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Graphical/Tabular Abstract (Grafik Özet) 

This work proposes a hierarchical encoder for image inpainting, seamlessly encoding visible and 

missing features. / Bu çalışma, görsel ve eksik özellikleri yüksek kalitede kodlayan bir hiyerarşik 

kodlayıcı öneriyor. 

 

Figure A: Inpainting results of our method. Our method is able to control the inpainting style.  

/Şekil A: Yöntemimizin inpainting sonuçları. Yöntemimiz, inpainting tarzını kontrol edebilme 

yeteneğine sahiptir.  

Highlights (Önemli noktalar)  

➢ A novel hierarchical encoder is proposed to seamlessly encode both visible and missing 

image features for more effective inpainting. / Görünür ve eksik görsel özellikleri 

sorunsuz bir şekilde kodlamak için yeni bir hiyerarşik kodlayıcı önerilmiştir. 

➢ The work introduces a single-stage architecture that encodes both low-rate and high-rate 

latent features, optimizing the use of StyleGAN for inpainting tasks. / StyleGAN için iç 

boyama görevlerini optimize etmek amacıyla, düşük ve yüksek oranlı latent özellikleri 

kodlayan tek aşamalı bir mimari tanıtılmıştır. 

➢ Extensive experiments show improvements over state-of-the-art models. / Kapsamlı 

deneyler, önerilen yöntemin mevcut en son modellere göre önemli iyileştirmeler 

sağladığını göstermektedir. 

Aim (Amaç): The aim of this work is to improve image inpainting by proposing a novel approach 

that seamlessly encodes both visible and missing image features. / Bu çalışmanın amacı, görsel ve 

eksik özellikleri yüksek kalitede kodlayan yeni bir yaklaşım önererek iç boyama işlemini 

geliştirmektir. 

Originality (Özgünlük): The originality of this work lies in the hierarchical encoder and single-

stage architecture. / Bu çalışmanın özgünlüğü, hiyerarşik kodlayıcı ve tek aşamalı mimaride 

yatmaktadır. 

Results (Bulgular):  The results of this work show significant improvements in image inpainting 

performance compared to state-of-the-art models. / Bu çalışmanın sonuçları, mevcut en son 

modellere göre iç boyama performansında önemli iyileştirmeler göstermektedir. 

Conclusion (Sonuç): The conclusion of this work is that the proposed hierarchical encoder and 

single-stage architecture significantly enhance the effectiveness of image inpainting. / Bu 

çalışmanın sonucu, önerilen hiyerarşik kodlayıcı ve tek aşamalı mimarinin, iç boyama etkinliğini 

önemli ölçüde artırdığıdır. 
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Abstract 

Image inpainting, the process of removing unwanted pixels and seamlessly replacing them with 

new ones, poses significant challenges requiring algorithms to understand image context and 

generate realistic replacements. With applications ranging from content generation to image 

editing, image inpainting has garnered significant interest. Traditional approaches involve 

training deep neural network models from scratch using binary masks to identify regions for 

inpainting. Recent advancements have shown the feasibility of leveraging well-trained image 

generation models, such as StyleGANs, for inpainting tasks. However, effectively embedding 

images into StyleGAN’s latent space and addressing the challenges of diverse inpainting remain 

key obstacles. In this work, we propose a hierarchical encoder tailored to encode visible and 

missing features seamlessly. Additionally, we introduce a single-stage architecture capable of 

encoding both low-rate and high-rate latent features used by StyleGAN. While low-rate latent 

features offer a comprehensive understanding of images, high-rate latent features excel in 

transmitting intricate details to the generator. Through extensive experiments, we demonstrate 

significant improvements over state-of-the-art models for image inpainting, highlighting the 

efficacy of our approach. 
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Öz 

Görsel iç boyama, istenmeyen piksellerin kaldırılması ve bunların yerini yeni piksellerle sorunsuz 

bir şekilde doldurma süreci, algoritmaların görsel bağlamı anlamasını ve gerçekçi yerine 

koymalar üretmesini gerektiren önemli zorluklar sunar. İçerik üretiminden görsel düzenlemeye 

kadar pek çok uygulama alanı bulunan görsel iç boyama, önemli bir ilgi görmüştür. Geleneksel 

yaklaşımlar, iç boyama için bölgeleri belirlemek amacıyla ikili maskeler kullanarak derin sinir 

ağı modellerinin sıfırdan eğitilmesini içerir. Son gelişmeler, iyi eğitilmiş görsel üretim 

modellerinin (örneğin, StyleGAN'ler) iç boyama görevlerinde kullanılabilirliğini göstermiştir. 

