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This study investigates the direct application of the Fenton 
Oxidation Process (FOP) to untreated textile wastewater, 
specifically from a woven fabric production facility. Under 
optimized conditions (pH 3, 0.7 g/L Fe+2, 2 mM H2O2), the 
process achieved significant removal efficiencies: 81% 
Chemical Oxygen Demand (COD), 80% Suspended Solids (SS), 
and 93% color removal. Artificial Neural Networks (ANN) and 
NARX-ANN were utilized in Matlab R2020a to model FOP 
performance, employing Levenberg-Marquardt (trainlm) and 
Scaled Conjugate Gradient (trainscg) algorithms. With a 9-20-3 
network topology, the ANN model demonstrated superior 
predictive capability, achieving an R2 of 0.9843. 
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Ham Tekstil Atık Sularının Arıtılması İçin Tek Bir Ünite Olarak Kullanılan Fenton 

Prosesinin Performans Modellemesi 
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Bu çalışma, Fenton Oksidasyon Prosesinin (FOP) doğrudan 
arıtılmamış tekstil atık suyuna uygulanmasını, özellikle dokuma 
kumaş üretim tesisinden gelen atık suyu hedef alarak 
incelemektedir. Optimize edilmiş koşullar (pH 3, 0.7 g/L Fe+2, 2 
mM H2O2) altında, proses %81 Kimyasal Oksijen İhtiyacı 
(KOİ), %80 Askıda Katı Madde (AKM) ve %93 renk giderimi 
gibi önemli verimlilikler sağlamıştır. FOP performansını 
modellemek amacıyla Matlab R2020a'da Yapay Sinir Ağları 
(YSA) ve NARX-YSA modelleri, Levenberg-Marquardt 
(trainlm) ve Ölçeklenmiş Eşlenik Gradyan (trainscg) 
algoritmaları kullanılarak oluşturulmuştur. 9-20-3 ağ 
topolojisine sahip YSA modeli, 0.9843 R2 değeri ile yüksek bir 
tahmin yeteneği göstermiştir. 
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1. INTRODUCTION 
 
Needs for clothing and shelter come right after basic needs such as air, water, and food, which are necessary 
for the survival of humanity. The increasing demand for textile products for these needs on a global scale 
has resulted in the textile industry being included in the top five major industrial sectors in the inter-industry 
classification [1,2]. In addition, as a result of the modeling, it is estimated that the consumption of textile 
products will increase 3 times worldwide by 2050 [3]. The textile industry, which traditionally consists of 
stages such as yarn, weaving, spinning, knitting, washing, bleaching, dye-printing, and finishing processes, 
consumes significant amounts of water and energy According to studies conducted in recent years, stated 
that over 3 billion tons of [4] wastewater are discharged annually in the textile industry worldwide [5,6]. 
Textile wastewater is usually processed using procedures such as coagulation, filtration, biological 
treatment by aerobic means (activated sludge), and adsorption [7,8]. Due to these processes' low efficiency, 
excessive sludge formation, high initial investment, and operating costs, and an ongoing decline in 
developed and developing countries' discharge standards (particularly regarding colors), researchers have 
been working harder over the past 25 years on creating and implementing new and more suitable 
technology. [9]. One of the areas where these efforts concentrate is Advanced Oxidation Processes (AOP) 
[10]. (AOPs continue to develop as a highly efficient process, especially for toxic, colored, and biologically 
treatable wastewater such as textile wastewater. AOPs are efficient, cost-effective, and environmentally 
friendly treatment processes. It is widely known that AOPs are used in advanced or pretreatment. 
Researchers and plant operators will be more interested in these procedures when they are used as single-
unit systems for wastewater treatment, and this will help to preserve natural water supplies [8,11]. 
Commonly used AOPs are Fenton, photo-Fenton, ozonation, photocatalysis, radiation, electrochemical 
oxidation, and sonolysis [12,13]. These procedures are based on the production of hydroxyl radicals (HO•), 
which have an extremely high 2.80 V oxidation potential. Most organic and pigment compounds can be 
partially or fully mineralized by radicals [14]. Among these processes, Fenton oxidation stands out with its 
effectiveness and promising results [14-16]. Henry J. Fenton discovered the Fenton oxidation process 
(FOP) in 1894. During the 1960s, studies and research on the process were conducted, with a focus on the 
oxidation of biological pollutants in water, as shown by Equation 1-4 [17-21].  
 

