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The segmentation of the left atrium (LA) is required to calculate 
the clinical parameters of the LA, to identify diseases related to 
its remodeling. Generally, convolutional networks have been 
used for this task. However, their performance may be limited as 
a result of the use of local convolution operations for feature 
extraction. Also, such models usually need extra steps to provide 
uncertainty maps such as multiple forward passes for Monte 
Carlo dropouts or training multiple models for ensemble 
learning. To address these issues, we adapt mask transformers 
for LA segmentation which effectively use both local and global 
information, and train them with evidential learning to generate 
uncertainty maps from the learned Dirichlet distribution, with a 
single forward pass. We validated our approach on the 
STACOM 2013 dataset and found that our method can produce 
better segmentation performance than baseline models, and can 
identify locations our model’s responses are not trustable. 
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Kanıtsal Maske Dönüştürücü Model ile Sol Kulakçık Bölütlemesi 
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Sol kulakçığın yeniden şekillenmesine sebep olan hastalıklarının 
tanısının konulabilmesi için, sol kulakçığın bölütlenmesi 
gerekmektedir. Bu amaçla, genel olarak, konvolusyenel ağlar 
kullanılmaktadır. Fakat bu modellerin performansı, yerel 
hesaplama yapmaları nedeniyle düşük olabilir. Belirsizlik 
haritaları üretebilmeleri için, Monte Karlo dropout ya da çoklu 
model eğitimi (ensemble) gibi yaklaşımlara ihtiyaç duyulur. Bu 
problemleri gidermek için, yerel ve global bilgiyi bir arada 
kullanan, maske dönüştürücü modelleri, sol kulakçık 
bölütlenmesi için adapte ettik. Belirsizlik haritalarını elde etmek 
için de bu modeller, kanıtsal öğrenme ile eğitildi. Böylece, 
öğrenilen Dirichlet dağılımı kullanılarak, tek adımda belirsizlik 
haritaları elde edilebildi. Öne sürülen yaklaşım, STACOM 2013 
veri setinde test edildi ve karşılaştırılan modellerden daha 
başarılı performans gösterdiği gözlemlendi. Üretilen belirsizlik 
haritalarının, modelin kararsız olduğu yerlerde yüksek belirsizlik 
gösterdiği gözlemlendi. 
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1. INTRODUCTION 
 
The segmentation of the left atrium (LA) in Magnetic Resonance Imaging (MRI) images is necessary to 
extract clinical parameters, such as ejection fraction, volume and geometrical characteristics, to identify 
diseases related to the remodeling of the LA such as atrial fibrillation [1-3]. The low contrast of the LA in 
MRI images and its complicated shape makes it harder to segment with automatic tools. Recent work has 
reported promising results generated by deep networks on this task [1-3]. However, the task remains 
challenging when images to be segmented are collected from different vendors of MRI machines, leading 
to the problem known as the data-shift problem. Given the high confidence of deep networks even for their 
inaccurate results, wrongly segmented images reduce the trust of clinicians in such image analysis tools.  
 
Uncertainty maps can give clues to clinicians to understand where a segmentation model has low 
confidence in its decision. Ensemble models or Monte Carlo dropout networks have been used for 
uncertainty map production [4]. The former approach trains multiple models to obtain a variety of 
segmentation masks, mimicking the behaviors of human experts with different medical expertise. On the 
other hand, the latter trains a single network with dropout layers, which are left active during test time. 
Monte Carlo simulation is performed with multiple runs of the same model, which produces multiple 
segmentation masks. Both approaches generate uncertainty maps by calculating variation across generated 
segmentation maps for the same input image. Despite their common use [4], these methods are costly, 
requiring training multiple models or running the same model multiple times to obtain different 
segmentation masks.  
 
Recently, evidential learning (EL) was proposed for image classification [5] and later for segmentation 
problems [6-7]. This method estimates closed-form prediction distribution, based on the Dempster–Shafer 
Theory of Evidence [8]. The outputs of a network are described as categorical variables, and EL learns the 
parameters of prediction distributions over these variables, in contrast to yielding single point estimates 
posterior probabilities for each class output generated by the softmax function [8]. This property of EL 
makes it a good choice for model uncertainty calculation, which can be easily computed with a single 
forward pass from network outputs. Despite its high potential to improve the reliability of deep models, a 
few studies used EL for uncertainty calculation on medical image analysis, where the segmentation of brain 
tumors [6] and lymphomas [7] were examined. As far as we are aware, no previous study examined its use 
for uncertainty prediction of cardiac image segmentation.  
 
