showed high classification accuracy 

for both normal and schizophrenia cases, with up to 98.77% accuracy achieved through specific combinations of features and 

classifiers. Additionally, the Naive Bayesian Classifier was optimized using the bag-of-token model, enhancing the classification 

process for schizophrenia cases. Overall, the research highlighted the effectiveness of nature-inspired optimization algorithms in 

accurately classifying schizophrenia EEG signals, presenting a promising approach for future studies in this field [11]. 

  

Shoeibi et al. introduced intelligent deep learning methods for the automatic diagnosis of schizophrenia using EEG signals, 

achieving a high accuracy of 99.25% with the CNN-LSTM model. Various conventional machine learning methods were compared 

with deep learning models, including LSTMs, 1D-CNNs, and 1D-CNN-LSTMs, for schizophrenia diagnosis. The CNN-LSTM 

architecture, utilizing a ReLU activation function and z-score combined normalization, outperformed other models, demonstrating 

superior performance. A k-fold cross-validation method with k = 5 was used for all simulations, ensuring the robustness and 

reliability of the results[12]. 

2. MATERIALS AND METHODS 

2.1. Dataset 

For this study, a publicly available dataset is utilized from the Institute of Psychiatry and Neurology in Warsaw Poland [13]. The 

dataset includes EEG recordings from 14 patients (seven males with a mean age of 27.9 ± 3.3 years, and seven females with a mean 
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age of 28.3 ± 4.1 years) diagnosed with paranoid schizophrenia according to the ICD-10 criteria. The control group comprises EEG 

recordings from 14 healthy individuals (seven males with a mean age of 26.8 ± 2.9 years, and seven females with a mean age of 

28.7 ± 3.4 years). EEG data were collected for 15 minutes using 19 channels, with electrode placement following the 10-20 

international system. The specific positions recorded were Fp1, Fp2, F7, F3, F4, F8, T3, C3, C2, C4, T5, P3, Pz, P4, T6, O1, O2, 

and FCz (reference electrode), with a sampling rate of 250 Hz [14]. 

2.2. Pre-processing 

Preprocessing transforms raw data into a suitable format to improve analysis and usability. The first step involves applying a filter 

to eliminate electrical noise from the raw EEG signals[4]. In this study, the datasets used have already undergone filtering to elimi-

nate electrical noise. Therefore, the filtering step is omitted in this analysis. Normalization was performed using the StandardScaler 

method, which adjusts the data to have a mean of 0 and a standard deviation of 1. This process is crucial for machine learning 

models, as features with varying scales can otherwise negatively impact model performance. Principal Component Analysis (PCA) 

then applied to the data in order to reduce the size. This step helps to process the data and achieve faster results as well as eliminating 

meaningless and unnecessary data. 

2.3. Feature Extraction 

EEG signals are unstable and fluctuate unpredictably depending on brain activity. It is well known that pathological brain conditions 

result in a different level of randomness in EEG signals compared to those of healthy individuals[6]. In the literature different feature 

extraction methods are used for EEG signal classification. In this study, different feature extraction techniques were tested and the 

methods that gave promising results are listed as follows: Percentile, mean absolute, singular value decomposition, mean, standard 

deviation, variance, median, minimum, maximum, sum, kurtosis, skewness and slope sign change. Violin plots giving the intensity 

distribution of the features used in this study for each class are given in Figure 1.  

 

 

Figure 1. Violin plots of used features.   
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2.4. Classification 

In the classification process, six distinct classification algorithms were employed to ensure a comprehensive evaluation of model 

performance. These methods include logistic regression, decision tree, random forest, k-nearest neighbors (kNN), support vector 

machine (SVM), and gradient boosting. Each algorithm offers unique advantages: logistic regression provides interpretability, 

decision trees offer simplicity, random forests enhance robustness through ensemble learning, kNN is effective in instance-based 

learning, SVM excels in handling high-dimensional spaces, and gradient boosting combines multiple weak learners for high 

predictive accuracy. This diversity of models allows for a thorough comparison and optimization of classification performance. 

