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Abstract 

The unscented Kalman filter (UKF) is a tool for state and parameter estimation in nonlinear dynamical systems. There 

are two primary approaches for utilizing UKF in parameter and state estimation. The first approach is known as joint 

filtering, where both states and parameters are estimated concurrently. The second approach, dual filtering, involves the 

use of two separate filters to estimate states and parameters independently. Recently, a modified joint Unscented Kalman 

Filter (MJUKF) has been introduced by the author. This modified approach is applicable to a class of nonlinear systems 

and offers two significant advantages which are improved estimation accuracy and reduced computational complexity. 

This study investigates the application of the MJUKF for parameter estimation in two selected mechanical systems. The 

results demonstrate that the modified filter effectively estimates parameters in mechanical systems revealing its 
advantages over the standard joint unscented Kalman filtering method in terms of both accuracy and computational 

complexity. 

Keywords: Unscented Kalman filter, Parameter estimation, Joint unscented Kalman filter, Coupled tank, Single link 

flexible joint. 

 

 

Değiştirilmiş Kokusuz Kalman Filtresinin Parametre Tahmini için Bir Mekanik 

Sistem Sınıfına Uygulanışı 

 

Öz 

Kokusuz Kalman filtresi (KKF), doğrusal olmayan dinamik sistemlerde durum ve parametre tahmini için kullanılan bir 

araçtır. KKF'nin durum ve parametre tahmininde kullanılmasında iki ana yaklaşım bulunmaktadır. İlk yaklaşım hem 

durumların hem de parametrelerin eşzamanlı olarak tahmin edildiği birleşik filtreleme olarak bilinir. İkinci yaklaşım ise 

durum ve parametrelerin bağımsız olarak tahmin edildiği iki ayrı filtrenin kullanıldığı ikili filtreleme yöntemidir. Yakın 

zamanda, yazar tarafından Değiştirilmiş Birleşik Kokusuz Kalman Filtresi (DBKKF) tanıtılmıştır. Bu değiştirilmiş 

yaklaşım, doğrusal olmayan sistemlerin bir sınıfına uygulanabilir ve iki önemli avantaj sunar: iyileştirilmiş tahmin 

doğruluğu ve azaltılmış hesaplama karmaşıklığı. Bu çalışma, DBKKF'nin iki seçilmiş mekanik sistemde parametre 

tahmini için uygulanmasını incelemektedir. Sonuçlar, değiştirilmiş filtrenin mekanik sistemlerde parametreleri etkin bir 

şekilde tahmin ettiğini ve hem doğruluk hem de hesaplama karmaşıklığı açısından standart birleşik kokusuz Kalman 

filtreleme yöntemine göre avantajlarını ortaya koymaktadır. 

Anahtar Kelimeler: Kokusuz Kalman Filtresi, Parametre tahmini, Birleşik kokusuz Kalman filtresi, Bağlı Tank, Tek 

bağlantılı esnek eklem.  
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1. Introduction 

 

The Unscented Kalman Filter (UKF) is an alternative to the extended Kalman filter (EKF) that 

can be used for estimation in nonlinear dynamical systems. The UKF is a derivative-free filter for 

nonlinear estimation, and a Jacobian matrix is not necessary for the UKF as it is for the EKF. The 

core of the UKF is the unscented transformation through the points that are called sigma points. UKF 

can have a dual purpose, and it can be used both for state estimation and parameter estimation of 

nonlinear systems. There are two different approaches for parameter estimation. The first approach, 

known as joint filtering, employs a single filter to estimate a combined state vector that includes both 

states and parameters. The second approach involves the use of two separate filters, running 

simultaneously, for state and parameter estimation. In this approach, the output of the parameter 

estimator feeds into the input of the state filter (Van Der Merwe, 2004). A detailed discussion about 

the application of both approaches for parameter estimation is given in (Onat, 2019). 

Both joint and dual types of Unscented Kalman Filters (UKF) are currently considered for state 

and parameter estimation in the literature. These filters are used in a variety of applications, including 

both electrical and mechanical systems. For example, the joint approach of UKF has been utilized to 

estimate the parameters of synchronous generators and regulators (González-Cagigal, Rosendo-

Macı́as, & Gómez-Expósito, 2019). A similar methodology based on the joint Unscented Kalman 

Filter (JUKF) is applied to detect parameters in photovoltaic modules, along with system states and 

the hot-spot thermal model of power transformers by (González-Cagigal, Rosendo-Macı́as, & 

Gómez-Expósito, 2022) and (Gonzólez-Cagigal, Rosendo-Macı́as, & Gómez-Expósito, 2022), 

respectively. Another noteworthy application is the estimation of respiratory rate using JUKF for 

individuals based on wireless signals (Uysal, Onat, & Filik, 2020). These studies serve as examples 

of JUKF’s implementation in electrical systems. Furthermore, JUKF based parameter estimation also 

extends to mechanical systems, with recent applications. For example, (Onat, Voltr, & Lata, 2018) 

presents the use of JUKF for estimating the rolling radius of traction wheels of low-floor trams. 

