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Abstract 

The fuzzy Laplace transform method is very useful to solve fuzzy differential equations and this method is an important 

method in practice. This paper is on a second-order fuzzy problem. In this study, we research the fuzzy problem with 

negative fuzzy coefficient using the method of fuzzy Laplace transform. Since we use generalized Hukuhara 

differentiability, solutions are investigated under the four different situations. A numerical example is given. Graphics of 

the solutions are drawn for alpha level sets. Conclusions are presented at the end of the paper. 

Keywords: Second-order fuzzy problem, fuzzy number, generalized Hukuhara differentiability. 

 

 

Bir Fuzzy Problemin Grafiksel Analizi Üzerine  

 

 

Öz 

Fuzzy Laplace dönüşüm metodu fuzzy diferansiyel denklemleri çözmek için çok kullanışlıdır ve bu metod pratikte önemli 

bir metoddur. Bu çalışma ikinci mertebeden bir fuzzy problem üzerinedir. Bu çalışmada, fuzzy Laplace dönüşüm 

metodunu kullanarak negatif fuzzy katsayılı bir fuzzy problemini araştırıyoruz. Genelleştirilmiş Hukuhara 

diferansiyellenebilirliği kullandığımız için, çözümler dört farklı durum altında incelenmiştir. Sayısal bir örnek verilmiştir. 

Çözümlerin grafikleri alfa seviye setleri için çizilmiştir. Çalışmanın sonunda sonuçlar sunulmuştur. 
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1. Introduction 

 

The fuzzy differential equations is an important topic. Fuzzy differential equations are used to 

model dynamical systems under uncertainty, which is an efficient way. So, the fuzzy differential 

equations have been growing rapidly. Many authors work on numerical solutions and theoretical 

solutions of fuzzy differential equations (Akın at al., 2016; Allahviranloo at al., 2007; Bayeğ at al., 

2022; Bede at al., 2007; Gültekin Çitil, 2019; Gültekin Çitil, 2020; Ivaz at al., 2013; Jafaria at al., 

2021; Mallak at al., 2022; Patel and Desai, 2017; Saqib at al., 2021). 

Allahviranloo and Ahmadi (2010) proposed the fuzzy Laplace transform method for solving 

first order fuzzy differential equations. Salahshour and Haghi (2010) used the method of fuzzy 

Laplace transform in the study of fuzzy heat equations under the strong generalized Hukuhara 

differentiability. Using the fuzzy Laplace transform method, the fuzzy harmonic oscillator equation 

was solved by Salgado et al. (2019). The fuzzy Laplace transform method has been studied in many 

articles (Belhallaj at al., 2023; Eljaoui and Melliani, 2023; Gültekin Çitil, 2020; Salahshour and 

Allahviranloo, 2013; Salgado at al., 2021; Samuel and  Tahir, 2021). 

The aim of this work is to analyze the solutions of fuzzy problem with negative fuzzy 

coefficients using the fuzzy Laplace transform method. 

This paper is organized as follows: 

Section 2 is reserved for materials and methods. In Section 3, we first introduce the problem. 

Then, we investigate the solutions of the problem via the method of the fuzzy Laplace transform. In 

Section 4, we give numerical example for illustration. In the last section, we present our conclusions. 

 

2. Materials and Methods 

 

Definition 1. �̂� ∈ ℝ𝐹, where ℝ𝐹 is all the fuzzy sets. 

 [�̂�]𝛼 = [�̂�𝛼 , �̂�𝛼] = {𝑥 ∈ ℝ|�̂�(𝑥) ≥ 𝛼} 

 is the 𝛼-level set of �̂�, 0 < 𝛼 ≤ 1 (Khastan and Nieto, 2010). 

 Definition 2. [�̂�𝛼 , �̂�𝛼] satisfy the following conditions: 

a) �̂�𝛼 is right-continuous for 𝛼 = 0 and non-decreasing bounded left-continuous on (0,1], 

b) �̂�𝛼 is right-continuous for 𝛼 = 0 and non-increasing bounded left-continuous on (0,1], 

c) �̂�𝛼 ≤ �̂�𝛼, 0 ≤ 𝛼 ≤ 1 (Khastan and Nieto, 2010). 

Definition 3.  Let �̂�, �̂� ∈ ℝ𝐹. The generalized Hukuhara difference of �̂� and �̂� is the set �̂� ∈

ℝ𝐹 which �̂� ⊝𝑔 �̂� = �̂� if and only if  �̂� = �̂� + �̂� (Allahviranloo and Gholami, 2012). 
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Definition 4. Let ℎ̂: [𝑎1, 𝑎2] ⟶ ℝ𝐹  and 𝑡0 ∈ [𝑎1, 𝑎2]. 