Previous methods for LA segmentation generally used Convolutional Neural Networks (CNN) to learn 
local information in various abstraction levels [1-3]. Recent work introduced a new type of model 
enhancing CNN/transformer features with transformer decoders, called mask transformers [9], which was 
shown to outperform previous methods using CNN or only encoder-decoder transformers for semantic 
segmentation and object detection [9-10]. In these models, a pre-trained segmentation model provides local 
information to transformer decoders to learn global information in input images with self-attention and 
cross-attention mechanisms. Despite their high performance in image analysis [9-10], they struggle to 
reproduce small structures in input images. This may be due to yielding downsampled segmentation masks 
to reduce their high computational cost; for example, [9,11] produced segmentation masks four times 
smaller than the original size of input images. This property of mask transformers limits their applications 
to medical image analysis problems, where the segmentation of small structures is of high value [6-7]. 
 
In this study, we explore if the accuracy of LA segmentation and the reliability of its binary masks can be 
improved by training mask transformers with evidential loss. We modify the design of the mask 
transformers to increase their ability to segment small structures in input images. We present a training 
scheme specific to evidential learning to improve model performance, as well. Particularly, we investigate 
whether the two-steps training of mask transformers plays any role in its segmentation performance, which 
allows different model parts -- CNN and transformer decoders -- to be trained with different loss functions. 
We validated our method on a public LA segmentation dataset, the STACOM 2013 dataset [12]. We 
conduct ablation experiments to examine how our design choices for mask transformers change their 
segmentation performance. We also produce uncertainty maps to indicate locations where our model fails 
to yield confident results.   
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2. RELATED WORK  
 
2.1. Evidential Learning 
 
Evidential learning can make learning probability distributions over classes possible for a deterministic 
network. It uses the concepts of Dempster–Shafer Theory of Evidence [8], a generalization of Bayesian 
theory to subjective probability, where a belief distribution is obtained by assigning belief masses to the 
subsets of a discerning frame. The belief distribution for the M-classes classification problem can be 
represented with a Dirichlet distribution with M parameters, which are calculated from the outputs of the 
network, called evidences. Evidences are continuous values equal to or larger than zero so the activation 
function of the last layer of the network should be selected accordingly. For example, the softplus function 
can be used for this aim.  The conversion between Dirichlet distribution parameters, 𝛼, and evidences, e, 
can be calculated with  α 𝑒 1  for the class m. Predicted classification probabilities for the class 
m are calculated with 𝑦  for one-hot encoded class labels vector y, where 𝑆 ∑ 𝛼  is the 

Dirichlet strength.  
 
One can define an image segmentation task as an M-class classification problem for each pixel k in input 
images, and can minimize the Bayes risk of the cross-entropy loss to train the network with evidential 
learning; however, this loss calculation was found to be less stable than minimizing the Bayes risk of mean 
square loss [5], whose formula is given below:  
 

𝐸 𝜽 ‖𝒚 𝒚 ‖
𝜶

∏ 𝑦 d𝒚𝒌  [1] 

 
where B is a multinomial beta function. 𝒚  is the ground truth label for 𝑘  pixel and 𝒚  is its corresponding 
estimate by the network. Equation (1) can be simply rewritten in equation (2) 
 

𝐸 𝜽 ∑ 𝑦 𝑦            [2] 

 
2.2. LA Segmentation 
 
Compared to other cardiac structures such as the left ventricle, there are few methods on the segmentation 
of the LA [1-3]. LA-Net [1] is a multi-task CNN model equipped with cross-attention and enhanced decoder 
modules to improve LA segmentation. TMS-Net [2] is a CNN ensemble model with an encoder and three 
decoders, which can segment the LA in MRI images along three orthogonal axes. The network also has a 
segmentation quality control module to eliminate poor segmentation masks.  GSM-Net [3] is another CNN 
model, proposed to better use inter-slice similarities and the information at the temporal axis of CINE MRI 
images for LA segmentation, respectively, with a global slice sequence encoder and sequence-dependent 
channel attention module. These networks mostly used local information obtained with convolutional layers 
to segment the LA. However, they lack mechanisms that effectively learn global information in input 
images, which can limit their capacities when input images are noisy and have poor contrast. 
 
3. METHOD 
 
3.1. Evidential Learning for LA Segmentation 

 
Firstly, we formulate the segmentation of the LA as a regression problem to minimize the Bayes risk of the 
sum of the square loss, given with equation (2). We use softplus function at the end of the proposed network 
to generate evidences, e, for each segmentation class, image background, and the LA. When calculating 
Dirichlet parameters, we use α 𝑒 1  similar to [6], to easily reach high Dirichlet parameters, which 
increases the certainty of network outputs.    
 