Additionally, (Onat & Kayaalp, 2020) reports the implementation of JUKF for estimating the normal 

load exerted on a traction wheel of a railway vehicle based on velocity measurements. JUKF has 

demonstrated its potential as a promising parameter estimator for mechanical systems. Dual filters 

can also be used as parameter estimators for electrical and mechanical systems. The states and 

parameters of a multi-axle heavy vehicle are estimated based on the dual filtering approach (Pei, 

Chen, Yang, & Chu, 2020). The state of charge (SoC) and parameters of a battery are detected by an 

improved adaptive dual unscented Kalman filter scheme (Peng, Zhang, Guo, & Zhang, 2021). 

However, since the cross-covariance matrix between states and parameters is not estimated in the 
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dual filtering framework, the accuracy of the parameter estimation results can be worse compared to 

the joint case. This fact is discussed in detail by (Van Der Merwe, 2004) and (Onat, 2019). 

When UKF is used as a parameter estimator based on a joint structure, the number of sigma 

points that must be created depends on the number of states and parameters. JUKF creates 2𝐿 + 1 

sigma points where 𝐿 is the length of the concatenated state vector. For example, if there are four 

states and two parameters, the concatenated state vector has six elements, and the number of sigma 

points must be thirteen for the standard JUKF. The proposed modified joint unscented Kalman filter 

(MJUKF) decouples parameters from the state vector, however, sigma points are using the values of 

parameter vector. MJUKF requires nine sigma points for the given example. The reduction of sigma 

points provides a decrease in computational complexity. This is the first advantage of the proposed 

approach. Secondly, MJUKF can be applied to nonlinear systems in which there is a linear 

relationship between measurements and parameters, and it creates a linear transformation between 

measurements and parameters; thus, the accuracy of the estimation can be improved based on the 

selection of filter parameters. Details of this modified scheme can be found in (Onat, 2019). 

In this study, the application of this modified approach has been investigated and discussed for 

two selected mechanical systems. These systems are chosen since the MJUKF approach is applicable 

to systems with a linear relationship between the estimated parameters and the measurements. First, 

the structure of each selected mechanical system is presented. Then, the MJUKF approach is 

explained. Finally, the results demonstrating the advantages of the proposed approach are provided. 

 

2. Models and the Proposed Method 

 

2.1. Model of the Coupled Tank System 

 

As the first application, the coupled tank system (Seung, Atiya, Parlos, & Chong, 2017) is 

selected in this study. Coupled tanks include two water tanks connected to each other by an orifice. 

There is also another orifice at the lower tank. There is a water basin and a water pump which pumps 

water to the upper tank from the basin. Water flows to the second tank from the orifice of the upper 

tank. Pump controls the water flow into the tanks, and this flow ratio is the input to the system. A 

schematic of the system can be found in Figure 1. 
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Figure 1 Schematic of the coupled tank system, adapted from (Seung, Atiya, Parlos, & Chong, 2017) 

 

In this system, ℎ1 and ℎ2 are the water levels of the tanks. The mathematical equations of the 

system can be found in Equation (1) and Equation (2). System parameters that are considered can be 

found in Table 1. 

 

ℎ̇1 =
𝑘𝑓𝑙𝑜𝑤𝑞𝑖 − 𝑐1ℎ1

1/2

𝐴1

ℎ̇2 =
𝑐1ℎ1

1/2 − 𝑐2ℎ2
1/2

𝐴2

 (1) 

 

�̇� = [
ℎ̇1

ℎ̇2

] =

[
 
 
 
 −𝑐1ℎ1
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𝐴1
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1/2

𝐴2 ]
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−𝑐1𝑥1
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 (2) 
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Table 1 System parameters for coupled tank system, (Seung, Atiya, Parlos, & Chong, 2017) 

System Parameters (Units) Value 

Cross-Sectional Areas of Tank 1, 𝐴1 (cm2) 15.5179 

Cross-Sectional Areas of Tank 2, 𝐴2 (cm2) 15.5179 

Orifice Coefficient of Tank 1, 𝑐1 5 

Orifice Coefficient of Tank 2, 𝑐2 5 

Pump Rate, 𝑞𝑖 (Volts) 5 

Flow Constant, 𝑘𝑓𝑙𝑜𝑤  ((cm2/sec)/Volts) 6 

 

2.2. Single-Link Flexible Joint Robot Model 

 

It has been noted that the performance of most robots decreases when joint flexibility is not 

taken into account (Raghavan & Hedrick, 1994). This study considers the model of such a structure 

for estimation purposes. The relevant state-space equations for the system can be found in Equation 

(3) and Equation (4). In this equation, 𝐽𝑚 is the inertia of the actuator (DC motor), 𝐽𝑙  is the inertia of 

the controlled link. 𝜃𝑚, 𝜔𝑚, 𝜃𝑙, 𝜔𝑙 are the angles and angular velocities of the motor and link, 

respectively. Angular velocities of the motor and link can differ when the torsional flexibility of the 

link is considered. 𝐵 stands for the viscous friction in the motor bearing and back electromotive force 

effects. Other parameters in Equations below are given in Table 2, and an illustration of the system 

considered is given in Figure 2. 

