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ABSTRACT. Here we study the approximation properties of a modified Goodman-Sharma operator recently con-
sidered by Acu and Agrawal in [1]. This operator is linear but not positive. It has the advantage of a higher order
of approximation of functions compared with the Goodman-Sharma operator. We prove direct and strong converse
theorems in terms of a related K-functional.
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1. INTRODUCTION

In 1987, W. Chen and independently T.N. T. Goodman and A. Sharma presented at confer-
ences in China and Bulgaria, respectively a new modification of the classical Bernstein opera-
tors. For n € N and functions f(z) € CJ0, 1], they introduce the linear operator (see [5] and
[9, 10]):

n—1 1

A1) Ualfea) = FO)Psale) + ([ (0= DPuasr (00 ) Pus(@) + FDPs (o)
k=1

where

(12) Poi(z) = (Z) -2k, k=0,...,n

Operators of this kind were investigated by many authors (see [14], [4], [13], [11], [7, 8], [2], etc.)
and are generally known as genuine Bernstein-Durrmeyer operators. Note that the operators
in (1.1) are actually a limit case of Bernstein type operators with Jacobi weights studied by
Berens and Xu [3]. If we set

1(0), k=0,
Unk(f) =& (0= 1) [y Pacoj1 () f(t)dt, k=1,...,n—1,
f(l)a k= n,
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the operators defined in (1.1) take the form

Un(fv .’E) = Zun,k(f)Pn,k(x) or Unf = Zun,k(f)Pn,k~
k=0 k=0

Let us denote, as usual, by

p(a) =2z(1 -z
the weight function which is naturally connected to the second order derivative of the Bernstein
operator. Also, we set

(1.3) Df(x) := () f" ()
and
D*f:=DDf, ~ D'"'f:=DD'f, ~ (=23....

Recently, Acu and Agrawal [1] studied a family of Bernstein-Durrmeyer operators, as they
modify U, f by replacing the Bernstein basis polynomials P, ; with linear combinations of
Bernstein basis polynomials of lower degree with coefficients which are polynomials of ap-
propriate degree. For special choice of the parameters, these operators lack the positivity but
have a higher than O(n™!) order of approximation. For example, Acu and Agrawal considered
operators with O(n~?) and O(n~3) rate of approximation, see [1, Section 3].

The results presented in [1] inspired the authors of the current paper to explore in more
depth the operators explicitly defined by

(1.4) Un(f2) = tni(f)Pak(z),  z€l0,1],
k=0

where

(1.5) Po(2) = Popla) — %Epm(x).

By defining an appropriate K-functional, we prove direct and strong converse inequality of
Type B in the terminology of [6].

In order to state our main results, we need some definitions.

Let L[0, 1] be the space of all Lebesgue measurable and essentially bounded functions in
[0,1] and ACj,.(0,1) consists of the functions absolutely continuous in any subinterval [a, b] C
(0,1). Let us set

W2(9)[0,1] :={g : 9.9 € AC10c(0,1), Dg € L0, 1]}.

By W& ()[0,1], we denote the subspace of W?(¢)[0, 1] of functions g satisfying the additional
boundary conditions

lim 5g =0, lim l~)g =
z—0t z—1—
Henceforth, by || - || we mean the uniform norm on the interval [0, 1]. For functions f € C[0, 1]
and ¢t > 0, we define the K-functional
(1.6) K(f,1) == inf {|If - gll + | D°gll : g € W5 (0)[0,1], Dg € W(p)[0, 1]}

Here we investigate the error of approximation of functions f € C|0, 1] by the modified Goodman-
Sharma operator (1.4). Our main results read as follows.

