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Abstract

The fuzzy Laplace transform method is very useful to solve fuzzy differential equations and this method is an important
method in practice. This paper is on a second-order fuzzy problem. In this study, we research the fuzzy problem with
negative fuzzy coefficient using the method of fuzzy Laplace transform. Since we use generalized Hukuhara
differentiability, solutions are investigated under the four different situations. A numerical example is given. Graphics of
the solutions are drawn for alpha level sets. Conclusions are presented at the end of the paper.
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Bir Fuzzy Problemin Grafiksel Analizi Uzerine

Oz

Fuzzy Laplace doniisiim metodu fuzzy diferansiyel denklemleri ¢6zmek i¢in ¢cok kullaniglidir ve bu metod pratikte dnemli
bir metoddur. Bu calisma ikinci mertebeden bir fuzzy problem {izerinedir. Bu ¢alismada, fuzzy Laplace doniisim
metodunu kullanarak negatif fuzzy katsayili bir fuzzy problemini arastiriyoruz. Genellestirilmis Hukuhara
diferansiyellenebilirligi kullandigimiz i¢in, ¢oziimler dort farkli durum altinda incelenmistir. Sayisal bir 6rnek verilmistir.
Cozumlerin grafikleri alfa seviye setleri igin ¢izilmistir. Caligmanin sonunda sonuglar sunulmustur.
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1. Introduction

The fuzzy differential equations is an important topic. Fuzzy differential equations are used to
model dynamical systems under uncertainty, which is an efficient way. So, the fuzzy differential
equations have been growing rapidly. Many authors work on numerical solutions and theoretical
solutions of fuzzy differential equations (Akin at al., 2016; Allahviranloo at al., 2007; Bayeg at al.,
2022; Bede at al., 2007; Gultekin Citil, 2019; Gultekin Citil, 2020; Ivaz at al., 2013; Jafaria at al.,
2021; Mallak at al., 2022; Patel and Desai, 2017; Saqib at al., 2021).

Allahviranloo and Ahmadi (2010) proposed the fuzzy Laplace transform method for solving
first order fuzzy differential equations. Salahshour and Haghi (2010) used the method of fuzzy
Laplace transform in the study of fuzzy heat equations under the strong generalized Hukuhara
differentiability. Using the fuzzy Laplace transform method, the fuzzy harmonic oscillator equation
was solved by Salgado et al. (2019). The fuzzy Laplace transform method has been studied in many
articles (Belhallaj at al., 2023; Eljaoui and Melliani, 2023; Giltekin Citil, 2020; Salahshour and
Allahviranloo, 2013; Salgado at al., 2021; Samuel and Tahir, 2021).

The aim of this work is to analyze the solutions of fuzzy problem with negative fuzzy
coefficients using the fuzzy Laplace transform method.

This paper is organized as follows:

Section 2 is reserved for materials and methods. In Section 3, we first introduce the problem.
Then, we investigate the solutions of the problem via the method of the fuzzy Laplace transform. In

Section 4, we give numerical example for illustration. In the last section, we present our conclusions.
2. Materials and Methods

Definition 1. ¥ € Ry, where Ry is all the fuzzy sets.
[01° = [0, D] = {x € RIP(x) = a}
is the a-level set of ¥, 0 < @ < 1 (Khastan and Nieto, 2010).
Definition 2. [, B, satisfy the following conditions:
a) U, is right-continuous for ¢ = 0 and non-decreasing bounded left-continuous on (0,1],
b) ¥, is right-continuous for @ = 0 and non-increasing bounded left-continuous on (0,1],
¢) D, < Py, 0 < a < 1 (Khastan and Nieto, 2010).
Definition 3. Let @, b € Ry. The generalized Hukuhara difference of @ and b is the set ¢ €

Ry whicha ©, b = ¢ifand only if @ = b + ¢ (Allahviranloo and Gholami, 2012).
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Definition 4. Let h: [a;, a,] — Ry and t, € [ay, a,].
(a) If there exists & (t,) € R such that for all h > 0 sufficiently small,

3h(t, + h) © h(ty), 3A(t,) © h(ty — k)
and the limits

lim+ h(to‘l'h’)l@h(to) — lim+ h(to)@’;(to—h) — E,(to),
h—0 h—0

h is (1)-differentiable at ¢,.
(b) If there exists ' (t,) € R, such that for all h > 0 sufficiently small,

3h(t,) © h(ty + h),3h(t, — h) © h(ty)
and the limits

hli)nol+ h(to)@_’:l(to‘l'h) — hli)nol+ h(fo—hz(}:)h(fo) _ E,(to),

h is (2)-differentiable at t, (Khastan and Nieto, 2010).

Theorem 1. Let h: [a;,a,] — Ry and for each a € [0,1],
[A@®]" = [A.(0), ha ()]
(a). If his (1)-differentiable, h, (t), R, (t) are differentiable functions and
~ 7 a ~ 7 T,
[A ()] = |ha(), ha(t)|-
(b). If A is (2)-differentiable, then h, (), ﬁa (t) are differentiable functions and
HOE [ﬁa(t), ﬁ;(t)l (Khastan at al., 2009).
Definition 5. Let §: [a4,a,] — Rg.

p

I p —
G(s) =L(g(x) =f e *G(x)dx = llim f e *§(x)dx , lim f e S*g(x)dx l,

6(s,@) = LGN = [ (8. 2 (3, )]
L (ga(x)> = fooo e o (x)dx = plgrgo fop e g, (x)dx,
L(3.0) =y e™G,@dx = lim [} e™F, (x)dx
is the fuzzy Laplace transform of g (Patel and Desai, 2017).
Theorem 2. Let A(x) and 2" (x) be primitive of 2" (x) and 2" (x) on [0, o), respectively. Also,

let A" (x) be an integrable fuzzy function.