 

�̇�𝑚 = 𝜔𝑚 

�̇�𝑚 =
𝑘

𝐽𝑚
(𝜃𝑙 − 𝜃𝑚) −

𝐵

𝐽𝑚
𝜔𝑚 +

𝐾𝜏

𝐽𝑚
𝑢 

𝜃�̇� = 𝜔𝑙 

�̇�𝑙 = −
𝑘

𝐽𝑙
(𝜃𝑙 − 𝜃𝑚) −

𝑚𝑔ℎ

𝐽𝑙
𝑠𝑖𝑛(𝜃𝑙) 

(3) 
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 (4) 
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Table 2 System Parameters for a single-link robot with joint flexibility, (Raghavan & Hedrick, 1994) 

(Only 𝐾𝜏 is different) 

System Parameters (Units) Value 

Motor Inertia, 𝐽𝑚 (kg m2) 3.7 × 10−3 

Link Inertia, 𝐽𝑙 (kg m2) 9.3 × 10−3 

Pointer mass, 𝑚 (kg) 2.1 × 10−1 

Link Length, 2𝑏 (m) 3.0 × 10−1 

Torsional Spring Coefficient, 𝑘 (Nm rad-1) 1.8 × 10−1 

Viscous Friction Coefficient, 𝐵 (Nm V-1) 4.6 × 10−2 

Amplifier Gain, 𝐾𝜏 (Nm V-1) 15 × 10−2 

 

 

Figure 2 Representation of single-link robot with joint flexibility, adapted from (Raghavan & Hedrick, 

1994) 

 

It has been stated that the MJUKF can be considered when the measurements are linear with 

respect to the parameters. To show that the measurements can be written linearly in terms of the 

parameters, the system equations (Equation (3) and (4)) can be rewritten in the form of �̇� = 𝐴𝛿 +

𝐵,where 𝛿 includes the estimated parameters 𝑚 and 𝐾𝜏. This form can be expressed as: 

 

�̇� = [

�̇�1

�̇�2

�̇�3

𝑥4
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𝑢

𝐽𝑚
0 0

−
𝑔ℎ

𝐽𝑙
sin(𝜃𝑙) 0

]
 
 
 
 
 

[
𝑚
𝐾𝜏

] +

[
 
 
 
 
 

𝜔𝑚

𝑘

𝐽𝑚
(𝜃𝑙 − 𝜃𝑚) −

𝐵

𝐽𝑚
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𝜔𝑙

−
𝑘
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]
 
 
 
 
 

 (5) 

 

A similar form can also be written for the coupled tank system. It should be noted that the 

estimated parameter is 𝑘𝑓𝑙𝑜𝑤 . There are four measurements and two parameters in the case of the 

single-link flexible joint robot model; therefore, the 𝐴 matrix has dimensions 4x2. Similarly, for the 

coupled tank system, it must have dimensions 2x1. 
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2.2. Joint Unscented Kalman Filter and the Modified Filter 

 

JUKF is a tool to estimate states and parameters of a nonlinear dynamical system, and this 

dynamical system in discrete (or discretized) form can be represented as: 

 

𝐱𝑘 = 𝑓(𝐱𝑘−1, 𝐮𝑘−1, 𝜽𝑘−1) + 𝐪𝑘

𝐲𝑘 = 𝑔(𝐱𝑘 , 𝜽𝑘) + 𝐫𝑘 ,
 (6) 

 

where 𝐱𝑘 = 𝐱(𝑘𝑇𝑠) is the discretized state vector with a discrete time index 𝑘 and the sampling period 

𝑇𝑠, 𝐮𝑘 is the input vector, 𝜽 is the parameter vector; model and measurement noise vectors are 

represented by 𝐪 and 𝐫, respectively. 𝑓 and 𝑔 are the nonlinear functions for system states and 

measurements, respectively as stated in (Onat, 2019). 

The details of the standard JUKF as a parameter estimator is given in (Onat, 2019), and 

application of this standard JUKF to a mechanical system is presented in (Onat & Kayaalp, 2020). In 

addition, the algorithm for the JUKF can be found in Algorithm 1. 

 

Algorithm 1. Joint Unscented Kalman Filter – Additive Noise Case (Onat & Kayaalp, 2020) 

1: Define Filter Parameters  

2: 𝐿 ← 3 ⊳ 𝐿 is the dimension of state vector 

3: 𝛼 ← 1 ⊳  (10−4 ≤ 𝛼 ≤ 1) 

4: 𝜅 ← 0 ⊳ (generally 𝜅 = 3 − 𝐿) 

5: 𝛽 ← 2  

6: 𝜆  ←  𝛼2(𝐿 + 𝜅) − 𝐿  

7: γ ← √𝐿 + λ  

8: 𝑊0
(𝑚)

←
𝜆

𝐿 + 𝜆
  

9: 𝑊0
(𝑐)