3. RESULTS AND DISCUSSION  

In this study, SZ and healthy subject EEG signal classification is performed using machine learning algorithms, following the 

preprocessing and feature extraction steps described earlier. During the feature extraction step, first the relationship between features 

is analysed by using correlation matrix. Correlation is frequently employed to assess whether a cause-and-effect relationship exists 

between two variables, with values ranging from -1 to 1. In the heatmap shown in Figure 2, the relationships between the features 

and the classification label are depicted. The correlation matrix in the image visualizes the relationships between different features 

in the dataset, as well as their correlation with the classification label. The color scale on the right shows how correlation values 

range from -0.2 (blue, indicating a negative correlation) to 1.0 (red, indicating a strong positive correlation). Many of the features, 

such as Prctile_90, Mean_val_abs, Svd, Mean, Median, Min, Max, and Sum, exhibit very high positive correlations (close to 1.0) 

with each other, suggesting strong linear relationships between these variables. Features like Std, Var, and Slope_sign_changes have 

weaker correlations with some other features but are generally well correlated with most variables. Interestingly, Skewness shows 

a very low or even negative correlation with the majority of the other features, indicating that it might capture a different aspect of 

the data. The Label column shows the correlation of the features with the classification label. Many features, such as Prctile_90, 

Mean_val_abs, and Svd, show a high positive correlation (~0.31), indicating that these variables are positively associated with the 

classification task and might be key contributors to the prediction process. In summary, this matrix highlights the interdependencies 

between features and their significance to the classification label, where several features show strong positive correlations, 

potentially indicating their importance in the model's performance. 
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Figure 2. Features correlation matrix.   

After the selection of the features, classification was performed as the final step. Table 1. presents the mean accuracy and standard 

deviation for used machine learning algorithms utilised in the classification task. Logistic regression achieved a mean accuracy of 

0.9999 with a standard deviation of 0.0001, indicating high accuracy and minimal variability. Both the decision tree and random 

forest models reached a perfect mean accuracy of 1.0000, with a standard deviation of 0.0001, reflecting consistent performance 

across all evaluations. K-nearest neighbors (KNN) recorded a mean accuracy of 0.9999, demonstrating near-perfect performance 

with little variation. The support vector machine (SVM) and gradient boosting models both achieved a perfect accuracy of 1.0000, 

with a standard deviation of 0.0001, indicating robust and stable results. Overall, the algorithms displayed exceptionally high 

accuracy and consistency in the classification task, with very little variation between trials. 

 

Table 1. Accuracy results for used algorithms.  

 

Algorithms Mean Accuracy Standard Deviation 

Logistic Regression 0.9999 0.0001 

Decision Tree 1.0000 0.0001 

Random Forest 1.0000 0.0001 

KNN 0.9999 0.0001 

SVM 1.0000 0.0001 

Gradient Boosting 1.0000 0.0001 
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Table 2. presents the performance metrics (precision, recall, and F1-score) for the best classification algorithms, evaluated for two 

classes (schizophrenics and healthy subjects), along with overall accuracy and averages. The models achieve perfect classification 

performance across all metrics for both classes, with an accuracy of 100%. 

 
Table 2. The best classification results.  

 
 Precision Recall F1-score Support 

0 1.00       1.00       1.00       3170 

1 1.00       1.00       1.00       2603 

accuracy   1.00 5773 

macro avg 1.00       1.00       1.00       5773 

weighted avg 1.00       1.00       1.00       5773 

 

 

Figure 3. shows the ROC curve and confusion matrix for the best classification algorithms. As it can be seen from the figure, the 

models demonstrate impeccable classification performance across all metrics for both classes, achieving an accuracy of 100%. 

 

Figure 3. ROC curve and confusion matrix for best result.    