(a) If there exists ℎ̂ ′(𝑡0) ∈ ℝ𝐹  such that for all ℎ > 0 sufficiently small,  

 ∃ℎ̂(𝑡0 + ℎ) ⊝ ℎ̂(𝑡0), ∃ℎ̂(𝑡0) ⊝ ℎ̂(𝑡0 − ℎ) 

and the limits  

 lim
ℎ⟶0+

ℎ̂(𝑡0+ℎ)⊝ℎ̂(𝑡0)

ℎ
  = lim

ℎ⟶0+

ℎ̂(𝑡0)⊝ℎ̂(𝑡0−ℎ)  

ℎ
= ℎ̂ ′(𝑡0), 

ℎ̂ is (1)-differentiable at 𝑡0. 

(b) If there exists ℎ̂ ′(𝑡0) ∈ ℝ𝐹  such that for all h > 0 sufficiently small,  

 ∃ℎ̂(𝑡0) ⊝ ℎ̂(𝑡0 + ℎ), ∃ℎ̂(𝑡0 − ℎ) ⊝ ℎ̂(𝑡0) 

and the limits  

 lim
ℎ⟶0+

ℎ̂(𝑡0)⊝ℎ̂(𝑡0+ℎ)

−ℎ
= lim

ℎ⟶0+

ℎ̂(𝑡0−ℎ)⊝ℎ̂(𝑡0)  

−ℎ
  = ℎ̂ ′(𝑡0), 

 ℎ̂ is (2)-differentiable at 𝑡0 (Khastan and Nieto, 2010). 

Theorem 1. Let ℎ̂: [𝑎1, 𝑎2] ⟶ ℝ𝐹 and for each 𝛼 ∈ [0,1],  

 [ℎ̂(𝑡)]
𝛼

= [ℎ̂𝛼(𝑡), ℎ̂𝛼(𝑡)]. 

(a). If ℎ̂ is (1)-differentiable, ℎ̂𝛼(𝑡), ℎ̂𝛼(𝑡) are differentiable functions and  

 [ℎ̂ ′(𝑡)]
𝛼

= [ℎ̂𝛼
 ′ (𝑡), ℎ̂𝛼

 ′

(𝑡)]. 

(b). If ℎ̂ is (2)-differentiable, then ℎ̂𝛼(𝑡), ℎ̂𝛼(𝑡) are differentiable functions and  

 [ℎ̂ ′(𝑡)]
𝛼

= [ℎ̂𝛼

 ′

(𝑡), ℎ̂𝛼
 ′ (𝑡)] (Khastan at al., 2009). 

 Definition 5. Let �̂�: [𝑎1, 𝑎2] ⟶ ℝ𝐹. 

�̂�(𝑠) = �̂�(�̂�(𝑥)) = ∫
∞

0

𝑒−𝑠𝑥�̂�(𝑥)𝑑𝑥 = [ lim
𝜌⟶∞

∫
𝜌

0

𝑒−𝑠𝑥�̂�(𝑥)𝑑𝑥  , lim
𝜌⟶∞

∫
𝜌

0

𝑒−𝑠𝑥�̂�(𝑥)𝑑𝑥  ], 

         �̂�(𝑠, 𝛼) = �̂�([�̂�(𝑥)]𝛼) = [�̂� (�̂�𝛼(𝑥)) , 𝐿 (�̂�
𝛼

(𝑥))], 

 �̂� (�̂�𝛼(𝑥)) = ∫
∞

0
𝑒−𝑠𝑥�̂�𝛼(𝑥)𝑑𝑥 = lim

𝜌⟶∞
∫

𝜌

0
𝑒−𝑠𝑥�̂�𝛼(𝑥)𝑑𝑥, 

 �̂� (�̂�
𝛼

(𝑥)) = ∫
∞

0
𝑒−𝑠𝑥�̂�

𝛼
(𝑥)𝑑𝑥 = lim

𝜌⟶∞
∫

𝜌

0
𝑒−𝑠𝑥�̂�

𝛼
(𝑥)𝑑𝑥 

is the fuzzy Laplace transform of �̂� (Patel and Desai, 2017). 

Theorem 2. Let ℎ̂(𝑥) and ℎ̂ ′(𝑥) be primitive of ℎ̂ ′(𝑥) and ℎ̂ ′′
(𝑥) on [0, ∞), respectively. Also, 

let ℎ̂ ′′
(𝑥) be an integrable fuzzy function. 