Fe H O → Fe OH.  OH  ( ) 
 

OH. 𝑜𝑟𝑔𝑎𝑛𝑖𝑐𝑠 → H O 𝑖𝑛𝑡𝑒𝑟. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 ( ) 
 

OH. 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 → H O  CO   ( ) 
 

Fe H O → Fe HO. H   ( ) 
 
The FOP begins when divalent iron (Fe2+) in an aqueous solution reacts with hydrogen peroxide (H2O2) to 
form HO• (Reaction 1). Reaction 2 and Reaction 3 produce intermediate products (H2O and CO2) and end 
products (oxidized organic materials in wastewater) respectively, as a result of the generated HO•. A 
connected reaction cycle is created during oxidation, which further offers Fe2+ regeneration, H2O2, and Fe3+ 
reactions (Reaction 4). [16,20,22]. When the Fenton process is compared with other AOPs; It has many 
advantages such as being simple to apply, not requiring special ambient conditions, high speed and amount 
of HO• formation, high oxidation capacity, relatively low cost, the wide area of use and being 
environmentally friendly [16,21]. In addition, the ferrous sewage that develops in the final phase is the main 
drawback of the FOP. Separation and disposal of this sludge cause additional costs [23]. In addition, 
dissolved Fe2+ remaining in treated water can cause problems during water reuse, especially in the textile 
industry, and may require additional treatment processes [24]. 
 
Numerous factors including pH, H O , and Fe + dose, interaction and reacting period, the flow rate, reactor 
quantity, temperature outside, and effluent quality all affect how well FOP performs when used in the 
advanced treatment of textile wastewater. The complexity of the reactor's response phases and a wide range 
of factors make it difficult to estimate efficiency and optimize the FOP using conventional approaches, 
wasting time and raising the cost of process design and scaling [ - ]. To make the design and operation 
of the FOP highly effective, applicable, current, and future-oriented, as well as more economical, 
optimization and modeling studies are becoming increasingly important [ , ]. The environmental 
engineering discipline has extensively studied and applied modeling techniques in water and wastewater 
treatment operations. Adaptive Neural Fuzzy Control System (ANFIS), the Surface Responsive Method 
(RSM), the method of Multiple Linear Regression (MLR), and Artificial Neural Networks (ANN), among 
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others, are the most often used [ ]. ANN is one of the most significant models used nowadays, particularly 
in the scientific and engineering domains, to establish the connection among operating factors influencing 
numerous procedures and equipment outputs [ , , , ]. Based on the organic neuron system, artificial 
neural networks (ANN) are statistical methods of modeling that aim to provide novel information using 
brain-specific skills [ , , ]. In terms of generating algorithms for existing information not requiring 
over previous layout and modification [ ], simplification of modeling, calculation, as well as predicting 
[ ], illuminating the relationships between factors and the outcomes [ ], adaptability, forecasting 
efficiency, and user-friendliness, this approach is thought to be a promising tool [ ]. One of the time-series 
studies is the Nonlinear External Input Autoregressive Artificial Neural Networks (NARX-ANN) model, 
in addition to the ANN approach. One form of dynamic filter is the time series evaluation, which uses past 
data to forecast future data. Numerous systems, including heat exchangers, wastewater treatment, 
manufacturing equipment, processes related to chemicals, automation, and aviation mechanisms, are 
subject to evaluation, modeling, tracking, and operation using this software [ , ].  
 

The FOP is typically used for enhanced or prior treatment, in which case the treatment plants will produce 
both chemical and biological sludge. Only chemical sludge will occur when the FOP is utilized for only 
one process for treatment in basic textile waste stream treatment; overall, sludge formation will likely be 
lower than with combination treatment alternatives. The experimental results regarding the FOP process's 
ability to remove COD, SS, and color in unprocessed wastewater from textiles are provided in this study. 
FOP has simple and fast reactions, low cost and environmental friendliness. In addition, models that can 
predict the performance of processes have been developed and compared by artificial intelligence models 
(ANN and NARX-ANN), which are one of the areas of focus in studies on AOPs in recent years. Seldom 
is a study conducted in the literature that treats raw wastewater from textile manufacturing using the FOP 
as only one component and compares the process's performance to that of ANN and, in particular, NARX-
ANN models. The study's findings provide crucial information for the global treatment of textile wastewater 
in the interest of sustainable development. As a result, investigators and managers in treatment facilities 
may be interested in this research.  
 

2. MATERIALS AND METHODS  
 
2.1. Raw Textile Effluent 
 
Table  lists the general features of the unprocessed wastewater from textile industries and the statistical 
assessment of each sample utilized in the FOP. A local textile plant that was established in Adana, Turkey, 
and produced woven fabrics provided the untreated textile effluent used in the study. 
 