Ancak, görselleri StyleGAN'ın latent uzayına etkin bir şekilde yerleştirme ve çeşitli iç boyama 

zorluklarını aşma, hala ana engelleri oluşturmaktadır. Bu çalışmada, görünür ve eksik özellikleri 

sorunsuz bir şekilde kodlamak için tasarlanmış hiyerarşik bir kodlayıcı önermekteyiz. Ayrıca, 

StyleGAN tarafından kullanılan düşük ve yüksek oranlı latent özellikleri kodlayabilen tek aşamalı 

bir mimari tanıtmaktayız. Düşük oranlı latent özellikler, görsellerin kapsamlı bir şekilde 

anlaşılmasını sağlarken, yüksek oranlı latent özellikler, karmaşık detayların üreticiye 

iletilmesinde mükemmel sonuçlar elde etmektedir. Bu makalede, kapsamlı deneylerle, iç boyama 

için mevcut en son modellere göre önemli iyileştirmeler sağladığımızı ve yaklaşımımızın 

etkinliğini vurgulamaktayız. 

 

1. INTRODUCTION (GİRİŞ) 

Image inpainting involves the removal of unwanted 

pixels and their replacement with new ones in a 

manner that renders the alterations 

indistinguishable. This task presents significant 

challenges, requiring the algorithm to comprehend 

the context of the image based on the available 

unerased partial data and generate new pixels that 

seamlessly blend with the surrounding content. Due 

to its broad range of applications spanning from 

content generation to image editing, image 

inpainting algorithms have garnered considerable 

interest. The complexity of the task, coupled with 

its potential for enabling various applications, has 

made it a popular subject of research [1–9]. 

Traditionally, deep neural network models have 

been trained from scratch for image inpainting 

tasks. Binary masks are employed to delineate the 
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regions to be erased, after which images are 

multiplied by these masks to nullify the unwanted 

pixels. Leveraging paired data comprising erased 

and original images, networks are trained using 

various loss objectives, including pixel-wise 

reconstruction and adversarial losses [1–5, 10]. 

While previous models were randomly initialized 

and trained from scratch for this task, recent 

approaches demonstrate the feasibility of leveraging 

well-trained image generation models for inpainting 

tasks [6, 9]. These image generation models are 

trained on large-scale image datasets with 

substantial computational resources [7, 11– 15]. 

They possess the capability to generate images with 

realistic details, indicating rich feature 

representations and a robust implicit understanding 

of images, rendering them suitable candidates for 

inpainting tasks. 

Among generative models, StyleGANs [11, 13] 

have been extensively explored for both image 

editing [16–23] and inpainting tasks [9, 24, 25]. 

Successfully utilizing StyleGAN for editing and 

inpainting presents a key challenge: correctly 

embedding a given image into StyleGAN’s latent 

space so that the input image can be reconstructed 

via StyleGAN from the embedded vector. In the 

case of inpainting, there is an additional challenge: 

embedding the erased image into StyleGAN’s latent 

space. While previous methods only embedded 

erased images and inpainted them with StyleGAN 

in a deterministic manner [24, 25], a recent method 

demonstrates the possibility of achieving diverse 

results by augmenting the embedded latent vectors 

with sampled ones [9]. Therefore, for diverse 

inpainting, another challenge arises: the encoder 

must encode the visible features of the input image 

while also being aware of the missing ones, 

allowing the new sampled codes to complete the 

features. For instance, when erasing a person’s hair, 

the encoder must encode all the facial features 

except the hair and be able to incorporate hair 

features from the sampled codes. This enables 

different hair colors and styles to be encoded among 

different samples, resulting in the generation of 

various images, as illustrated in Figure 1. 

 

Figure 1. Inpainting results of our method. Our method is able to control the inpainting style via 

InterFaceGAN directions [18] for StyleGAN.  (Yöntemimizin iç boyama sonuçları. Yöntemimiz, StyleGAN için 

InterFaceGAN yönlendirmeleri [18] aracılığıyla iç boyama tarzını kontrol edebilme yeteneğine sahiptir.) 