Similar to previous work [5-6], we assign pixel label predictions with misleading evidences to the uniform 
distribution, with Kullback-Leibler (KL) divergence loss, described with equation (3).   
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𝐾𝐿 𝐷 𝒚𝒌|𝜶𝒌 ||𝐷 𝒚𝒌|𝟏  𝑙𝑜𝑔
∑

∑
∑ 𝛼 1  [(𝜓 𝛼 )-𝜓 ∑ 𝛼 ]  [3] 

 
where Γ .  and 𝜓(.) respectively denote the gamma and digamma function. 𝜶  𝒚 𝟏 𝒚 𝜶  
denotes the Dirichlet parameters for misleading evidences.  
 
Therefore, our total loss function becomes as given below: 
 
 𝐸 𝜽 𝜆 𝐾𝐿 𝐷 𝒚|𝜶 ||𝐷 𝒚|𝟏   [4] 
 
where we set 𝜆 0.1 𝑚𝑖𝑛 1, 𝑡/5  for a current epoch of t.  
 
3.2. Uncertainty Map Prediction 
 
We use normalized entropy for uncertainty prediction, which can be calculated with 

∑  𝑦  𝑙𝑜𝑔 𝑦  , for each pixel in an input image [6]. 

 
3.3. Our Segmentation Model 
 
As shown in Figure 1, our segmentation model consists of three main parts: (i) a pixel encoder-decoder 
sub-network to generate pixel features, (ii) a transformer decoder stack to learn mask and class embeddings, 
and (iii) a segmentation mask prediction module. We will explain each part of our model, and the interaction 
between them, as follows. 
 

 
Figure 1. An overview of our network. FFN: feed forward network. Our model uses high resolution 

decoder features to enhance the segmentation of small structures in predicted masks 
 
3.3.1. Pixel Encoder-Decoder Sub-network  
 
We use Res-UNet [13] as a pixel encoder-decoder network, with five encoder layers and five decoder 
modules. Each module consists of two convolutional layers and a residual connection. Convolutional layers 
are followed by a group normalization layer and the parametric ReLU activation function, apart from the 
last decoder module, which has a convolutional layer with 2 channels followed by the softmax function to 
generate binary masks for image background and the LA classes.  
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After being fully trained for segmentation, its weights are frozen, and the outputs of its three decoder 
modules right before the final decoder module are used as pixel features, -- 𝐹 , ,  𝐹 ,  and 𝐹 ,  -- 
for  the transformer decoder stack in our model (see Figure 1).  
 
3.3.2. Transformer Decoder Stack 
  
This module updates input query features, 𝐹 , with pixel features through several decoder transformers, to 
generate mask and class embeddings in the segmentation mask prediction module [9] (see Figure 1). The 
initial query features, 𝐹 , are evolved to be precursors of mask and class embeddings, 𝐹 , with the cross-
attention and self-attention mechanisms in each transformer decoder in the stack. 
 
Figure 2 shows a detailed schematic of a transformer decoder [14]. Firstly, query features go through a 
linear projection to obtain 𝑄 ∈ 𝑅 , where N denotes the number of object masks and C represents the 
dimension of projected query feature vectors. Also, pixel features, generated by pixel encoder-decoder 
module, are linearly projected to yield keys and values matrices. For example, for 𝐹 , , we produce  𝐾  ∈
𝑅  and 𝑉 ∈ 𝑅 , where 𝑑𝑖𝑚  corresponds to the dimension of projected decoder features. Then, 
the cross attention mechanism updates query features with  𝐹 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄 𝐾 𝑉  𝑄 . 
 
In the transformer decoder stack, query features produced by a previous transformer decoder are sent to the 
next one in sequence to progressively update them. The stack in our model contains three transformer 
decoders, each being fed with a different scale of image features for cross attention mechanism, --𝐹 , ∈

 𝑅 ,  𝐹 , ∈  𝑅  and 𝐹 , ∈  𝑅 --.  
 
In contrast to previous work [9], we use higher resolution of pixel features to obtain segmentation maks, 
with the same size as input images. In order to reduce computation costs as a result of using high-resolution 
pixel features, we use a few object masks and reduce the dimensions of pixel features with linear projections 
to a small number such as 32. 
 

 
Figure 2. A transformer decoder module. 𝑭𝒅𝒆𝒄 and 𝑭𝒒 respectively represent pixel and query features.   