Table 1. Heterogeneous pollutant features and statistical analysis of untreated water used for fabric waste 
in the FOP 

  pH COD SS Color Temp EC 
Sample number 20 20 20 20 20 20 

Mean 9.80 1341.15 100.05 1395.00 45.00 1463.00 
Median 9.80 1341.50 99.50 1396.00 45.00 1464.50 
Mode 9.80 1341.00 97.00a 1396.00 45.00a 1462.00a 
Std. dev. 0.12140 10.09051 5.65197 6.00877 2.02614 12.66574 
Variance 0.015 101.818 31.945 36.105 4.105 160.421 
Minimum 9.50 1315.00 89.00 1382.00 41.00 1437.00 
Maximum 10.00 1357.00 117.00 1408.00 48.00 1492.00 
Sum 196.00 26823.00 2001.00 27900.00 900.00 29260.00 
a There are several modes. The value that is the smallest is displayed. 

 
2.2. Analytical Method 
 
The MERCK brand of analytical purity chemicals is utilized in the experimental investigation, H O  as 
oxidant and FeSO . H O as a catalyst in the FOP process; NaOH and H SO  for pH adjustments; For COD 
analysis, K Cr O , (NH ) Fe(SO ) . H O, . -Phenontrolline monohydrate, HgSO  and Ag SO  were 
used. Fast mixing, slow mixing and settling were carried out in the Jar-Test device (MTOPS SF ). pH 
measurements were made with  
 

OHAUS, WTW conductivity meter was utilized to determine electrical conductivity (EC), DS/  
colorimeter was used with color measurements, HACH LANGE DR  was applied in COD 
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measurements, and Whatman GF/C was employed as SS measurements. All analyses were conducted using 
techniques based on Standard Procedures [ ]; three repetitions of the analyses were carried out, and the 
arithmetic mean of the data was used. The methods applied were COD (  C), AKM (  D), Color 
(  C), pH ( -H+ B), Temperature (  B), and Electrical Conductivity EI (  B). 
 
2.3. FOP Experiments 
 
Under laboratory circumstances, FOP experimental studies were conducted in a jar testing setup depicted 
in Fig. . To prevent light from affecting the experimental setup, it was housed in a cardboard box that was 
covered in aluminum foil. Five minutes of fast mixing (  rpm), sixty minutes of slow mixing (  rpm), 
and sixty minutes of settling times were used in studies filling bottles containing  mL of untreated fabric 
waste with a volume of  mL. pH was adjusted at intervals of . – . ; Fe2+ was added at . – .  g/L; 
and H O  was added at –  mM. To start oxidation, the catalyst (Fe +) and oxidant (H O ) were added to 
the beaker quickly. N H SO  and NaOH solutions were then used to correct the ambient pH. After the 
oxidation step, the pH was raised to .  to guarantee sufficient slow stirring & flocculation itself were 
carried out, and precipitation was used to finish the FOP process. 
 

 
Figure 1. Schematic of the FOP experimental steps 

 

Following the precipitation process, samples were taken from the beaker's top phase, and each assessment 
group was carried out on three separate occasions with COD, SS, and color analyses performed. The entire 
procedure was conducted at ±  ºC ambient temperature and pressure in the air. 
 
2.4. Methods for ANN and NARX-ANN 
 
Table  displays the model technique scheme used in this investigation.  
 
Figures  and  illustrate the architecture of the ANN and NARX-ANN, respectively, showcasing the 
interplay between input and output layers. Following the outlined methodology, the FOP inputs for both 
models encompass pH, Fe + concentration (g/L), H O  dosage (mM), treatment duration (min), temperature 
(°C), fast and slow mixing rates (rev/min), sample volume (mL), and electrical conductivity (EC) measured 
in µS/cm. Meanwhile, the outputs comprise COD, AKM, and Color parameters. In the models, tested with 
neuron counts ranging from  to  in increments of , a total of  ( x ) inputs and  ( x ) output 
datasets were incorporated for ANN and NARX-ANN, respectively. These datasets were divided into three 
categories: training ( %), validation ( %), and testing ( %). 
 