←
𝜆

𝐿 + 𝜆
+ 1 − α2 + 𝛽  

10: for 𝑖 ← {1,⋯ ,2𝐿} do  

11: 𝑊𝑖
(𝑚)

← 𝑊𝑖
(𝑐)

≔
1

2(𝐿 + 𝜆)
  

12: end for  

13: End  

14: function UKF(�̂�, �̇̂�, 𝐏)  

15: Initialize  

16: �̂�0 ← E[𝐱0]  

17: 𝐏0 ← E[(𝐱0 − �̂�0)(𝐱0 − �̂�0)
𝑇]  

18: End  

19: end function  

20: function Sigma Points(�̂�,  𝐏)  

21: Define  

22: Sk-1 ← √Pk-1  

23: End  

24: for 𝑘 ∈ {1, ⋯ ,∞} do  

25: 𝛘𝑘−1 ← [�̂�𝑘−1, �̂�𝑘−1 + γSk-1, �̂�𝑘−1 − 𝛾Sk-1]  

26: end for  

27: end function  
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28: function Time Update(𝛘𝑘−1,  𝑷, 𝐐)  

29: 𝛘𝑘|𝑘−1
∗ ← 𝒇(𝛘𝑘−1, 𝑢𝑘−1)  

30: �̂�𝑘
− ← ∑𝐖𝑖

(𝑚)

𝟐𝑳

𝒊=𝟎

𝛘𝑖,𝑘|𝑘−1
∗   

31: 𝐏𝑘
− ← ∑ 𝐖𝑖

(𝑐)

𝟐𝑳

𝒊=𝟎

(𝛘𝑖,𝑘|𝑘−1
∗ − �̂�𝑘

−)(𝛘𝑖,𝑘|𝑘−1
∗ − �̂�𝑘

−)
𝑇

+ 𝐐  

32: end function  

33: function Measurement Update(𝛘𝑘|𝑘−1
∗ , 𝐑)  

34: 𝚼𝑘|𝑘−1
∗ ← ℎ(𝛘𝑘|𝑘−1

∗ , 𝐮𝑘−1)  

35: �̂�𝑘
− ← ∑ 𝐖𝑖

(𝑚)

𝟐𝑳

𝒊=𝟎

𝚼𝑖,𝑘|𝑘−1
∗   

36: 𝐏ỹ𝑘,ỹ𝑘
← ∑𝐖𝑖

(𝑐)

𝟐𝑳

𝒊=𝟎

(𝚼𝑖,𝑘|𝑘−1
∗ − �̂�𝑘

−)(𝚼𝑖,𝑘|𝑘−1
∗ − �̂�𝑘

−)
𝑇

+ 𝐑  

37: 𝐏𝑥𝑘,𝑦𝑘
← ∑𝐖𝑖

(𝑐)

𝟐𝑳

𝒊=𝟎

(𝛘𝑖,𝑘|𝑘−1
∗ − �̂�𝑘

−)(𝚼𝑖,𝑘|𝑘−1
∗ − �̂�𝑘

−)
𝑇
  

38: 𝐊𝑘 ← 𝐏𝑥𝑘,𝑦𝑘
𝐏ỹ𝑘,ỹ𝑘

−1   

39: �̂�𝑘 ← �̂�𝒌
− + 𝐊𝑘(𝐲𝑘 − �̂�𝑘

−)  

40: 𝐏𝑘 ← 𝐏𝑘
− − 𝐊𝑘𝐏ỹ𝑘,ỹ𝑘

𝐊𝑇  

41: end function  

 

The main difference and novelty of the MJUKF is the incorporation of the parameter vector in 

the algorithm. Figure 3 illustrates this difference based on block diagrams. In JUKF, parameters are 

concatenated to the state vector, and estimation is done based on this vector. The MJUKF approach 

creates another sigma point vector for the parameter estimation. This vector can be given as 

 

 

Figure 3 Comparison of JUKF and MJUKF based on block diagrams 

 

𝛘𝜃 =

[
 
 
 
�̂�1

�̂�2

⋮
�̂�n]

 
 
 

, 𝑛 = 2𝐿 + 1. (7) 
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𝛘𝜃 represents the sigma point vector for parameters. 𝐿 is the number of states in this case. Initial 

determination of the parameter vector can be written as 

 

�̂�𝑖 = (�̂�0 − 𝐩𝜃(𝐿 + 1)) + 𝐩𝜃𝑖. 𝑖 = 1,⋯ ,2𝐿 + 1 (8) 

 

𝑖 is the parameter vector index, 𝐩𝜃 is a row vector containing initial parameter error covariance, 

�̂�0 is the initial parameter estimate. After creating the parameter sigma points, the parameter sigma 

point is appended to the state sigma point matrix as 𝛘𝑘−1
† = [𝛘𝑘−1|𝛘𝜃]. Then, 𝛘𝑘−1

†
 is propagated 

through the nonlinear function 𝑓 of the system. The sigma point vector is also updated for the 

measurement sigma point as 𝚼𝑘|𝑘−1
∗ = 𝑔(𝛘𝑘|𝑘−1

∗ ). MJUKF updates the parameters in the parameter 

sigma point by considering the following rule: 

 

𝛘𝜃𝑖,𝑘
= �̂�𝑘−1 − 𝜉𝑇(𝐲𝑘 − 𝚼𝑖,𝑘|𝑘−1

∗ ), 𝑖 = 1, . . . ,2𝐿 + 1 (9) 

 

where 𝜉 is a scaling parameter, 𝑇 is a transformation matrix which transforms the error between the 

measurements 𝐲𝑘 and the measurement sigma points 𝚼𝑖,𝑘|𝑘−1
∗  at discrete time 𝑘. The selection of the 

parameters 𝜉 and 𝑇 is discussed in detail by (Onat, 2019). The last step of the MJUKF is the estimation 

of the parameter sigma point vector. 