K: keys, V: values and Q: queries 
 
3.3.3. Segmentation Mask Prediction Module 
 
This module consists of two feed-forward networks (FFN), and converts updated query features to class 
embeddings with 𝐶 𝐹𝐹𝑁 𝐹  and mask embeddings with 𝑀 𝐹𝐹𝑁 𝐹 . Mask embeddings are 
multiplied with a highest resolution of pixel features, 𝐹 , , to generate object masks with M=𝑀 𝐹 , , 
where 𝑀 ∈ 𝑅  represents N object masks. Later, these object masks are transformed to segmentation 
masks by multiplying object masks with class embeddings 𝑀 𝑀𝐶 , where 𝑀  ∈ 𝑅  and  𝐶 ∈ 𝑅 . 
Note that, we learn object masks more than the number of classes in this setting. 
 
In contrast to previous work [9,11], our segmentation mask prediction module uses image features with a 
resolution equal to that of the input image; this largely ensures the reproduction of small structures in 
segmentation masks. 
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4. RESULTS 
 
4.1. Material 

 
We assessed the performance of our model on the publicly available Stacom 2013 dataset [12]. The dataset 
contains MRI images obtained with balanced steady-state free precession (bSSFP) acquisition and has a 
resolution of 1.25 mm x 1.25 mm x 2.7 mm. The dataset consists of 10 MRI images for model training, and 
20 MRI images for performance evaluation. The dataset provides binary masks for both the LA and 
proximal pulmonary veins. However, we combine them to generate a single mask for each image, similar 
to previous work [2]. 
 
4.2. Experiments 
 
We used the ResUnet trained with the cross entropy (CE) and another ResUnet trained with evidential 
learning (EL) as our baseline models and compared their performance against our model. 
 
4.2.1. Experiment 1  
 
This experiment investigates the performance of our model for different loss functions. We examine three 
scenarios: (i) ResUnet, used in pixel encoder-decoder sub-network, and the rest of our model is trained with 
EL, (ii) ResUnet and the rest of our model are trained with the CE loss, (iii) the ResUnet is trained with CE 
and the rest of our model is trained with EL.  
 
4.2.2. Experiment 2 
 
This experiment examines the importance of using high-resolution features as pixel features, in the accuracy 
of produced segmentation masks. We prepare three different versions of pixel feature sets for our mask 
transformer. For a fair comparison with the original model, we use the same number of transformer 
decoders in all models, which is 3. We upsample the generated segmentation masks to ensure they have the 
same size as the ground truth segmentation masks when necessary. 
 

Evaluated sets of pixel feature resolutions are (i) only rough resolution fetaures, -- 𝐹 ,  ∈ 𝑅      

--, for each transformer, (2) rough resolution features, -- 𝐹 ,  ∈ 𝑅  --, for the first two 

transformers and moderate resolution fetaures, -- 𝐹 ,  ∈ 𝑅  --, for the last one, (3) rough -- 

𝐹 ,  ∈ 𝑅  --, moderate -- 𝐹 ,  ∈ 𝑅 -- and fine resolution -- 𝐹 ,  ∈ 𝑅  -- 
fetaures (as in the original model).  
 
4.3. Experimental Setup 
 
We first trained the Res-UNet for 100 epochs with a learning rate of 0.005, and the rest of the model was 
trained for 40 epochs with a learning rate of 0.005. We used a weight decay of 0.001 for the training of both 
models.  
 
We used decoder features of the ResUnet with the spatial resolutions of 48x48 pixels, 96x96 pixels, and 
192x192 pixels, as input to the transformer decoders respectively. The embeddings of keys, values, and 
queries have dimensions of 32. The number of queries was set to be 4. We added sinusoidal positional 
encodings to the pixel features, prior to feeding them to any transformer decoder. 
 
4.4. Performance Metrics 
 
We report Dice and Jaccard scores when measuring overlapped areas between the reference and predicted 
volumes. ASSD and HD distance are used when calculating distances between the boundaries of the two 
volumes. 
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4.5. Results and Discussion 
 
Our model outperformed baseline models with large margins for three performance metrics, with a Dice 
score of 0.90, a Jaccard score of 0.82, and an ASSD of 1.85 (see Table 1). The baseline models are naively 
ResUnets trained with either CE or EL losses. On the other hand, our model consists of a transformer 
decoder stack and a segmentation mask prediction module, in addition to ResUnet used as pixel encoder 
and decoder. Despite its increased complexity compared to the baseline models, our model has a small 
overhead of less than 0,054 million parameters, in addition to the parameter of the Res-UNet, which is 
approximately 18 million parameters. This small overhead leads to a large performance improvement over 
baseline models. Another observation from Table 1 is that despite providing an easy uncertainty calculation, 
EL loss yields an underperforming ResUnet, compared to the CE loss.  
 