Theorem 1.1. If n € N,n > 2,and f € C[0, 1], then

0.7 - £l < 4 VB (1. ).
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Theorem 1.2. For every function f € C[0,1] and n € N, n > 2, there exist constants C, L > 0 such
that

2
K(f.25) <€ (10t = 1]+ |Tef - D).
forall ¢ > Ln.

Remark 1.1. Another way to state Theorem 1.1 and Theorem 1.2 is the following: there exists a natural
number k such that

1 ~ ~
K(f73) ~ 10f = 7+ [Oknd = 11

The paper is organized as follows. In Section 1 state of the art is described. Preliminary and
auxiliary results are presented in Section 2. Section 3 includes an estimation of the norm of

the operator U,, a Jackson type inequality and a proof of the direct inequality in Theorem 1.1.
The last Section 4 is devoted to a converse result for the modified Goodman-Sharma operator
(1.4). Inequalities of the Voronovskaya type and Bernstein type for U, are proved using the
differential operator D, defined in (1.3). Theorem 1.2 represents a strong converse inequality
of Type B, according to Ditzian-Ivanov classification in [6]. Complete proof of the converse
theorem is given.

2. PRELIMINARIES AND AUXILIARY RESULTS

By B, f, n € N, we denote the Bernstein operators determined for functions f,

B0 =3 F(E)Puse), e,

k=0

where P, , are the Bernstein basis polynomials (1.2). The Bernstein operator central moments
play important role in many applications and they are defined by

i ~ (k ‘ ‘
Nn,l(m) = Bn((t - .’t) ,(E) - Z <ﬁ - LE) Pn,k(x)a 1= Oa 1; R
k=0
We summarize some well known useful properties of the Bernstein polynomials. Further on
we assume P, :=0if k < 0or k > n.

Proposition 2.1 (see, e.g. [12]). (a) The following identities are valid:

(2.7) > kPoi(x)=nz, > (n—k)P,(z) =n(l-2),
k=0 k=0
(2.8) > k(k = 1)Pyi(x) = n(n — 1)2?,
(2.9 Z(n —k)(n—k—1)P, () =n(n—1)(1 —2)%
k=0
(2.10) (@) =[Py g—1(x) — Poo1k(2)],
(2.11) (@) =n(n— 1) [Pa_ok—2(2) — 2Py 2 k—1(2) + Po_ai(2)].
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(b) For the low-order moments pi, ;(x), we have:
Nno( ):B ((tfx)o ) =1,
fin,1( B, ((t—z),2) =0,
p(z)
M, 2 n( t_ 33' ,.’I}) 77
1-2
NnS Bn(t—x ,Z) ( nlg.)so( )’
3(n — 2)¢?
paa(e) = Bu((t — ) ) = 222D | 2

The operators U, U, and the differential operator D satisfy interesting properties.

Proposition 2.2. If the operators U, U, and the differential operator D are defined as in (1.1), (1.4)
and (1.3), respectively, then

(@) DU, f =U,Df for f € W3()|0,1];

) Unf=U,(f — L Df) for f € W3(g)[0,1];
(c) l~)l7f ﬁf)fforfEWO( )]0, 1];
(d)UUf UUfforfeWO()[ 1;

(€) Un Uf UnUnf for f € W(p)[0,1);

) nlgr;OU f=ffor f € W3(9)[0,1];

® [IDUf]| < [|Dflfor £ € W3[0, 1],
Proof. For the proof of (a), see [14, Lemma 4.2]. We have

fjnf = Z un,k(f)P
k=0
n—1

= no(F) (Poo =~ Do) + 3 () (P = = DPui) + () (Pan — = DPy0)
k=1

=Un0 nO"’Zunk nk+unn(f)Pn,n

n—1

= 2 (oL + 3 s P+ )P

k=1
1
=Unf =~ (Unf)".
Then from (a), we obtain
n n n

which proves (b). Now, commutative properties (c) and (d) follow from (b) and (a):

o ~ 1 ~ ~ 1 ~~ -~

DO, f = DU, (f ~ — Df) = Un(Df — — DDf) = Un(D),

n n

and

. 1~ 1 - 1~ .
UnOnf = UnUn (£ - Df) =UnUnf - = UUnDf = UnUnf =~ UpDUpf = UnUn f.