 

�̂�𝑘 =
1

2𝐿 + 1
∑𝝌𝜃𝑖

2𝐿

𝑖=0

. (10) 

 

Decoupling the parameters from sigma point vector in MJUKF results in less calculation of the 

nonlinear function 𝑓 of the system. As an example, if there are four system states and two parameters, 

JUKF requires thirteen function evaluations, whereas MJUKF requires nine function evaluations. 

This modification provides a reduction in computational complexity of the estimator. Furthermore, 

proper selection of the parameters 𝜉 and 𝑇 presents an increase in accuracy of the estimator. 

Readers are referred to the Algorithm 1 given in (Onat, 2019) for the structure of MJUKF. In 

addition, source codes for the application of this method to two dynamical systems have been 

provided by (Onat, 2020). 

 

3. Findings and Discussion 

 

To demonstrate the effectiveness of MJUKF against JUKF, measurements from the mechanical 

systems are required. Simulations based on the dynamical equations of these systems were created. 
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Gaussian noise was added to the simulated system states to form simulated measurements for testing 

JUKF and MJUKF. All simulations and estimators were coded in Python and run on an HP Z420 

workstation (HP, 2024). Source codes to run and verify simulations and estimators can be found in 

(Onat, 2024). 

To solve the differential equations of the given mechanical systems, a modified method based 

on the combination of the trapezoidal and the second-order backward Euler Method (abbreviated as 

I-TR-BDF2) is considered in this study (Onat & Örüklü, 2023). The dynamical equations for the 

coupled tank system and single-link flexible joint robot model have been solved using this numerical 

method. 

After obtaining the solution for the system states, simulated measurements are created by 

adding Gaussian noise to the corresponding system states. The signal-to-noise ratio for both systems 

is 30 dB. The noisy simulated measurements are then presented in figures to demonstrate the 

simulation results. 

First, the coupled tank system is simulated. It should be noted that the input 𝑢 in Equation (2) 

corresponds to the pump rate 𝑞𝑖, which is constant and has units of Volts. This system has two states. 

The total simulation time for the system is 200 s, and the step size is set to 1 ms. The simulated 

measurements obtained by adding noise to the simulation results can be seen in Figure 4. 

 

  
Figure 4 Simulated measurements for the coupled tank system, water levels for the first and the second tank 

 

To simulate the single-link flexible joint robot, the input to the system has been set as 𝑢 =

5sin(2𝜋𝑓𝑡). Here, the frequency 𝑓 is 1 Hz, and 𝑡 is the discretized time index, denoted as 𝑘𝑇𝑠 in the 

previous section. In these simulations, the step size is set to 1 ms, and the total simulation time in this 

case is 20 s. The results of the simulation for the system states are presented in Figure 5 and Figure 

6. Since the level of the noise (30 dB) is the same for all states, its effect is more apparent in Figure 

5 than in Figure 6. 
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Figure 5 Simulated measurements (angular positions) for the single-link flexible joint robot 

 

  
Figure 6 Simulated measurements (angular velocities) for the single-link flexible joint robot 

 

In both cases, these results are saved and considered as the noisy measurements that can be 

taken from the physical system. They are used in the measurement update part of both unscented 

Kalman filter-based parameter estimation approaches. 

The state estimation for these mechanical systems is not the focus of this modified approach. 

However, the state estimation results of the coupled tank system for both JUKF and MJUKF are 

presented in Figure 7 and Figure 8. It can be seen that both filters can effectively estimate the states 

of the coupled tank system. Therefore, the state estimation results for the single-link flexible joint 

robot model are not reported in this paper. All the initial parameters and conditions are the same for 

both filters. The initial state and parameter, model, and measurement noise covariance matrices are 

also same for both filters; initial state estimates are set to zero. Thus, a fair comparison can be made 

between the performance of both estimators. The initial state covariance matrix for the application of 

JUKF to the coupled tank system can be given as 

 

𝐏0 = [
10−5 0 0

0 10−5 0
0 0 10−1

]. (11) 
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Figure 7 State estimation results for the coupled tank system based on JUKF 

 

  
Figure 8 State estimation results for the coupled tank system based on MJUKF 

 

It must be noticed that the first two diagonal elements are also same for the initial state 

covariance matrix of MJUKF. The third diagonal element of the above equation is related to the initial 

parameter covariance. MJUKF uses another vector (since there is one parameter to be estimated, it is 

a scalar) for this purpose, denoted as 𝐩𝜃 previously. 𝐩𝜃 is selected as 𝐩𝜃 = 10−1 for MJUKF so that 

the level of initial parameter covariances is same for both filters. In each case, measurements from 

the coupled tank system are assumed to be taken once every two samples. Therefore, the sampling 

rate is assumed to be 2 ms (500 Hz) for both filters. The model and measurement noise covariances 

are given as 

 

𝐐 = [
10−5 0 0

0 10−5 0
0 0 10−5

] ,

𝐑 = [10−7 0
0 10−7] .