A similar observation is made when training our model with CE and EL losses, as described in Experiment 
1 in Section 4.2.1. Training our model purely with EL loss leads to poorer performance with a Dice score 
of 0.87 (see Table 2); however, its performance is still better than the baseline model of ResUnet trained 
with EL loss, which was 0.85. Training our model with purely CE loss outperforms the baseline model of  
ResUnet trained with CE loss, with a margin of 0.01. Finally, the best performance was obtained when the 
ResUnet was trained with the CE loss and the rest of our model with EL, as described in scenario 3, with a 
Dice score of 0.90 (see Table 2). These results show the effectiveness of our two-steps training scheme. It 
also shows that using a better-performing segmentation model --- ResUnet trained with CE instead of EL 
loss -- is important to reach a better performance by our model.  
 
We also analyzed how much feature resolution is necessary for the transformer decoder stack, to obtain the 
most accurate segmentation masks.  Table 3 summarises the results of Experiment 2 detailed in Section 
4.2.2. We found that using higher-resolution pixel features in the transformer decoder stack leads to better 
segmentation performance, instead of repeating the same set of lower-resolution features such as 𝐹 ,  . 
Incremental improvement is obtained by gradually increasing the resolution of features in the transformer 
decoder stack (see Table 3). The best segmentation performance is obtained when the finest resolution 
features 𝐹 ,  were included in the stack. This shows the importance of increasing the resolution of 
features in the transformer decoder stack to maintain small details in segmentation masks.  
 
Figure 3 shows segmentation masks and uncertainty maps generated by our model. Our method produces 
very close responses to the ground truth masks and accurately reproduces small structures, as well as larger 
ones. Although deterministic networks are naively not capable of producing uncertainty maps, we generate 
the maps thanks to training our model with the EL loss. Similar to human-expert labeling, the uncertainty 
maps show higher uncertainty for the boundary of the LA. Boundary pixels are hard to label, and they are 
generally known to lead to high uncertainty even among medical experts [12]. 

 
5. CONCLUSIONS 
 
As far as we are aware, it is the first time that mask transformers are used for the segmentation of cardiac 
MRI images. We modified the design of mask transformers to better segment small structures of the LA by 
incrementally increasing the resolution of decoder features in the transformer decoder stack. We trained 
our model with EL to generate uncertainty maps from the learned Dirichlet distribution over LA and image 
background classes. We also presented a training scheme to improve the segmentation performance of our 
model, where our two-steps training with CE and EL losses produced the best segmentation performance 
for the LA in MRI images. 
 
We found that our model outperforms baseline models with large margins in the STACOM 2013 dataset. 
Another superiority of our method is that it can generate uncertainty maps with a single network and a 
single pass, therefore, it is less costly in terms of computation, and expected to work faster, compared to 
ensemble models and Monte Carlo dropout method. Future work will explore its use for the segmentation 
of other cardiac structures such as ventricles. 
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Table 1. Performance comparison of LA segmentation 

Methods Dice Jaccard HD ASSD 
ResUnet & EL 0.85 0.04 0.75 0.05 29.62 13.21 2.59 0.48 
ResUnet & CE 0.88 0.03 0.79 0.05 22.63 10.69 2.00 0.36 

Our model 0.90 0.03 0.82 0.04 30.0722.86 1.85 0.42 
 
Table 2. Performance comparison for three scenarios in Experiment 1 

#Scenario Dice Jaccard HD ASSD 
1 0.87 0.03 0.78 0.05 38.23 18.71 2.55 0.68 
2 0.89 0.03 0.80 0.04 29.24 23.03 1.90 0.36 
3 0.90 0.03 0.82 0.04 30.0722.86 1.85 0.42 

 
Table 3. Performance comparison for Experiment 2, where we use different combinations for pixel feature 

resolution. 𝑭𝒅𝒆𝒄,𝒏 𝟐 ∈ 𝑹𝟐𝟓𝟔
𝑯
𝟒

𝑾
𝟒 , 𝑭𝒅𝒆𝒄,𝒏 𝟏 ∈ 𝑹𝟏𝟐𝟖

𝑯
𝟐

𝑾
𝟐  , and 𝑭𝒅𝒆𝒄,𝒏 ∈ 𝑹𝟔𝟒 𝑯 𝑾 

Decoder features Dice Jaccard HD ASSD 
𝐹 ,  & 𝐹 ,  & 𝐹 ,   0.890.03 0.800.05 35.7125.11 2.050.45 
𝐹 ,  & 𝐹 ,  & 𝐹 ,  0.890.03 0.810.04 32.6824.28 1.940.41 
𝐹 ,  & 𝐹 ,  & 𝐹 ,  0.90 0.03 0.820.04 30.28 22.75 1.86 0.42 
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