184 Ivan Gadjev, Parvan Parvanov and Rumen Uluchev

The operators U,, commute in the sense of (e), since
o~ ~ 1 ~

1 ~ 1 ~ 1 ~

m+4+n

~ 1 ~
Df+—D2f).
mn mn

- UmUn<f_

The same expression on the right-hand side we obtain for U, U, f because of properties (a),
(b) and U,,,Uy f = UpU,, f. We recall two more properties of the operator U,, and function
€ W2(p)[0,1] (see [14, egs. (4.8), (2.4)]):

)

1~
|U.Df| < ||Df]|-
Therefore

- 1.~ 1 ~ 2~
10nf = £ = [Unf = = UDf = §|| < WUaS = fll+ = |0 D1| < = ID1]

hence lim Hﬁn f = fll =0, i.e. the limit (f) holds true.
n—oo
From the proof of Lemma 4.2 in [14] for every g € W?()[0, 1], we have

DU, g(z) = i P, () / (n —1)P,_o4_1(t)Dg(t) dt,
k=1 0

From the last representation, we obtain

n—1 1
|DU,g(z)| < ||Dyg| ZPn,k(m)/o (n — 1)Po_aj—1(t) dt < ||Dgl|,
k=1
which proves (g). O

We now introduce a function that will prove useful in our investigations:

1;x—2k(n—k)+(n—k)(n—k—1)1f$

-G )]

(2.13) Toi(z) :=k(k—1)

Observe that
, 7_1@(1571) (n—k)(n—k-1)
(214) n,k-(x) - 72 + (1 _ $)2 ’
. 2k(k—1) 2(n—k)(n—k—1)
(2.15) k() = g + SE >0, z € (0,1).
Proposition 2.3.

(a) The following relation concerning P, y, Ty, and differential operator D holds:
(2.16) DP ju(x) = T () P ().
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(b) If o is an arbitrary real number, then

B(a) = Z (a . %Tn,k(x))QPn,k(x) —a?+2— %

k=0

Proof. (a) From (2.10), (2.11) and ¢(z)P, k(x) = %Rﬁg k+1(x), it follows that

p(2) P (x) = n(n — 1) [p(x) Pazh-2(2) = 20(2) Pa2,k-1(2) + @(2) Pa—2 s(z)]

)
p[h=Die=k+

=n(n—1) =) Poj1(z) —2 iiz ]3 P ()
L 711)( Eln_;; Do)

— (k= )(n— k+ 1) Pap1(2) — 2k(n — k) P 4(2)

(k1) — k= 1) Py (2)

— [k(k - 1) (= k) + (1= K)(n — k= 1) | P i(a)

i.e. the identity (2.16).
(b) We apply the formulae for the Bernstein operator moments in Proposition 2.1 (b):

n

o) =3 [ 1+ (5 -2) = o (o) | st

pars o(x)
RN o 12 (1 —2z)? kN n? kBNt 2+ D0 -22) k
_k-zzo {( 17+ ©2%(x) (n + ©2(x) (n ) * o(x) (n )
2+ 1)n /k 2 2n(l—2x) /k 3
) (ﬁ —x) ) (ﬁ —x) }P"k(x)
— (o 5 . (1 —2z)? L2 2(a+1)(1 —22) .
2(0:02;)1)71 i 2(2) an:?(_x)%) 5 (2)
o 1)2 (1-22)* p(z) =~ n® (3n—6)p*(x)+ p(2)
= O T %
N 2(a+1)(1 —2x) 0 20+ 1n p(z)  2n(1 —22) (1 —22)p(z)
p(x) plx) n ©*(z) n?
a1y L) Br-Ge@)+1 o 21— 4p(2))
I T T (7 R BT
S JUU VIS S S Y S I Y S
np(x) n n () np(x) n
=a?+2- %