 (12) 

 

In Equation (12) 𝐐 is given for JUKF, and the last diagonal entry can be omitted for MJUKF. 

𝐑 is the same for both filters. 
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Two additional parameters related to MJUKF are needed and they are specified in Equation (9). 

𝜉 is selected as −1 and the transformation matrix (which is a vector for the coupled tank system) 𝑇 is 

chosen as 

 

𝑇 = [0.8 0.2]. (13) 

 

The selection of 𝜉 and 𝑇 is discussed in detail in (Onat, 2019). These parameters are chosen 

based on the explanations provided in (Onat, 2019). One approach for the selection of the 𝑇 matrix is 

to evaluate the relationship between the measurements and the parameters, which can be obtained by 

a Jacobian matrix (Onat, 2019) and it is expressed as 

 

𝐉(𝜃1, 𝜃2, … , 𝜃𝑛) =

[
 
 
 
 
∂𝑔1

∂𝜃1
…

∂𝑔1

∂𝜃𝑛

⋮ ⋱ ⋮
∂𝑔𝑚

∂𝜃1
…

∂𝑔𝑚

∂𝜃𝑛 ]
 
 
 
 

, (14) 

 

where 𝑚 represents the number of measurement functions and 𝑛 refers to the number of parameters 

estimated. Obviously, this approach can be considered when parameters explicitly appear in 

measurement equation. By interpreting the Jacobian matrix, the transformation matrix 𝑇 can be 

expressed as 

 

𝑇 = [

𝑡11 … 𝑡1𝑚

⋮ ⋱ ⋮
𝑡𝑛1 … 𝑡𝑛𝑚

] ,

∑𝑡𝑖𝑗

𝑚

𝑗=1

= 1. 𝑖 = 1,… , 𝑛

 (15) 

 

The last equation simply indicates that the effect of parameter changes on measurements must 

be taken into account. If a parameter has a more significant impact on a measurement than the other 

parameters, the corresponding value for that parameter in transformation matrix 𝑇 must be selected 

higher than the values for other parameters. From Equation (13), it can be concluded that the influence 

of the first measurement on parameter estimation is greater than that of the second measurement. 

Parameter estimation (coupled tank system) results for both JUKF and MJUKF can be found in 

Figure 9. The initial parameter estimate 𝑘𝑓𝑙𝑜𝑤  is 2 for both estimators. The root mean squared error 

(RMSE) of the parameter estimates with respect to the real parameter value is considered as the 

evaluation and comparison metric and it is expressed as 
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√∑ (𝜃 − �̂�𝑖)
2𝑁

𝑖=1

𝑁
, (16) 

 

where 𝜃 is the actual value and 𝑁 is the number of samples. 

The results for the parameter estimation of the coupled tank system are given in Table 3. It can 

be seen from the results that MJUKF provides a parameter estimate with less RMSE compared to 

JUKF. While improving the accuracy in terms of RMSE, MJUKF also enhances the computational 

complexity. To evaluate computation time, each method is run twenty times, and the average elapsed 

time is given in Table 3. 

 

  
Figure 9 Parameter estimation results for the coupled tank system (JUKF result on the left figure and 

MJUKF result on the right figure) 

 

Table 3 Comparison of the parameter estimate (𝑘𝑓𝑙𝑜𝑤) of the estimators for coupled tank system. 

Metric JUKF MJUKF 

RMSE 0.2919 0.2434 

Computation Time (s) 77.696 71.191 

 

The state estimation results for the single-link flexible joint robot are not presented here for 

clarity. In this case, it can be seen from the given state space equations (Equation (4)) that there are a 

total of four states. It has been assumed that all states of the system are measurable. The parameter 

estimation is carried out for two parameters of the single-link flexible joint robot: the amplifier gain 

𝐾𝜏 and the pointer mass 𝑚. The initial state covariance matrix for the application of JUKF to the 

single-link flexible joint robot can be given as 

 

𝐏0 =

[
 
 
 
 
 
0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001]

 
 
 
 
 

. (17) 
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It should be noted that this system includes four states and two parameters to be estimated. 