In this work, we introduce a hierarchical encoder 

tailored to the intricate task of encoding visible 

features while seamlessly integrating missing 

features from sampled ones. Furthermore, we 

propose a single-stage architecture that 

encompasses encoding both low-rate and high-rate 

latent features utilized by StyleGAN. While low-

rate latent features possess a comprehensive 

understanding of images, they may not capture all 

intricate details due to an inherent information 

bottleneck. While high-rate latent features may lack 

robust feature extraction capabilities necessary for 

understanding the context required for realistic 

inpaintings, they excel in transmitting intricate 

image details to the generator. 

In summary, our main contributions are as follows: 

• We present a novel hierarchical encoder 

designed specifically for the complex task 

of encoding visible features while 

seamlessly integrating missing features 

obtained from sampled data. This encoder 

is tailored to address the challenges 

inherent in inpainting tasks, where the 

reconstruction of images necessitates a 
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comprehensive understanding of both 

visible and missing features.  

• We propose a single-stage architecture 

capable of encoding both low-rate and high-

rate latent features utilized by StyleGAN. 

While low-rate latent features offer a 

thorough understanding of images, they 

may lack the capacity to capture fine details 

due to inherent limitations of the low 

dimension. Conversely, high-rate latent 

features, while potentially deficient in 

robust feature extraction capabilities 

necessary for contextual understanding, 

excel in transmitting high-frequency image 

details to the generator, thereby enhancing 

the realism of the inpainted images.  

• We conduct comprehensive experiments to 

evaluate the effectiveness of our 

framework. Our results demonstrate 

significant improvements over state-of-the-

art models for image inpainting, 

showcasing the efficacy of our approach in 

addressing the challenges inherent in this 

task.  

 

2. RELATED WORK (İLGİLİ ÇALIŞMALAR) 

Image inpainting is a widely studied area owing to 

its diverse applications in image editing, object 

removal, and image extension [3, 26–29]. Effective 

inpainting requires a thorough understanding of 

context, prompting researchers to propose various 

techniques such as contextual encodings and 

semantic attention modules. These methods aim to 

guide the generation of erased pixels based on the 

valid (unerased) pixels [1, 4, 28, 30–32]. 

Additionally, specialized convolutional layers have 

been introduced to handle valid and invalid (erased) 

pixels differently, enhancing the encoding of valid 

pixel information [2, 3, 5]. Various approaches, 

including sketches, brush strokes, and semantic 

masks, have also been explored to guide image 

inpainting algorithms [3, 10, 26, 27]. These methods 

typically employ an encoder-decoder structure 

trained from scratch for the inpainting task.  

In recent years, significant progress has been made 

in image generation methods, specifically by 

GANs, which involve sampling a point from a 

Gaussian distribution and learning to map it to a 

realistic image [7, 11–15]. This progress has 

sparked interest in utilizing the image generation 

capabilities of these networks for inpainting tasks.  

Initially, architectural inspiration was drawn from 

these methods. For instance, CoModGAN [33] pro- 

posed a StyleGAN-like architecture trained for 

inpainting, demonstrating successful diverse 

inpainting results while still being trained from 

scratch for the task. Subsequently, well-trained 

image generation algorithms, especially 

StyleGANv2, have been directly applied to 

inpainting [9, 24, 25]. Among these approaches, Yu 

et al. [24] learned an encoder to project images into 

the W+ space of StyleGAN. The encoder predicts 

W+ from erased images, from which an image is 

generated via StyleGAN, minimizing pixel-wise 

and feature-wise distances between the generated 

and unerased original image. This leads to 

deterministic outputs since only one W+ code is 

encoded for erased images. Wang et al. [25] adopted 

a similar approach, embedding the image into a 

deterministic latent code using an encoder.  

Our work is primarily related to diverse inpainting 

with GAN inversion [9]. Yildirim et al. [9] 

demonstrated that encoded latent codes can be 

mixed with sampled ones to achieve diversity in 

inpainting results. While their method uses a feed-

forward architecture, we employ a hierarchical 

approach to achieve diverse inpainting with higher-

quality results. Additionally, our single stage 

architecture is more efficient and achieves better 

results.  