Table 2. The framework of the FOP model technique 
Unprocessed Waste from Fabrics 
COD, SS, and Color in the Fenton Method 
Model  ANN NARX-ANN 
Directives nntool nnstart-ntstoll 
Category of network Feedforward backprop Feedback Loop 
Algorithm for training Trainlm, Trainscg Trainlm, Trainscg 
Adaptive learning process LEARNGDM LEARNGDM 
Network attribute %70 Training, %15Validation, %15 Test %70 Training, %15Validation, %15 Test 
Performance function MSE MSE 
Regression R R 
The number of layers 2 2 
Quantity of neurons 2-20 (2 each) 2-20 (2 each) 
Transfer function TANSIG, LOGSIG TANSIG 
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Figure . Illustrates the architecture of the constructed ANN model 

 

 
Figure . Illustrates how the resulting NARX-ANN algorithm was designed 

 
Several activation functions were used in the study at various neural network levels. In particular, the 
Purelin function was used in the output layer of the ANN, and ın the unseen layer, Tansig as well as Logsig 
algorithms were employed. In the same way, Purelin functions were employed in the output layer and 
Tansig functions in the hidden layer of the NARX-ANN model. In the training phase,   
 
epochs of weight and trend adjustments were performed by comparing two different algorithms, "trainlm" 
and "trainscg." To enhance convergence and manage nonlinearities, momentum-weighted descent of 
gradients and a biased learning function (LEARNGDM) were added to the ANN and NARX-ANN training 
processes. 
Notably, "trainlm," renowned for its rapid and stable convergence [ - ], is adept at solving nonlinear 
challenges based on the Hessian Matrix (equation ) [ , , ]. 

 
∆𝑤 𝐽 𝑤  𝐽 𝑤 𝜆𝐼  𝐽 𝑤  𝑒 𝑤     ( ) 

 
In Equation , The mass of the vector is represented by w.; J, Jacobian matrix; JT, overturned; Iw, identity 
matrix; λ is the value of the learning stable, while with represents an error vector, Equation  is adjusted 
iteratively to find the minimum error. As discovered by Møller [ ], the Scaled Conjugate Gradient 
(trainscg) weight can train any network as long as its net input and transfer functions have derivative 
functions [ - ]. According to the equation adapted by Du and Stephanus [ , ]; 
 
∆𝑤 𝑤  𝑤 𝛼 𝑑     ( ) 
 
In Equation , the number that represents the number of iterations is k.; αk is defined as the stride length in 
the k iteration and dk-   is the search direction. 
 
Equation  in the range of “mapminmax” (- , ) was used in the scaling optimization of the inputs and outputs 
in the models [ ]:  
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𝑦 𝑦     ( ) 

 
In Equation , xmax and xmin reflect the data's highest and lowest values, while ymax and ymin take the values 
 and - , respectively. y is the normalization of x. The problem definition of the NARX-ANN model is 

expressed by Equation  [ , ]. 
  
𝑦 𝑡 𝑓 𝑥 𝑡 1 , 𝑥 𝑡 𝑑 , 𝑦 𝑡 1 𝑦 𝑡 𝑑   ( ) 

 
In the equation, x(t-d) represents the input, y(t-d) represents the network outputs; d indicates the value of 
the past inputs and outputs to be used in the feedback. R  the MSE were considered in order to assess how 
well the projected values in each model performed [ , ].  
 

R 1
∑ ,  ,  

∑ ,  
     ( ) 

 

MSE
1
N

| y , y , |      ( )

 
In Equations  and , N is the number of data; ythm,i is the expected predictive value; ydny,i represents the 
true value, the mean value of the true samples. 
 
3. RESULTS AND DISCUSSION 
 
3.1. Results of FOP Experiments 
 
3.1.1. Effect of pH 
 
Figure  shows how different pH values affect the Fenton oxidization procedure and how COD, SS, and 
color parameters change as the outcome. The study investigated pH values that extend from .  to .  while 
keeping constant Fe + and H O  dosages of .  g/L and  mM, respectively. The most significant removal 
rates were achieved at pH , resulting in % COD reduction, % SS removal, and % color elimination. 
Previous research on FOP has consistently emphasized the pivotal role of pH in influencing the process 
dynamics. The acidic conditions fundamental to FOP are instrumental in regulating HO• formation, 
oxidation rates, and the simultaneous control of Fe + and H O  doses. 

 
According to Figure , there is a decrease in the values of the parameters measured in the wastewater as 
the pH  value goes to the left and right. 
 