Auxiliary technical results will be useful for further estimations.
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Proposition 2.4. If n € N, n > 2, and

> 1 1
) :;k2(k+1)’ 6(n) ::;kg(k—i—l)T

then
1 1
. < < =
(2.17) 52 = Aln) < per
4
2.18 o(n) < —

Proof. Since % ”T_l < 1 for k > n, we have for the lower estimate of A(n)

k n—1 n-—1 1 n—1 1 1
> : : — - : N
n) _;kz(lﬂ—i—l) k—1 =n n l;l (k—1Dk(k+1) n  2n—1)n 2n?

For the upper estimates of A(n) and 6(n), we obtain

o 1 1 1
A(n) <kz:;(k—1)k(k:+1) ETCE T
6(n) < kz:% (k—DR(k - Dk +2)  3n(nz 1) = 03"

3. A DIRECT THEOREM
We will first prove the next upper estimate for the norm of the operator U,, defined in (1.4).
Lemma 3.1. If n € Nand f € C[0,1], then
(3.19) [Tt < VIS, ie [Ua]l < V3,
Proof. We have

1 ~ 1
Poi(@) = Pu(e) =~ DPu(x) = (1 -2 Tn,k(z))Pn,k(x).
Then for z € [0, 1],

3

Tal |_ Prt@)| < 3 s (1) | P (o)
k=0
<Hf||Z;PM =1yt S T ()| P,

Applying Cauchy inequality, we obtaln

ATRSIE fw S (1 Zusl@) Pasla) J 3 Pusla)
k=0

k=0

Since >";'_, Pk (x) = 1 identically, by Proposition 2.3 (b) with o = 1, we find

~ 2
Un(F o) <4/3= Il < VB3I = €[0,1).
Hence, inequality (3.19) follows. O
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In order to prove a direct theorem for the approximation rate for functions f by the operator
U, f, we need a Jackson type inequality.
Lemma3.2. If n € N, f € W2()[0,1] and Df € W2()[0, 1], then

~ 1~
(3.20) |Unf = f|| < < ID*fI.
n

Proof. Having in mind the relation

Uf —Ups1 f = DUy f,

k(k+1)
(see [14, Lemma 4.1]) and Proposition 2.1 (a) for f € WZ()[0, 1], we obtain

- - 1 ~
ka — Uk+1f = ka - — DUk-f — Uk.:,_lf + — ] DUk-Hf
=Urf - Uk+1f+ DUka - *Dka
1
= (33 +1)DUk+1f+ - DUpi1f — Dka
1
—E(Dka — DUgs1 f)
1 - -
—E(UkDf — Up41Df)
1 1 ~ ~
- DUwD
R DU DS
ie.,
_ _ 1 _ _
21 — =—— D Df.
(3.21) Uif = Ugsr f EIEY U1 Df

Therefore for every s > n, we have

Uf —Of = Z Orf = Urirf) = me@ﬂw

Letting s — oo and by Proposmon 2.2 (a) and (f), we obtain
(3.22) Udf — f = Z BT DUk Df
Then from Proposition 2.1 (g) for Df € WQ( )[0,1]

1T f = £1l < Z ZH T IPUkn Df < Z m |D?£]]-

Proposition 2.4, (2.17), ylelds

Therefore
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A direct result on the approximation rate of functions f € C/0, 1] by the operators (1.4) in
means of the K-functional (1.6) follows immediately from both lemmas above.

Proof of Theorem 1.1. Let g be arbitrary function, such that g € W2()[0,1] and Dg € W2()[0, 1].
Then by Lemma 3.1 and Lemma 3.2, we obtain

1Tt = £l < Fnf = Tugl + [Tag — gl| + g — £1
<(+VEIf gl + |;1529||

<1+ VB (IF ~ gl + 5 [ D%]]).

Taking infimum over all functions g with g € W(¢)[0, 1] and Dg € W2()[0, 1], we obtain

[Tnf = £]| < (1+\/§)K<f,%>.