(a). If the functions &, A" are (1)-differentiable,
L(h"() = L (A(x) © sh(0) © A" (0).
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(b). If the functions h, i are (2)-differentiable,

i (ﬁ ”(x)) = s2L(h(x)) © sh(0) — A (0).

(c). If his (1)-differentiable, & is (2)-differentiable,

L(R" @) =0 (=s)L(h(x)) - sh(0) = &' (0).

(d). If A is (2)-differentiable, &' is (1)-differentiable,

L(h"()) =0 (=s»)L(h(x)) - sh(0) © h’(0) (Patel and Desai, 2017).

3. Findings and Discussion

We research the second-order fuzzy initial value problem

2" =-[“a
2(0) = [7]° ()
ﬁ,(O) _ [A]a

where

2

(1% = [fla i), [71% = [P 70| €] = [le]
are positive symmetric triangular fuzzy numbers, [@i(t)]* = [Qa(t),ﬁa(t)], i is positive fuzzy

function and L( 2(¢)) = U(s).
3.1. The solution (1,1)

Since i and @ are (1)-differentiable, we have
0a(®) = 2 (220 = 7,04()) +12,0), @
Ua(s) = é(ﬁam) - ﬁ@@)) + <0 (0). (3)

From this, we obtain T, (s) and U, (s) following as

0u(s) = 5= (5 (570 + 58 = TaFa) = )
Ua(s) = 5= (5 (770 + 50— flafle) = Hada)

Then, (1,1)-solution of the problem (1) is obtained as
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() =1 V(:ga: B (ﬁ:a)ca (sm (“ (e, >+smh (el t>>

3.2. The solution (1,2)

Since 4 and @ are (1)-differentiable and (2)-differentiable, respectively, we can write the

equations,

U (5) (5% + ) = 52,(0) + 24(0),

Ua(s)(s? + ﬁa) = 51, (0) + 1, (0).
Then, we have

0a() = 777 (7 + o),

)|

«(s) = %(sﬁx + (Aa)-

5247,

From this, (1,2)-solution of the problem (1) is obtained as

U,(t) = @cos( ﬁat> + \/E—Aisin< ﬁat>,
"_ e ,/_
NOE ?acos< ﬁat> + \%sin( ﬁat>.
Na

|

3.3. The solution (2,1)

Using Theorem 2, similar to (1,2)-solution, (2,1)-solution of the problem (1) is

a,(t) = ﬁ,cos( ﬁat> + \/(—Aisin< ﬁat>,
,’_ e ,/_
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f,(t) =P cos| [Nt ]+ Fsm f,t )
Na

3.4. The solution (2,2)

Similar to (1,1)-solution, (2,2)-solution is

U, (t) = %<4J(§:ﬁa) ~ * ‘}J(Z‘ 3){:) (sin <4 (ﬁaﬁa) t> + sinh (“ (ﬁﬁa) t>>
242 (7)o (J) ([0

O %<‘*J(§:m) ] J(Zn);> <" (Ja)e) «som(flak. t>>
A B o ) )

4. Numerical Example

Consider the problem

where
[i]“=[a,2—a],[2] =[1+a3—qa], [3] [2+a4—al
(1,1)-solution of the problem (4) is

U, (t) = %(— 2770[(3 —a)+1+ a) (cosh(¥/a;t) + cos(Afait))
—= —\/7% @) _ 2+a) (sin(¥/a;t) + sinh(Yait)),
U, (D) = %(3 a— \/gu + a)) (cos(4/ayt) + cosh(Y/ait))

_ % (i/a(_i“") — Oi) (sin(Afayt) + sinh(Yapt)),

2333

(4)
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(1,2)-solution of the problem (4) is

f,(t) = sm(\/_t)( + \/_) + cos(Vat)(1 + @),

i, (t) = sin(v2 — at) (j%) +cos(N2—at)(3 —a),
(2,1)-solution of the problem (4) is

1, (t) = sin(Vat) (— — ) + cos(Vat)(1 + a),

U (t) = sin(vV2 — at) (j%) +cos(V2— at)(3 — a),
(2,2)-solution of the problem (4) is

U, (t) = %(— 2?TOC(S —a)+1+ a) (cosh(¥/a;t) + cos(iait))

- % (42\/?“—\/;”) — a) (sin(¥/a;t) + sinh(Yait)),

U, (t) = (3 —a— \/7(1 + a)) (cos(‘{/_t) + cosh(‘{/_t))

_ % (j/fz(;\/‘:_;‘)? — 2+a) (sin(Afa;t) + sinh(Ya;t)),

where a(2 — &) = ay, [2(t)]% = [0, (t), T, (D)].

2334

According to Definition 2 and since 1 is positive fuzzy function, @i(t) is a valid fuzzy function
fort € (0,1.03092) inFig. 2 and for (0,0.536283) in Fig. 3. But, #i(t) is not a valid fuzzy function

in Fig. 1 and Fig. 4.

Figure 1. The solution (1,1), « = 0.7
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Figure 2. The solution (1,2), « = 0.7

Figure 3. The solution (2,1), « = 0.7

denbndend

Figure 4. The solution (2,2), a = 0.7

red — i, (t), blue — 1, (t), green — i (t) = 4, (t)

2335
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5. Conclusions and Recommendations

In this study, a second order fuzzy problem was analyzed via the fuzzy Laplace transform
method. We gave a numerical example. We have seen that (1,2) solution and (2,1) solution of the
problem are valid fuzzy functions for all alpha-level sets in different intervals. But (1,1) solution and

(2,2) solution of the problem are not valid fuzzy functions.
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