 

3. MATERIALS AND METHODS (MATERYAL 

VE METOD) 

3.1. Architecture (Mimari) 

In this work, we develop a StyleGAN-based image 

inpainting model. Our approach incorporates two 

key mechanisms to enhance the model’s 

performance: augmenting missing features through 

the mapping network and facilitating seamless 

inpaintings by allowing high-rate latent features to 

bypass from the encoder directly to the StyleGAN 

generator. This section provides an in-depth 

explanation of both contributions. 

 

Firstly, like previous inpainting methods [5, 9], we 

generate binary masks M with 1s defining the valid 

pixels and 0s defining the pixels we would like to 

erase. An input image, I, is erased by replacing the 

pixels we would like to erase with 0s. This is 

achieved by simply taking the dot product of mask 

and input image, 𝐼𝑒 = 𝑀 ⊙ 𝐼. We follow the 

approach of Yildirim et. al. [9] and use 

StyleGAN2’s [13] mapping and generator networks 

to sample latent codes and synthesize images, 

respectively. These modules are pretrained and we 

do not tune them in our trainings.
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Figure 2.  Overview of the proposed hierarchical image encoding framework. Through a hierarchical 

mixing mechanism, our model integrates visible information from masked images with missing 

details derived from mapped latent codes. The method sequentially generates output styles, 

ensuring awareness of previously determined styles. (Önerilen hiyerarşik görsel kodlama çerçevesinin 

genel bakışı. Hiyerarşik bir karıştırma mekanizması aracılığıyla, modelimiz maskelenmiş görsellerden görünür bilgiyi, 

haritalanmış latent kodlardan türetilen eksik detaylarla birleştirir. Yöntem, çıktıları sırasıyla üretir ve daha önce 

belirlenen stillerin farkında olmayı sağlar.) 

Our encoder receives the erased image along with 

its corresponding mask, as illustrated in Fig. 2. We 

employ a straightforward encoder architecture 

based on [34] to map our erased images onto the 

latent space 𝑊+. Nonetheless, merely encoding the 

erased images might not suffice for effective 

inpainting. For instance, if the erased regions 

correspond to essential facial features such as eyes 

or hair, the encoded features may lack crucial 

information about these elements. Hence, we 

establish a secondary pathway to supplement the 

absent features from the erased image. This 

secondary pathway leverages StyleGAN’s mapping 

network to sample random z vectors and derive 

corresponding 𝑊+ codes, which naturally align 

with StyleGAN’s latent space. The encoded latent 

code,  𝑊𝑒𝑛𝑐, and the mapped latent code, 𝑊𝑟𝑎𝑛𝑑 , 

are both inputted into the mixing mechanism as 

shown in Figure 2. 

 

In this paper, we propose a novel hierarhical mixing 

mechanism different than previous works. We 

anticipate the mixing network to integrate the 

visible information from the masked image with the 

absent details derived from the mapped latent codes. 

To mix the 14 × 512 sampled 𝑊𝑟𝑎𝑛𝑑 with the 28 × 

512 encoded 𝑊𝑒𝑛𝑐, we set 14 MLP (Multi-layer 

perceptron) layers. We employ a 28 × 512 feature 

encoding scheme with a specific purpose in mind. 

Among these features, half (14 × 512) are dedicated 

to representing the image features themselves, while 

the remaining half are tasked with indicating which 

features have been accurately encoded and which 

have been affected by image erasure. Therefore, for 

each style code embedding, we use a single channel 

from 𝑊𝑟𝑎𝑛𝑑 and two channels from 𝑊𝑒𝑛𝑐. Initially, 

we produce 𝑊𝑜𝑢𝑡 for the coarse layers, representing 

the style codes directed towards StyleGAN’s lowest 

resolution feature layers. Precisely, we first 

generate the 𝑊1
𝑜𝑢𝑡 intended for the initial adaptive 

instance normalization layer of StyleGAN via a 

MLP that takes the first channel of 𝑊𝑟𝑎𝑛𝑑 and first 

two channels of 𝑊𝑒𝑛𝑐, 𝑊1
𝑟𝑎𝑛𝑑  and 𝑊1:2

𝑒𝑛𝑐  , 

respectively. After that, in addition to the second 

channel of 𝑊𝑟𝑎𝑛𝑑  and the next two channels of 

𝑊𝑒𝑛𝑐, 𝑊2
𝑟𝑎𝑛𝑑, and 𝑊3:4

𝑒𝑛𝑐, we feed 𝑊1
𝑜𝑢𝑡 to the next 

linear layer. By proceeding in this manner, the 

mixing mechanism remains cognizant of the styles 

that have been determined thus far. We generate the 

subsequent output styles sequentially using this 

approach. In our experiments, we show that using 

this hierarchical encoding greatly improves the 

results. MLP consists of two-layer linear networks. 