4. A STRONG CONVERSE RESULT

First, we will prove a Voronovskaya type result for the operator U,,.

Lemma4.3. If A(n) = 302, iy, 0(n) = S0, ez and f € C[0, 1] is such that f, Df €
WE()[0,1] and D3 f € Loo[0,1], then

(4.23) |Unf = £+ Xn)D?f|| < 0(n) | D*f|.
Proof. We have

Unf — f+An)D*f = — Uk+1D f Z o kJr 5 Z D?f — Uk+1D2f7
k=n

k:2 k+1) k2(k+1)
see the proof of Lemma 3.2, eq. (3.21). Then

~ ~ > 1 ~ ~
|Unf = f+An)D?*f|| < ,;m |D?f — U1 D*£]].

Using (2.12) with D2f instead of f, we obtain

~ ~ >0 1
|Unf = f+A0)D*f|| < kz:; 2k+1) (k+ HDDzJCH = 0(n) |D*f]].

We need an inequality of Bernstein type.
Lemma 4.4. Let n € N,n > 2and f € C|0, 1]. Then the following inequality holds true
(4.24) IDU,.fI| < Cnl| ],
where C = 6.5 + /6.
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Proof. Since

k=0 k=0
it is sufficient to find an upper estimate for the quantity

>_|DPar(@)] = le JE(
k=0
Remind that, according to (2.16), we have the relatlon

DPyi(z) = (@) Pl i (x) = T o) Page()-

Hence
B su(z) = Pp(z) — %Epn W(z) = (1 _ %Tn,k(x)) Py (),
Be) = (1~ Tos@) Pa(a) +2(1 = 2 Toaw)) Prslo) + (1= 2 o)) )
Then,

DP, i(x) = ¢(z) P} ()

Therefore
S 1BPu(o)] < an (o) + ba(a) + en(a),
where -
n(@) = P S 10 )| Pt
=
bu(x) = ”ﬁ Z Th ()Pl (3],

1. Estimate for a,, (z). From (2.15) and (2.8)—(2.9),

n

ZTT/LI,k(m)Pn,k(x) _ Z <2k(k -1) " 2(n —(kl)(_nx—)gk - 1))Pn,k($)

3
x
k=0 k=0

= 2 k- )P) + i _2$)3 S (0= k)(n— k — 1) Py(2)
k=0

k=0

n(n —1)(1 —z)?

2 2
:m—n(n—l)x +(1—x)3
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Having in mind 7/, (z) > 0 in (2.15), we obtain

(4.25) = ﬁ i (z) = 2(n — 1).

2. Estimate for b, (z). Observe that

Z|T1/1k( |*Z| (1—x)|
k=0

hence, there is a symmetry of the function b, (z) in z = 1. Therefore, it is sufficient to estimate
b (z) for z € [0, 5].
We will show that in [0, 5] the function b, (z) has exactly | 251 | local extrema hy, attained

at points in intervals (21 k] k = 1,... | 2-L], respectively. We will estimate all the local

2
maxima hy, and then an estimate for b, (z ) w111 follow immediately.

(i) First, we prove that

S() : _2“0 Z (z) = 4(n — 1).
From (2.10) and (2.14),
n n—1
Z T’I”L,k(x) =n Z n, k+1 - Ak(ﬂf))Pn—Lk(x)-
k=0 k=0
Since
, , —k—1)(n—-k—2 k+1Dk  k(k—-1 —k)(n—k—1
n,k+1($) - nk(x): n (1 E(Z)z ) o ( 2 ) + (x2 ) - n (i(ib )2 )
2k 2(n—-k-1)
2 (1w
using (2.7) we get
n—1

(TL — k‘ — 1)Pn,1}k(l')

n n—1
2n 2n
/ / _
I;)Tn,k(l‘) n,k(x) - _ﬁ kzﬂ)kpnfl,k(x) - (1 7 .Z)Q

k=0

2n 2n

= (n—1)z e (n—1)(1—12x)
_ 2n(n—1)
 p(a)

Therefore,
_ —2¢(x) ' —2n(n — 1) — aln
(4.26) S(z) = - ) 4( 1).