The ROC curve and confusion matrix provide strong evidence that the model achieved excellent performance. The ROC curve, with 

an area under the curve (AUC) of 1.00, indicates perfect classification, demonstrating the model’s ability to distinguish between 

positive and negative classes across all thresholds. Similarly, the confusion matrix shows that out of 5773 total samples, 3169 true 

negatives (TN) and 2603 true positives (TP) were correctly classified, with only one false positive (FP) and no false negatives (FN). 

This near-perfect performance highlights the model's effectiveness in accurately identifying both classes, a critical aspect in 

schizophrenia detection. Overfitting is typically characterized by a model performing well on training data but poorly on unseen 

data, which is not the case here, as both the ROC curve and confusion matrix reflect consistent and robust generalization. Moreover, 

the use of 5-fold cross-validation further reinforces the model's reliability by ensuring stable performance across multiple data splits. 

Together, these results confirm that the model generalizes well and achieves outstanding classification performance without any 

indication of overfitting. 

The model comparison graph shows the accuracy distribution for six machine learning algorithms using 5-fold cross-validation. K-

Nearest Neighbors (kNN) and Logistic Regression exhibit the lowest performance, with their accuracy distributions falling below 

those of the other models. The presence of a wider spread in kNN’s results suggests greater variability across the folds, indicating 

that its performance may be less stable or sensitive to specific data splits. In comparison, Decision Tree, Random Forest, SVM, and 

Gradient Boosting achieve higher and more consistent accuracies, with most folds clustering around nearly perfect scores (close to 

1.00). The absence of significant outliers in these models highlights their robustness and consistent generalization. The overall 

results suggest that tree-based models (Decision Tree, Random Forest, and Gradient Boosting) and SVM perform more effectively 

in this classification task, likely due to their ability to capture complex patterns in the EEG data. 
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Figure 4. K-fold cross validation result.    

4. CONCLUSIONS AND FUTURE WORK 

This study applied six different machine learning algorithms for detecting schizophrenia (SZ) using multichannel EEG signals. The 

pre-processing of EEG data was followed by the implementation of 13 distinct feature extraction techniques, with the extracted 

features classified using various algorithms. Four of these algorithms—Decision Tree, Random Forest, Support Vector Machines 

(SVM), and Gradient Boosting—achieved classification accuracies of up to 1.00. Additionally, 5-fold cross-validation was 

employed to enhance the reliability of the results. The findings highlight the effectiveness of the proposed framework, demonstrating 

its potential for accurately detecting schizophrenia through EEG signals. Future research could explore the integration of more 

advanced deep learning techniques, such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs), for further 

improvement of classification accuracy. Additionally, expanding the dataset to include more diverse EEG recordings or 

investigating the use of transfer learning could enhance the model's generalizability. Incorporating real-time analysis of EEG signals 

for schizophrenia detection and extending the approach to other mental disorders are also promising directions for future work. 

5. LIMITATIONS 

Despite the promising results, this study has several potential limitations. First, the quality and size of the dataset could impact the 

generalizability of the findings. A small or imbalanced dataset might lead to biased model performance, while EEG signals are 

prone to noise and artifacts (e.g., muscle movements or eye blinks), which can affect feature extraction and classification reliability. 

Additionally, the study heavily relies on 13 feature extraction techniques, making it challenging to determine which features 

contribute most to detecting schizophrenia, and the use of complex models may limit interpretability. While 5-fold cross-validation 

enhances reliability, more robust techniques like stratified or nested cross-validation could further validate the results. Furthermore, 

the absence of external validation with independent datasets may limit the generalizability of the models to unseen data. Including 

deep learning approaches like CNNs or RNNs could provide additional insights, given their strength in time-series analysis. Lastly, 

translating these findings to real-world clinical settings remains challenging, as variations in EEG recording conditions and patient 

diversity may affect model performance, and computationally intensive algorithms may face limitations when deployed on portable 

or embedded devices. These limitations suggest avenues for future work and refinement to improve the robustness and applicability 

of the study’s findings. 
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