The first linear layer receives 3 × 512 input features 

and outputs 1 × 512 features. There is a ReLU 

activation following the first linear layer and the 

second linear layer has input and output dimensions 

set to 1 × 512. 

 

Our second contribution is to achieve seamless 

inpaintings by allowing high-rate latent features to 

bypass from the encoder directly to the StyleGAN 

generator. Previous methods leveraging StyleGAN 

for image editing [22, 34] and inpainting [9] 

recognize the limitations of using low-rate latent 

codes of 𝑊+ . These codes often lack sufficient 

information to fully represent the image for the 

generator. The 𝑊+ codes, being of size 14 × 512, 
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are considerably smaller than the input image size 

of 3 × 256 × 256. This information bottleneck often 

leads to the loss of many details in the final 

generation if only W+ codes are employed. To 

address this issue, we utilize a skip encoder 

network, depicted in Figure 3, to convey high-detail 

image information into the generation pipeline. 

Previously, to address the same issue, DivInv [9] 

proposed taking the generated image from 

StyleGAN and feeding it into a second encoder and 

generation pipeline to achieve the final results. This 

second encoder and generation process incorporated 

skip connections. In this study, we introduce a more 

streamlined architecture, delivering high-rate 

features to the StyleGAN generator within a single-

stage framework. Unlike previous methods, we 

eliminate the need to generate images first and 

encode them again. Instead, we leverage the 

pretrained encoder and invoke the StyleGAN 

generator only once. We do that via a UNet 

architecture of Skip encoder operating within a 

spatial dimension of 64 × 64. By simultaneously 

inputting both the encoded and generated features, 

the Skip encoder can identify the absent high-rate 

details from the image generation and incorporate 

them into the generation process. This feature space 

is referred to as 𝐹+ in the ablation study. The output 

of the skip encoder serves as the features for 

StyleGAN. We achieve that by replacing the 64 × 

64 generated features with the output of the Skip 

encoder. 

 
Figure 3. Architecture overview: Our study introduces an architecture, delivering high-rate features to the 

StyleGAN generator in a single-stage framework. Unlike prior methods, we bypass the generation-then-

encoding process, instead leveraging a pretrained encoder and invoking the StyleGAN generator once. 

This is facilitated by the Skip encoder, operating within a spatial dimension of 64 × 64. By 

simultaneously inputting both encoded and generated features, the Skip encoder detects missing high-rate 

details in image generation, integrating them into the process. The output of the Skip encoder replaces the 

64 × 64 generated features, serving as input features for StyleGAN. The detailed depiction of the Mixing 

mechanism in this figure has been omitted for brevity. For a comprehensive understanding of the Mixing 

mechanism, please refer to Figure 2.  (Mimari Genel Bakışı: Çalışmamız, StyleGAN üreticisine yüksek oranlı özellikleri 

tek aşamalı bir çerçevede sunan bir mimari tanıtmaktadır. Önceki yöntemlerden farklı olarak, üretim-sonra-kodlama sürecini 

atlıyor ve bunun yerine önceden eğitilmiş bir kodlayıcı kullanarak StyleGAN üreticisini bir kez çağırıyoruz. Bu, 64 × 64 

boyutunda bir uzaysal boyutta çalışan Skip kodlayıcı ile sağlanmaktadır. Hem kodlanmış hem de üretilmiş özellikleri aynı anda 

girdiler olarak vererek, Skip kodlayıcı, görsel üretimindeki eksik yüksek oranlı detayları tespit eder ve bunları sürece entegre 

eder. Skip kodlayıcısının çıktısı, 64 × 64 boyutundaki üretilmiş özelliklerin yerine geçer ve StyleGAN için giriş özellikleri olarak 

kullanılır. Bu şekildeki Mixing mekanizmasının ayrıntılı tasviri kısalık açısından çıkarılmıştır. Mixing mekanizmasının kapsamlı 

bir şekilde anlaşılması için lütfen Şekil 2'ye bakınız.) 