(ii) By (2.15), T}/ .(z) > 0, hence —T7 , () strictly decreases for z € (0, 1).
For k = 0,1, we have —T; , (0%) < 0, then =T, , () < 0, z € (0,1), and p(2)T}, ; (z)
has its only zero in [0,1) at & = 0.
For k = 2,...,n — 2, we have T} ,(0%) > 0, and 7}, , (=) has a unique simple zero

6 = Tt < (54

at
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For k = n —1,n, we have —T , (z) > 0 forz € (0,1),and —¢ ()T}, ,(z) = 0 only for
€, = 1in (0, 1.
(iii) For the Bernstein basis polynomials on (0, 1), we have

Pl o(x)=—n(l—2)""" <0,
/ Y\ k-1 n—k—1 k ! : k
P (x)=n Pk (1—) (= —=2), and P, ;(z) =0 onlyifx = —
: n : n
Pl (x) =na""">0.

(iv) Now, from (ii) and (iii) for = € (0,1),
*90( )T' (x)P’ (z) >0,

—p(x)T), 1 (z) P, ()>0f0rx€(§1,n)=(0,%)
()T,’Lk(x) C(@) > 0forze (16, k=2,..., |25,

*90() ()Pflk()<0f0r93€(§kan)rk*Qw--aL%lJr
p(x )T7/z,n( ) Py n(2) > 0.

(v) From the observations in (ii)—(iv), it follows that
—p(z) ;lk(:c) ,’Lk(x) > 0, k=0,....n
except
— ()T}, () Py i (x) <0, € (&), k=1,....["%F],
— go(x)T,’l_’n_k(x) P,'Lyn_k(x) <0, z€ (”T_k,fn_k), k=1,..., VT_lJ
Hence,

Lnl

n
k=0
Therefore, for k =1,..., | 21|,
4(n — 1), e [55 &l
427) ba(e) = 2%
4(71—1) nk Pr/Lk( )‘a IE[&W%]'
Moreover,
b, (x) = 4(n — 1), v €[22 2] peven, and x € [, Bt nodd.
(vi) This means that we have to estimate the maxima of the functions
—20(2)T5, 1. (x) _
sk (z) ::‘n’kPT'L,k(x)‘, z€ [ 2], k=1,...,[%2]

By (iv) for k = 1, we have:

—2(,0(1‘)1—;/1’1(33) / 1 n—3
s1(w) = ———= L2 P (x) = 2n(n — 1)(n — 2);3(5 - x) (1—z)"2.
Since ) )
)= — 1-z)" <1
ZGI[Ié?i);n] x(n 53) 4TL2 and ( 37) -
we obtain
n(n—1)(Mn—-2) n
. = < < —.
(4.28) & xér[ré?i);n] 81((E) - 4n? -2
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Letus fix k € {2,..., 25| }. We estimate the local extremum
hi:= max sg(x).
z€ [ k/n]

According to (iv), we have

s1(0) = 21 0P pl0) = 2 10 ()t - (B ),

n n

ie.,

(4.29) sk(@) = = Ty, 1 (2) Pois(@) % - 33)

The function T, , (z) is strictly increasing in [*-%, £] and change sign only at point

&k = ————/—— Then, forz € Sk,g ,
k(k—1)n* (n—k)(n—k—1)n? 1 1
T/ — ! k —_ — = 2(Z — .
e, Taale) = T (8) = —HEg o e e (- )
The function h(z) = 1 — —L_ is decreasing in (0, %) since &' (z) = (1 — —1-)" < 0, hence

1

forke {2,..., |25 J}

, L1 1 L1 1 n?