(a). If the functions ℎ̂, ℎ̂ ′ are (1)-differentiable, 

 �̂� (ℎ̂ ′′
(𝑥)) = 𝑠2�̂� (ℎ̂(𝑥)) ⊝ 𝑠ℎ̂(0) ⊝ ℎ̂ ′(0). 
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(b). If the functions ℎ̂, ℎ̂ ′ are (2)-differentiable,  

 �̂� (ℎ̂ ′′
(𝑥)) = 𝑠2�̂�(ℎ(𝑥)) ⊝ 𝑠ℎ̂(0) − ℎ̂ ′(0). 

(c). If ℎ̂ is (1)-differentiable, ℎ̂ ′ is (2)-differentiable, 

 �̂� (ℎ̂ ′′
(𝑥)) =⊝ (−𝑠2)�̂� (ℎ̂(𝑥)) − 𝑠ℎ̂(0) − ℎ̂ ′(0). 

(d). If ℎ̂ is (2)-differentiable,  ℎ̂ ′ is (1)-differentiable, 

 �̂� (ℎ̂ ′′
(𝑥)) =⊝ (−𝑠2)�̂� (ℎ̂(𝑥)) − 𝑠ℎ̂(0) ⊝ ℎ̂ ′(0) (Patel and Desai, 2017). 

                      

3. Findings and Discussion 

 

We research the second-order fuzzy initial value problem  

 

{

�̂� ′′
= −[�̂�]𝛼�̂�

�̂�(0) = [�̂�]𝛼

�̂� ′(0) = [𝜁]
𝛼

                                                                                                                          (1) 

where  

 [�̂�]𝛼 = [�̂�𝛼 , �̂�
𝛼

] , [�̂�]𝛼 = [�̂�𝛼 , �̂�𝛼],    [𝜁]
𝛼

=   [𝜁𝛼 , 𝜁
𝛼

] 

are positive symmetric triangular fuzzy numbers, [�̂�(𝑡)]𝛼 = [�̂�𝛼(𝑡), �̂�𝛼(𝑡)], �̂� is positive fuzzy 

function and �̂�(  �̂�(𝑡)) = �̂�(𝑠). 

 

3.1. The solution (1,1) 

 

Since �̂� and �̂� ′  are (1)-differentiable, we have 

 �̂�𝛼(𝑠) =
1

𝑠2 (�̂�𝛼
 ′ (0) − �̂�

𝛼
�̂�𝛼(𝑠)) +

1

𝑠
�̂�𝛼(0),                                                                       (2) 

 �̂�𝛼(𝑠) =
1

𝑠2 (�̂�𝛼

 ′

(0) − �̂�𝛼�̂�𝛼(𝑠)) +
1

𝑠
�̂�𝛼(0).                                                                       (3) 

From this, we obtain �̂�𝛼(𝑠) and 𝑈𝛼(𝑠) following as 

 �̂�𝛼(𝑠) =
1

𝑠4−�̂�𝛼�̂�𝛼

(𝑠 (𝑠2�̂�𝛼 + 𝑠𝜁𝛼 − �̂�
𝛼

�̂�𝛼) − �̂�
𝛼

𝜁
𝛼

) 

 𝑈𝛼(𝑠) =
1

𝑠4−�̂�𝛼�̂�𝛼

(𝑠 (𝑠2�̂�𝛼 + 𝑠𝜁
𝛼

− �̂�𝛼�̂�𝛼) − �̂�𝛼𝜁𝛼) 

Then, (1,1)-solution of the problem (1) is obtained as 
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 �̂�𝛼(𝑡) =
1

2
(

�̂�𝛼

√(�̂�𝛼�̂�𝛼)
4

−
√(�̂�𝛼)
4

�̂�𝛼

√(�̂�𝛼)
34

) (𝑠𝑖𝑛 ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡) + 𝑠𝑖𝑛ℎ ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡)) 

              +
1

2
(�̂�𝛼 − √(

�̂�𝛼

�̂�𝛼
) �̂�𝛼) (𝑐𝑜𝑠 ( √(�̂�𝛼�̂�

𝛼
)

4
𝑡) + +𝑐𝑜𝑠ℎ ( √(�̂�𝛼�̂�

𝛼
)

4
𝑡)), 

 �̂�𝛼(𝑡) =
1

2
(

�̂�𝛼

√(�̂�𝛼�̂�𝛼)
4

−
√(�̂�𝛼)
4

�̂�𝛼

√(�̂�𝛼)
34

) (𝑠𝑖𝑛 ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡) + 𝑠𝑖𝑛ℎ ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡)) 

             +
1

2
(�̂�𝛼 − √(

�̂�𝛼

�̂�𝛼

) �̂�𝛼) (𝑐𝑜𝑠 ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡) + 𝑐𝑜𝑠ℎ ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡)). 