Therefore, the last two diagonal elements of the initial state covariance matrix are for the parameter 

estimates. MJUKF uses another vector for 𝐩𝜃 the parameter estimation. It is selected as 𝐩𝜃 =

[0.01 0.01]. As in the first application, all conditions are the same for both JUKF and MJUKF. The 

model and measurement noise covariance matrices are given as 

 

𝐐 =

[
 
 
 
 
 
10−5 0 0 0 0 0

0 10−5 0 0 0 0
0 0 10−5 0 0 0
0 0 0 10−5 0 0
0 0 0 0 10−5 0
0 0 0 0 0 10−5]

 
 
 
 
 

,

𝐑 = [

10−3 0 0 0
0 10−3 0 0
0 0 10−3 0
0 0 0 10−3

] .

 (18) 

 

The equation above includes 𝐐 for JUKF. Since there are two parameters to be estimated, the 

last two rows and columns can be omitted from 𝐐 for the application of MJUKF. 𝐑 is the same for 

both filters. 

 

For MJUKF, the parameter 𝜉 is selected as 𝜉 =  −0.0025, and the transformation matrix 𝑇 is 

chosen as 

 

𝑇 = [
0.3 0.3 0.2 0.2
0.2 0.2 0.3 0.3

]. (19) 

 

Parameter estimation results for this case are given in Figure 10 and Figure 11. In each case, 

measurements are assumed to be taken once every five samples. Therefore, the sampling rate is 5 ms 

(200 Hz) for both filters. The step size for the solution is also the same for this system, and it is 1 ms. 
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Figure 10 Parameter (𝐾𝜏) estimation results for the single-link flexible joint robot 

 

  
Figure 11 Parameter (𝑚) estimation results for the single-link flexible joint robot 

 

It is evident from Table 4 that MJUKF significantly improves the parameter estimation results 

in terms of RMSE and computation time. Computation time decreases more than the first application 

case (coupled tank system) since the number of parameters to be estimated is higher than the first 

application. The trends for parameter estimation of the coupled tank system with both JUKF and 

MJUKF are the same, as shown in Figure 9. However, in the second case, the trend for MJUKF is 

smoother than for JUKF. The main reason is the selection of the scaling parameter 𝜉 along with the 

transformation matrix 𝑇. For the coupled tank system, the scaling parameter is selected as unity, 

whereas, for the single-link flexible joint robot, it is a small value 𝜉 =  −0.0025. This selection 

provides a smoothing effect in the application of MJUKF to the single-link flexible joint robot. 

 

Table 4 Comparison of the parameter estimates (𝐾𝜏 and 𝑚) of the estimators for single–link flexible 

joint robot. 

Metric JUKF MJUKF 

RMSE (𝐾𝜏) 0.0177 0.008 

RMSE (𝑚) 0.019 0.01233 

Computation Time (s) 4.337 3.717 

 

To demonstrate the performance of the MJUKF in cases of parameter changes, an additional 

simulation study has been defined. In this case, it is assumed that at 𝑡 = 5 seconds, the system 
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parameters of the single-link flexible joint robot change. After five seconds, the mass changes from 

𝑚 = 2.1 × 10−1 to 𝑚 = 3 × 10−1, and the amplifier gain changes from 𝐾𝜏 = 15 × 10−2 to 𝐾𝜏 =

10 × 10−2. It is evident from Figure 12 and Figure 13 that the parameter estimates of the JUKF and MJUKF 

can both track the parameter changes of the physical system.  

 

  
Figure 12 Parameter (𝐾𝜏) estimation results for the single-link flexible joint robot, at time 𝑡 = 5 seconds 

parameter value changes 

 

  
Figure 13 Parameter (𝑚) estimation results for the single-link flexible joint robot, at time 𝑡 = 5 seconds 

parameter value changes 

 

The convergence of the MJUKF in this case is evidently slow due to the choice of the scaling 

parameter 𝜉. As a result, the estimation duration is extended to 30 seconds for both JUKF and 

MJUKF. 

 

It should again be noted that the scaling parameter 𝜉 is critical for parameter estimation by 

MJUKF. A value of 𝜉 that is too large may lead to system instability and accuracy issues, while a 

value that is too small may slow convergence. Therefore, estimation performance strongly depends 

on this parameter (Onat, 2019). In cases of parameter change, 𝜉 can be set to −0.0035 for the MJUKF 

to achieve faster convergence. Although 𝜉 = −0.0025, as used in the previous simulation study, it 

also leads to convergence, 𝜉 = −0.0035 is chosen here to both demonstrate the adaptability of 

MJUKF to parameter changes and illustrate its performance with a properly selected filter parameter. 
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As shown in Figure 14, MJUKF responds to parameter changes more quickly, and accurately under 

steady-state conditions. Future work for the MJUKF includes the development of an adaptive scaling 

parameter. 

 

  
Figure 14 Parameter estimation results for the single-link flexible joint robot with MJUKF, at time 𝑡 =

5 seconds parameter value changes and the scaling parameter is 𝜉 =  −0.0035 

 

In short, the results demonstrate that MJUKF is a promising alternative to standard JUKF for 

parameter estimation of a class of nonlinear mechanical systems when there is a linear relationship 

with the measurements and the estimated parameters. 