 
Figure . Graph for showing the effect of pH on FOP performance 
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At pH levels below , characterized by elevated H+ ion concentrations, there's an increased tendency for 
H O  to convert into the oxonium ion (H O +). This conversion enhances the stability of H O , thereby 
slowing its reaction with Fe + ions. Consequently, the formation of complex iron compounds occurs instead 
of Fe +, disrupting the [Fe(H O) +]-FOP cycle. Moreover, according to Pliego et al. [ ], heightened H+ 
ion concentrations hinder HO• radical formation due to their scavenging effect. Conversely, at pH levels 
above , the reaction rate between Fe + and H O  diminishes, resulting in the formation of Fe(OH) . This 
formation impedes Fe + regeneration and diminishes the catalyst's presence in the environment, 
consequently reducing treatment efficiency. Furthermore, Roudi et al. [ ] pointed  
 
out that H O  becomes more unstable in alkaline solutions, which could cause it to break down into 
molecules of water and oxygen and impair the FOP's ability to oxidize. In light of this information, the 
study's findings align meaningfully with existing literature, providing valuable insights into the process. 
 
3.1.2. Impact of Fe2+ Content 
 
The measurements of COD, SS, and Color detected in the effluent were utilized to assess the impact of Fe + 
material on FOP performance. This was accomplished by studying several Fe + concentration ranges ( . -
.  g/L) at constant pH and H O  concentrations (pH  and  mM H O ) (Figure ). 

 

 
Figure . Fe + concentrations’ impact on textile wastewater's ability to remove color, SS, and COD 

 
Fenton-like Oxidation Process (FOP) treatment of untreated textile effluent at .  g Fe +/L was shown to 
be the ideal concentration based on research findings. At this concentration, notable clearance  
 
rates of % for COD, % for SS, and % for color were attained. Figure  illustrates how increasing the 
Fe + dosage from .  g/L to .  g/L resulted in enhanced removal rates for COD, AKM, and color, 
elevating them from - % to - %. This trend underscores the heightened generation of HO radicals 
with increased Fe + dosage, consistent with findings by Abedinzadeh et al. [ ] and Roudi et al. [ ]. 
Conversely, a decline in removal rates to - % was observed at Fe + doses between . - .  g/L. This 
decrease is attributed to the inhibition of HO radicals by excess Fe + concentrations exceeding .  g/L, in 
line with studies by [ , , ]. Furthermore, as noted by Sevimli et al. [ ], the formation of Fe + (Equation 
) in the Fenton process can react with H O  to generate Fe + and hydroperoxyl radicals (HO •) (Equation 
), thereby depleting H O  concentration and impeding HO• formation and efficacy. Hence, excessive Fe + 

utilization leads to unnecessary chemical consumption, excessive sludge formation, and compromised 
process efficiency. 
 
3.1.3. Effect of H2O2 Concentration 

 
When Fe + is catalyzed and the environment is acidic, H O  in the FOP forms a greater HO• radical than it 
does. That being said, one of the key factors influencing the effectiveness of the procedure is the 
concentration of H O . The effective concentration was ascertained in this work by testing a range of H O  
values, from  to  mM, at a fixed pH and Fe + concentration (pH  and .  g/L) (Fig. ). For COD, SS, 
and color at  mM H O  concentration, the greatest efficiency of removal was %, %, and %. There 
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was a double rise in the concentration that was effective at the start (from  mM to  mM), which led to 
increases in COD removal of %, SS reduction of %, and color elimination of %. 
 

 
Figure 6. FOP performance: effect of H2O2 concentrations 

 
The color parameter of the untreated water employed in this study, which had an average original color 
concentration of  Pt-Co, drops to about  Pt-Co as a result of the % color removal. It follows that 
nearly all of the discharge requirements listed in Table  can be satisfied with FOP. 
 
Table 3. Guidelines related to a particular brand and minimum color levels for discharge waters regulated 

by different nations [61] 
Countries and companies Regulation limits 
Turkey (fabric), 280 Pt-Counits 
Taiwan (fabric),  
India (dye and dye business),  
Malaysia (industrial, used for drinking water),  
Vietnam (textile, used for drinking water),  
Vietnam (industrial, used for domestic water),  
China (textile, direct discharge),  
Italy (industrial) 
India (industrial, surface waters),  
Thailand (textile),  
South Korea (industrial, type I area),  
Nike,  
C&A (follows BSR),  
H&M (follows BSR),  
New Balance (follows BSR),  
Levi Strauss &Co., 

550 Pt-Counits 
400 Pt-Counits 
100 Pt-Counits 
50 Pt-Counits 
20 Pt-Counits 
Follows a dilution method not Pt-Counits 
Follows a dilution-method not Pt-Counits 
Absent of color 
Not objectionable 
200 chromaticitydegree 
150 Pt-Counits 
150 Pt-Counits 
150 Pt-Counits 
150 Pt-Counits 
Not offensive 