 

3.2. The solution (1,2) 

 

Since �̂� and �̂� ′  are (1)-differentiable and (2)-differentiable, respectively, we can write the 

equations, 

 �̂�𝛼(𝑠) (𝑠2 + �̂�𝛼) = 𝑠�̂�𝛼(0) + �̂�𝛼
 ′ (0), 

 �̂�𝛼(𝑠)(𝑠2 + �̂�
𝛼

) = 𝑠�̂�𝛼(0) + �̂�𝛼

 ′

(0). 

Then, we have  

 �̂�𝛼(𝑠) =
1

𝑠2+�̂�𝛼
(𝑠�̂�𝛼 + 𝜁𝛼), 

 �̂�𝛼(𝑠) =
1

𝑠2+�̂�𝛼

(𝑠�̂�𝛼 + 𝜁
𝛼

). 

From this, (1,2)-solution of the problem (1) is obtained as 

 �̂�𝛼(𝑡) = �̂�𝛼𝑐𝑜𝑠 (√�̂�𝛼𝑡) +
�̂�𝛼

√�̂�𝛼

𝑠𝑖𝑛 (√�̂�𝛼𝑡), 

 �̂�𝛼(𝑡) = �̂�𝛼𝑐𝑜𝑠 (√�̂�
𝛼

𝑡) +
�̂�𝛼

√�̂�𝛼

𝑠𝑖𝑛 (√�̂�
𝛼

𝑡). 

 

3.3. The solution (2,1) 

 

Using Theorem 2, similar to (1,2)-solution, (2,1)-solution of the problem (1) is 

 �̂�𝛼(𝑡) = �̂�𝛼𝑐𝑜𝑠 (√�̂�𝛼𝑡) +
�̂�𝛼

√�̂�𝛼

𝑠𝑖𝑛 (√�̂�𝛼𝑡), 
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  �̂�𝛼(𝑡) = �̂�𝛼𝑐𝑜𝑠 (√�̂�
𝛼

𝑡) +
�̂�𝛼

√�̂�𝛼

𝑠𝑖𝑛 (√�̂�
𝛼

𝑡). 

 

3.4.  The solution (2,2) 

 

Similar to (1,1)-solution, (2,2)-solution is 

 �̂�𝛼(𝑡) =
1

2
(

�̂�𝛼

√(�̂�𝛼�̂�𝛼)
4

−
√(�̂�𝛼)
4

�̂�𝛼

√(�̂�𝛼)
34

) (𝑠𝑖𝑛 ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡) + 𝑠𝑖𝑛ℎ ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡)) 

             +
1

2
(�̂�𝛼 − √(

�̂�𝛼

�̂�𝛼
) �̂�𝛼) (𝑐𝑜𝑠 ( √(�̂�𝛼�̂�

𝛼
)

4
𝑡) + 𝑐𝑜𝑠ℎ ( √(�̂�𝛼�̂�

𝛼
)

4
𝑡)), 

 �̂�𝛼(𝑡) =
1

2
(

�̂�𝛼

√(�̂�𝛼�̂�𝛼)
4

−
√(�̂�𝛼)
4

�̂�𝛼

√(�̂�𝛼)
34

) (𝑠𝑖𝑛 ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡) + 𝑠𝑖𝑛ℎ ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡)) 

            +
1

2
(�̂�𝛼 − √(

�̂�𝛼

�̂�𝛼

) �̂�𝛼) (𝑐𝑜𝑠 ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡) + 𝑐𝑜𝑠ℎ ( √(�̂�𝛼�̂�
𝛼

)
4

𝑡)). 

 

4. Numerical Example 

 

Consider the problem 

{

�̂� ′′
= −[1̂]

𝛼
�̂�,

�̂�(0) = [2̂]
𝛼

�̂� ′(0) = [3̂]
𝛼

,                                                                                                                       (4) 

 

 where 

  [1̂]
𝛼

= [𝛼, 2 − 𝛼], [2̂]
𝛼

= [1 + 𝛼, 3 − 𝛼], [3̂]
𝛼

= [2 + 𝛼, 4 − 𝛼]. 