 

4. Conclusions and Recommendations 

 

In this study, a modified joint unscented Kalman filter-based parameter estimator is applied to 

two selected mechanical systems. This method has been previously applied to other dynamical 

systems in (Onat, 2019). To the author’s knowledge, this is the first study in which this modified 

scheme is applied for the parameter estimation of such mechanical systems. 

It should be noted that the modified approach used here can be applied to systems where there 

is a linear relationship between the measurements and the parameters. The results reveal that the 

MJUKF can estimate the parameters of such mechanical systems more accurately than the JUKF. Not 

only the MJUKF improves accuracy, but it also decreases computational complexity. These results 

are presented in Table 3 and Table 4. 

 

Acknowledgements 

 

The author thanks his student, Batuhan Mert Düzen, for preparing the figures of the considered 

mechanical systems. The author would also like to thank Kerim Örüklü for proofreading the text. 



The Black Sea Journal of Sciences 14(4), 2338-2357, 2024 2356 

The author used ChatGPT (GPT-3, OpenAI’s large-scale language-generation model) to correct 

typographical, grammatical, and other types of errors in this text. The author reviewed, edited, and 

revised the corrections made by ChatGPT and takes ultimate responsibility for the content of this 

publication. 

 

Authors’ Contributions 

 

The author was solely responsible for all aspects of this research, including conceptualization, 

methodology, data collection, data analysis, and manuscript writing. 

 

Statement of Conflicts of Interest 

 

The author declares that there are no conflicts of interest associated with this work. 

 

Statement of Research and Publication Ethics 

 

The author declares that this study complies with Research and Publication Ethics. 

 

References 

 

González-Cagigal, M. A., Rosendo-Macı́as, J. A., & Gómez-Expósito, A. (2019). Parameter estimation of fully 

regulated synchronous generators using unscented Kalman filters. Electric power systems research, 168, 

210–217. 

González-Cagigal, M. Á., Rosendo-Macı́as, J. A., & Gómez-Expósito, A. (2022). State and Parameter 

Estimation of Photovoltaic Modules using Unscented Kalman Filters. RE&PQJ, 20. 

Gonzólez-Cagigal, M. Á., Rosendo-Macı́as, J. A., & Gómez-Expósito, A. (2022). Parameter estimation for 

hot-spot thermal model of power transformers using unscented Kalman filters. Journal of Modern Power 

Systems and Clean Energy, 11, 634–642. 

HP. (2024, April 01). HP Z420 Workstation Product Specifications. Retrieved from https://support.hp.com/us-

en/document/c03277050 

Onat, A. (2019). A novel and computationally efficient joint unscented Kalman filtering scheme for parameter 

estimation of a class of nonlinear systems. Ieee Access, 7, 31634–31655. 
Onat, A. (2020). Source Code: A Novel and Computationally Efficient Joint Unscented Kalman Filtering 

Scheme for Parameter Estimation of a Class of Nonlinear Systems. Retrieved from 

https://github.com/altanonat/MJUKF 

Onat, A. (2024). Source Code: Application of a Modified Joint Unscented Kalman Filter for Parameter 

Estimation of a Class of Mechanical Systems. Retrieved from Github: 

https://github.com/altanonat/mjukf-application 

Onat, A., & Kayaalp, B. T. (2020). A joint unscented Kalman filter-based dynamic weigh in motion system 

for railway vehicles with traction. IEEE Sensors Journal, 21, 15709–15718. 

Onat, A., & Örüklü, K. (2023). A New Numerical Approach for Simulation of Power Electronics Converters. 

14th International Conference on electrical and Electronics Engineering (ELECO) (pp. 1-5). IEEE. 



The Black Sea Journal of Sciences 14(4), 2338-2357, 2024 2357 

Onat, A., Voltr, P., & Lata, M. (2018). An unscented Kalman filter-based rolling radius estimation 

methodology for railway vehicles with traction. Proceedings of the Institution of Mechanical Engineers, 

Part F: Journal of Rail and Rapid Transit, 232, 1686–1702. 

Pei, X., Chen, Z., Yang, B., & Chu, D. (2020). Estimation of states and parameters of multi-axle distributed 

electric vehicle based on dual unscented Kalman filter. Science progress, 103, 0036850419880083. 

Peng, N., Zhang, S., Guo, X., & Zhang, X. (2021). Online parameters identification and state of charge 

estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter. International 

Journal of Energy Research, 45, 975–990. 

Raghavan, S., & Hedrick, J. K. (1994). Observer design for a class of nonlinear systems. International Journal 

of Control, 59, 515–528. 

Seung, J.-H., Atiya, A. F., Parlos, A. G., & Chong, K.-T. (2017). Identification of unknown parameter value 

for precise flow control of Coupled Tank using Robust Unscented Kalman filter. International Journal 

of Precision Engineering and Manufacturing, 18, 31–38. 

Uysal, C., Onat, A., & Filik, T. (2020). Non-contact respiratory rate estimation in real-time with modified joint 

unscented Kalman filter. Ieee Access, 8, 99445–99457. 

Van Der Merwe, R. (2004). Sigma-point Kalman filters for probabilistic inference in dynamic state-space 

models. Oregon Health & Science University. 

 


	References