 
The elimination effectiveness increases in tandem with the initial H O  concentration. This suggests that a 
large and swift production of the HO • radical is needed for the oxidative degradation of contaminants in 
raw textile effluent [ , ]. Nevertheless, as Fig.  illustrates, there was no evidence of a fully linear 
correlation between this rise and the effectiveness of removal. In a range of –  mM, a non-uniform 
declining trend in removal rates was noted at H O  concentrations. Addressing the topic, Abedinzadeh et 
al., [ ] claimed there was a decline, while Mousavi et al., [ ] claimed that raising the H O  concentration. 
did not significantly alter the removal rates. The explanation for this decrease is that using more H O  than 
necessary leads to generating hydroperoxyl radical (OOH•), which has a lesser oxidation capacity. As a 
result, the rate of HO• radical formation declines [55,59,62,63].  
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The greatest efficiency of the process in this investigation was achieved at pH , .  Fe + g/L, and  mM 
H O  concentrations, with % COD, % SS, and % color removal. Examining the research on FOP, it 
becomes clear that SS is not the main focus—rather, organic matter (as COD) and dyestuff (Color) 
oxidation dominate. The primary cause of this is that, rather than using actual textile effluent, the research 
reported in the literature was conducted using synthetic wastewater or water dye solutions. FOP is a three-
step process that involves the flocculation and precipitation phases. It is based on the oxidation process. An 
important factor to consider while evaluating is the efficacy of the flocculation and subsequent settling 
processes, particularly the quantity of suspended solids (SS). This work closes some of the existing 
information gaps in the sector by using untreated textile wastewater alongside SS for wastewater 
monitoring. It will make it possible to use the collected data more suitably and helpfully. 
 
3.3. Building a Model and Accurate Predictions 
 
The following tables provide comparative statistical parameters of the ANN and NARX ANN models that 
were created utilizing the Fenton process variables: Tables , , and . To determine the ideal number of 
neurons, a range of  to  was added to the models, as there is no set network architecture or neuron count. 
Traditional training algorithms used in ANN and NARX-ANN; Scaled Conjugate Gradient (SCG), 
Bayesian Regularization (BR), Broyden-Fletcher Goldfarb-Shanno (BFGS) and Levenberg-Marquardt 
(LM). For the most part, studies have chosen to use logistic regression (LM), one of the most used classical 
training techniques that uses quadratic derivatives [ , , ]. The LM and SCG algorithms were applied 
and contrasted in this work. A % training, % validation, and % test set of data were employed for the 
LM and SCG algorithms. This study compared ANN and NARX-ANN using MSE and R  values. When 
R  is assessed between  and , it indicates, in percentage terms, how well the values of the variables 
identified or targeted at each stage of the model were estimated. The model is more efficient when the value 
is near . The prediction efficiency increases with the MSE's proximity to zero, so it's usually positive 
[ , , , ]. 
 
Table . Results of ANN model LM learning algorithm 

Using the fenton ANN-nntool-levenberg marquardt algorithm (trainlm), COD-SS-Color, and MSE-R 

  TANSIG function LOGSIG function 
    Regression ( R )  Regression ( R ) 

ANN 
structure 

Epoch MSE Training Validation Test All MSE Training Validation Test All 

9-2-3 1000 68.9 0.9233 0.94716 0.88982 0.92261 43.5 0.92757 0.84043 0.87202 0.89855
9-4-3 1000 18.0 0.91235 0.85262 0.89784 0.88768 32.8 0.93799 0.24007 0.93373 0.88649
9-6-3 1000 2.98 0.98184 0.72014 0.97021 0.94832 8.29 0.76041 0.98667 0.9409 0.82135
9-8-3 1000 60.2 0.94065 0.80909 0.67778 0.90468 3.65 0.98135 0.97238 0.94669 0.97814
9-10-3 1000 0.432 0.99224 0.94334 0.934 0.97889 754 0.56349 0.68857 0.69365 0.59943
9-12-3 1000 0.0642 0.99689 0.93356 0.9243 0.98247 0.0379 0.99148 0.99304 0.95511 0.98836
9-14-3 1000 666 0.60259 0.70777 0.16507 0.57516 650 0.56708 0.38652 -0.22918 0.47728
9-16-3 1000 0.0998 0.96974 0.9816 0.99863 0.97725 0.143 0.90397 0.98503 0.83596 0.91054
9-18-3 1000 72.1 0.81896 0.8486 0.90431 0.83191 0.108 0.92509 0.9826 0.93881 0.93184
9-20-3 1000 1.08e+03 0.5138 0.53508 0.34276 0.45442 8.84e-09 0.99709 0.96609 0.98737 0.99212