(1,1)-solution of the problem (4) is 

 �̂�𝛼(𝑡) =
1

2
(−√

2−𝛼

𝛼
(3 − 𝛼) + 1 + 𝛼) (𝑐𝑜𝑠ℎ(√𝛼1

4 𝑡) + 𝑐𝑜𝑠(√𝛼1
4 𝑡)) 

             −
1

2
(

√2−𝛼4 (4−𝛼)

√𝛼34 −
2+𝛼

√𝛼1
4 ) (𝑠𝑖𝑛(√𝛼1

4 𝑡) + 𝑠𝑖𝑛ℎ(√𝛼1
4 𝑡)), 

 �̂�𝛼(𝑡) =
1

2
(3 − 𝛼 − √

𝛼

2−𝛼
(1 + 𝛼)) (𝑐𝑜𝑠(√𝛼1

4 𝑡) + 𝑐𝑜𝑠ℎ(√𝛼1
4 𝑡)) 

             −
1

2
(

√𝛼4 (2+𝛼)

√(2−𝛼)34 −
4−𝛼

√𝛼1
4 ) (𝑠𝑖𝑛(√𝛼1

4 𝑡) + 𝑠𝑖𝑛ℎ(√𝛼1
4 𝑡)), 
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(1,2)-solution of the problem (4) is 

 �̂�𝛼(𝑡) = 𝑠𝑖𝑛(√𝛼𝑡) (
2

√𝛼
+ √𝛼) + 𝑐𝑜𝑠(√𝛼𝑡)(1 + 𝛼), 

 �̂�𝛼(𝑡) = 𝑠𝑖𝑛(√2 − 𝛼𝑡) (
4−𝛼

√2−𝛼
) + 𝑐𝑜𝑠(√2 − 𝛼𝑡)(3 − 𝛼), 

(2,1)-solution of the problem (4) is 

 �̂�𝛼(𝑡) = 𝑠𝑖𝑛(√𝛼𝑡) (
4

√𝛼
− √𝛼) + 𝑐𝑜𝑠(√𝛼𝑡)(1 + 𝛼), 

 �̂�𝛼(𝑡) = 𝑠𝑖𝑛(√2 − 𝛼𝑡) (
2+𝛼

√2−𝛼
) + 𝑐𝑜𝑠(√2 − 𝛼𝑡)(3 − 𝛼), 

(2,2)-solution of the problem (4) is  

 �̂�𝛼(𝑡) =
1

2
(−√

2−𝛼

𝛼
(3 − 𝛼) + 1 + 𝛼) (𝑐𝑜𝑠ℎ(√𝛼1

4 𝑡) + 𝑐𝑜𝑠(√𝛼1
4 𝑡)) 

             −
1

2
(

√2−𝛼4 (2+𝛼)

√𝛼34 −
4−𝛼

√𝛼1
4 ) (𝑠𝑖𝑛(√𝛼1

4 𝑡) + 𝑠𝑖𝑛ℎ(√𝛼1
4 𝑡)), 

 �̂�𝛼(𝑡) =
1

2
(3 − 𝛼 − √

𝛼

2−𝛼
(1 + 𝛼)) (𝑐𝑜𝑠(√𝛼1

4 𝑡) + 𝑐𝑜𝑠ℎ(√𝛼1
4 𝑡)) 

             −
1

2
(

√𝛼4 (4−𝛼)

√(2−𝛼)34 −
2+𝛼

√𝛼1
4 ) (𝑠𝑖𝑛(√𝛼1

4 𝑡) + 𝑠𝑖𝑛ℎ(√𝛼1
4 𝑡)), 

where 𝛼(2 − 𝛼) = 𝛼1,  [�̂�(𝑡)]𝛼 = [�̂�𝛼(𝑡), �̂�𝛼(𝑡)]. 

According to Definition 2 and since �̂� is positive fuzzy function, �̂�(𝑡) is a valid fuzzy function 

for 𝑡 ∈ (0,1.03092)   in Fig. 2 and for (0,0.536283) in Fig. 3. But, �̂�(𝑡) is not a valid fuzzy function 

in Fig. 1 and Fig. 4.  

 

 

Figure 1. The solution (1,1), 𝛼 = 0.7 
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Figure 2. The solution (1,2), 𝛼 = 0.7 

 

 

Figure 3. The solution (2,1), 𝛼 = 0.7 

 

 

 

Figure 4. The solution (2,2), 𝛼 = 0.7 

   

red ⟶ �̂�𝛼(𝑡), blue ⟶ �̂�𝛼(𝑡), green ⟶ �̂�1(𝑡) = �̂�1(𝑡) 
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5. Conclusions and Recommendations 

 

In this study, a second order fuzzy problem was analyzed via the fuzzy Laplace transform 

method. We gave a numerical example. We have seen that (1,2) solution and (2,1) solution of the 

problem are valid fuzzy functions for all alpha-level sets in different intervals. But (1,1) solution and 

(2,2) solution of the problem are not valid fuzzy functions. 
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