(430) T"*’“(w)gn(E_n—k)Sn <§_n—2)§?'

Also, =1 < ¢ < Eand forz € [¢, £], we have £ — 2 <
[0, 1], it follows from (4.29) and (4.30) that

3=

. Since 0 < P, x(z) < lin

2
o2 L
2 n
Taking into account (4.28), for n > 2 we have
n n—1

Finally, for b,,(x), using (4.27) and (4.31), we obtain the estimate

bo(z) <4(n—1)+ max hy <4(n—1)+ ~
1<ks| 25t
or

(4.32) bn(z) < 4.5n, z € [0,1].

3. Estimate for ¢, (z). We apply Cauchy inequality and Proposition 2.3 (b) with & = 0 and
a=1

@) = [T (1= 2 Tu(0)

Pn,k(l’)
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Then,
(4.33) cn(z) < V6, z € 10,1].
From (4.25), (4.32) and (4.33), we obtain

z": ‘Bﬁnk(x)‘ < an(z) + bp(z) + cp(z) <2(n—1) +4.5n+V6n < (6.5+ \/é)n

Therefore s B B
|DUf|| < Cn|fll,  C:=65+ 6.

Now we are ready to prove a strong converse inequality of Type B.

Proof of Theorem 1.2. We follow the approach of Ditzian and Ivanov [6].
Letn € N, n > 2, f € C[0,1] and A(n), 6(n) be defined as in Proposition 2.4. From the

Voronovskaya type inequality in Lemma 4.3 for the operator Uy and function U3 f instead of f,
we have

AO||D2TEf| = || M) DT f||
= |TU3f = U2+ NOD* UL f — UUs f + U f||
<||UUEf = USf+ NODUSf|| + U f - U £
< 0)||D*TRf || + T2 (Tef 1)

Now, using Lemma 4.4 for the function D? ﬁfb f and in addition Lemma 3.1 repeatedly three
times, we obtain

(O DTS f|| < Cno)|DU2f|| +3V3||Uef — £
= Cn(O)|D*TS(f = Unf) + DU f|| +3V3|Uef — £
< Cnl(0)||D*U2(f — Unf)|| + Cno(0)| D2UEF|| +3V3 || Uef — f]-
Applying the Bernstein type inequality Lemma 4.4 twice for f — U, f yields
(0| D*Uf|| < Con200)|| f — Unf|| +3V3||Uc — £ + Cno(0)|| DT £|-
From inequalities (2.17) and (2.18) of Proposition 2.4, we get

1 =9 4C3n?
3 ID°Unf | < —gp -1+ 5 oo |
Let us choose ¢ sufficiently large such that
4Cn _ 1 , 16C
97 S @7 1.e. Y4 Z T n.

If weset L = %, for all integers ¢ > Ln we have

1m0
LB <

~ T f]) +3VE 0 — 1]+ g | D201,
1 o~ ~
1002 < 1],

~ o~ ~ ~ 02~
(4.34) BT < € |17 - Tu]| +12V3 5 |G - |
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By using Lemma 3.1,
1 = T2 < N1 = Oafl| + 1[Tns = O] + 02 = TR1|
<1+ V3+ (V3| f - Unf

)

and we obtain the inequality
(4.35) I = Tafll = 4+ V) = Tnf].

It remains to complete the estimation of the K-functional. Since U3 f € W2(p)[0,1], from (4.34)
and (4.35) it follows

K (5,5 ) =t {17 —gll + 5 |5 : 9 € W3(2)l0,1], Dy € W(g)[0,1]}
<7 = Tafl + 5 | °T3 )

~ ~ 2 -~
< (44 VB +E)|Taf — 1] +12v8 5 |G — 1],

Therefore,
K(f, %) <€ S~ 11+ 00 - )
7n2 — nz n Z
forallézLn,whereC:4+\/§+52andL:%,6’:6.5+\/§ O
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