 
Table . ANN model SCG learning algorithm results 

COD-SS-Color and MSE-R using fenton ANN-nntool-scaled conjugate gradient algorithm (trainscg) 

    TANSIG function LOGSIG function 
    Regression ( R )   Regression ( R ) 

ANN 
structure 

Epoch MSE Training Validation Test All MSE Training Validation Test All 

9-2-3 1000 61.7 0.8921 0.85079 0.63952 0.86375 49.4 0.92873 0.92432 0.82046 0.91973
9-4-3 1000 17.4 0.97109 0.94654 0.59935 0.91747 50.5 0.83116 0.97472 0.96669 0.86839
9-6-3 1000 11.2 0.90876 0.95556 0.96914 0.9267 9.63 0.94734 0.92528 0.78838 0.92888
9-8-3 1000 10.1 0.96419 0.98484 0.79142 0.92116 6.55 0.97421 0.98278 0.73807 0.95169
9-10-3 1000 6.8 0.9582 0.56225 0.87667 0.90487 4.96 0.96365 0.93871 0.99427 0.96753
9-12-3 1000 4.29 0.94725 0.97105 0.99097 0.9585 6.79 0.9608 0.86381 0.96715 0.94128
9-14-3 1000 3.41 0.99138 0.99393 0.99624 0.99272 3.12 0.95884 0.97424 0.88232 0.9489 
9-16-3 1000 3.39 0.97723 0.98715 0.94778 0.9734 3.88 0.97372 0.99593 0.94391 0.97675
9-18-3 1000 833 0.62612 -0.29346 0.40781 0.53607 3.81 0.96981 0.99603 0.87859 0.96686
9-20-3 1000 3.91 0.97401 0.98419 0.9864 0.97774 2.19 0.97204 0.93112 0.99214 0.97336
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Table . NARX-ANN model LM and SCG learning algorithm results 
MSE-R and fenton NARX-ANN-nnstart-COD-SS-Color 

 Levenberg marquardt algorithm (trainlm) Scaled conjugate gradient algorithm (trainscg) 

 TANSIG-purelin function 
     Regression ( R )     Regression ( R ) 

NARX-ANN 
structure 

Epoch MSE Training Validation Test All Epoch MSE Training Validation Test All 

9-3-2-3 9 62 0.78246 0.81323 0.83693 0.79986 46 106 0.87087 0.90221 0.65224 0.82195
9-3-4-3 20 8.08 0.99044 0.93793 0.58931 0.92036 22 74.2 0.90912 0.77757 0.74079 0.8729
9-3-6-3 18 1.81 0.99467 0.93253 0.78738 0.94379 15 70.9 0.90137 0.90617 0.64499 0.85801
9-3-8-3 12 0.737 0.98136 0.90008 0.79946 0.94637 22 57.2 0.92437 0.89967 0.68175 0.89028

9-3-10-3 9 17.1 0.92927 0.62293 0.79562 0.88813 18 75.8 0.89808 0.6937 0.84686 0.86214
9-3-12-3 10 1.62 0.96286 0.87354 0.83727 0.92575 22 55.1 0.92983 0.96254 0.68709 0.87708
9-3-14-3 10 6.46 0.51673 0.54831 0.39359 0.51071 84 4.46 0.99298 0.94068 0.79606 0.93628
9-3-16-3 9 0.613 0.9702 0.8487 0.97289 0.96314 41 29.3 0.95914 0.97759 0.22099 0.87169
9-3-18-3 10 1.09 0.95511 0.42037 0.89501 0.83782 18 39.9 0.93737 0.46815 0.78382 0.86966
9-3-20-3 12 10.1 0.96922 0.63541 0.64176 0.82724 21 35.7 0.93631 0.79207 0.78648 0.89421

 
When the developed ANN (Table - ) model is compared considering the MSE and R  results. in the Logsig 
transfer function of the Levenberg-Marquardt learning algorithm in the - -  network topology; R  values 
for MSE . e- . Training, Validation, Test and All were calculated as . , . , . , . , 
respectively. For the NARX-ANN model (Table ). MSE .  in - - -  network topology. and R  values 
are calculated as . , . , .  and .  for the same algorithm respectively. Figures  and . 
respectively. display the regression (R) graphs created for the developed models. The graphs have estimated 
values on the Y-axis and experimental data on the X-axis. The fit line illustrates the correlation between 
the estimated value and the input data. The goal line or Y=T line is reached when the estimated and actual 
values are equal. The COD, color, and SS parameter values that were acquired from the experimental FOP 
are represented numerically as the "Data" indicator [ ].  Considering Figure - . the experimental 
performance of the Fenton process in raw textile wastewater and the performance estimation made using 
the created models are summarized in Table  for the COD, SS, and Color parameters. 
 
As can be seen in Table  the experimental, and estimated removal results in the developed ANN model 
are more compatible than NARX-ANN. It is also seen that H O  is more effective in Fenton process 
performance than pH and Fe+ . Similarly, Huo et al. [ ], stated that the effective removal in the Fenton 
process would be very poor without the addition of H O . Because H O  ion provides HO radical formation. 
which is the main element of the Fenton oxidation process under Fe+  catalysis and acidic conditions 
[ , , ]. Yu et al. [ ], obtained an estimation ranging from . - .  R  with the ANN model they 
developed in - -  net structure for the estimation of COD and Color removal from synthetic textile 
wastewater with FOP. Accordingly, it is possible to say that the ANN model with .  R  and . e-  
MSE obtained in this study in the - -  net topology for the performance estimation of FOP for raw textile 
wastewater treatment is successful. 
 
The NARX-ANN model developed in the - - -  network topology in the study has .  R  and .  
MSE. The difference between the experimental and estimation results is higher for pH. Fe+  and H O  than 
for the ANN. According to the direction of information flow and processing. ANNs are organized in layers 
with a one-way information flow in feedforward neural networks (FNN). while in networks with repetitive 
features such as NARX-ANN. information can be directed both forward and backward. allowing 
connections between neurons in the same or previous layers flows [ , , , ]. Therefore, the NARX-
ANN estimation performance is considered to be weaker due to the high number of input/output parameters, 
the reuse of the output data together with the input data, the repetitive neuron networks in the training of 
the model, and the low number of epochs. 
 
Although there are no ANN and NARX-ANN modelling studies in the treatment of raw textile wastewater 
with the FOP in the literature. studies have been found for estimating the thermal damping effect in 
underground vertical shafts [ ], and estimating the groundwater level [ ]. In both studies, it was reported 
that MSE values close to zero and R  values above .  were obtained. The prediction performances obtained 
as a result of the application of the NARX-ANN model in different areas show that the model is within 
acceptable limits. 
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Figure . LM algorithm regression results of ANN 

 

 
Figure . LM algorithm regression results of NARX-ANN 

 
Table . Fenton process performance and estimation in unprocessed textiles waste 

pH 
Fe+2  
(g/L) 

H2O2 
(mM)  

Actual removal  
(%) 

Predict removal (ANN) 
(%) 

Predict removal  
(NARX-ANN) (%) 

COD SS Color COD SS Color COD SS Color 
3 0.15 1 72 76 90 67.14 67.79 74.12 80.26 80.57 86.59 
3 0.7 1 80 79 91 78.22 88.75 87.04 76.44 83.30 92.04 
3 0.7 2 81 80 93 80.80 79.98 91.72 63.20 57.63 63.77 
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4. CONCLUSION 
 
To ascertain the effective removal effectiveness of FOP applied to raw textile wastewater and to forecast 
the performance efficiency, the following study constructed and compared the ANN and NARX-ANN 
models. The FOP operated at its peak efficiency at pH , .  Fe + g/L and a  mM H O  concentration. 
Under these circumstances, %, %, and % of the COD, SS, and color were removed, respectively. 
COD, SS, and color removal increased from – % to – % with the increase in Fe + dose from .  
g/L to .  g/L. However, at dosages between .  and .  g/L, the removal rates decreased from – % 
to – %. Excessive sludge development and needless chemical usage are the results of using too much 
Fe +. It has been established that the application of FOP as a single unit can satisfy the receiving 
environment discharge standards specified for wastewater from the textile sector. taking into account the 
properties and treatment efficiencies of basic textile wastewater. Furthermore. it was found that the 
Artificial Neural Network model performed better and with greater  
 
reliability when the MSE and R  values of the ANN and NARX-ANN models created for FOP were 
compared. For ANN. the R is .  and the MSE is . e- . The experimentally observed removal rates 
show a good agreement with the model estimations. Further research can be conducted to compare the 
prediction performances of regression models with ANN models by analyzing the data and models. 
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