3.2. Training Objectives (Mimari) 

We train the framework with a combination of 

reconstruction and adversarial losses. Our 

framework outputs a generated image, 𝐼𝑜. 

Additionally, we obtain a final image by 𝐼𝑓 =
 𝑀 ⊙  𝐼 + (1 − 𝑀) ⊙ 𝐼𝑜. The resulting image 

guarantees that unerased pixels remain unchanged 

throughout the process, as they are directly sourced 

from the input image. We adhere to the training 

pipeline outlined by Yildirim et al. [9], which 

comprises two image generation stages. Initially, 

we sample a latent code z and generate an image, 

which is then subjected to erasure before being fed 

into the encoder. Subsequently, we either utilize the 

same z for the mapping network destined for the 

mixing mechanism or sample a new z. In the first 

scenario, where the same z is used, the model has 

access to the image features and is tasked with 

faithfully reproducing the original image pixel by 

pixel. Conversely, in the second scenario, a different 

z is sampled, and the model is solely expected to 
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accurately generate the unerased pixels while 

producing realistic overall images. We refer to the 

first and second settings network generations as  𝐼𝑔
𝑜 

and 𝐼𝑟
𝑜, respectively. 

 

Reconstruction Losses. To ensure accurate pixel 

reconstruction, we employ a combination of L2 and 

perceptual losses. Specifically, we utilize perceptual 

losses derived from VGG (Φ) across various feature 

layers (j) when comparing images. For 𝐼𝑔
𝑜, where the 

objective is to generate overall images, losses are 

applied to each pixel individually. Conversely, for 

𝐼𝑟
𝑜, which is tasked solely with faithfully 

reproducing unerased pixels, a mask is applied to 

exclude losses contributed from erased pixels as 

given below. 

 

𝐿𝑟𝑔 = ||𝐼𝑔
𝑜 − 𝐼𝑔||2 + ||𝜙𝑗(𝐼𝑔

𝑜) − 𝜙𝑗(𝐼𝑔)||2 

 

𝐿𝑟𝑟 = ||(𝑀 ⊙ 𝐼𝑟
𝑜) − 𝐼𝑔

𝑒||2

+ ||𝜙𝑗(𝑀 ⊙ 𝐼𝑟
𝑜) − 𝜙𝑗(𝐼𝑔

𝑒)||2 

Adversarial Losses. We anticipate that these final 

images should exhibit realism, therefore, we 

employ adversarial guidance on both 𝐼𝑔
𝑓
 and 𝐼𝑟

𝑓
. To 

achieve this, we utilize the pretrained discriminator 

from StyleGAN training, denoted as D, and train it 

alongside the encoder and mixing network. 

 

𝐿𝑎𝑑𝑣 = 2 𝑙𝑜𝑔 𝐷(𝐼𝑔) + 𝑙𝑜𝑔(1 − 𝐷(𝐼𝑔
𝑓

)) + 𝑙𝑜𝑔(1

− 𝐷(𝐼𝑟
𝑓

)) 

 

 

Full Objective. Our final objective is the weighted 

sum of the adversarial and reconstruction losses as 

given below.  

𝜆𝑎𝐿𝑎𝑑𝑣 +  𝜆𝑟𝑔𝐿𝑟𝑔  +  𝜆𝑟𝑟𝐿𝑟𝑟 

 

We use the same training hyperparameters as 

Yildirim et al. [9] without any tuning, in order to 

emphasize the improvements resulting solely from 

architectural enhancements. The parameters are 𝜆𝑎= 

8 × 10−2, 𝜆𝑟𝑔= 1, and 𝜆𝑟𝑟 = 1. 

 

3. EXPERIMENTS (DENEYLER) 

Dataset and Metric. We utilize the FFHQ human 

face dataset by Karras et al. [11], employing both 

their train and validation splits.  

 

To evaluate the models, we use masks of varying 

sizes to control the percentage of the image that is 

erased. A mask with a range of 0 means the input 

image is not erased at all, while a range of 1.0 

indicates the entire image is erased. The mask size 

determines the difficulty of the task: inpainting 

images with smaller erased regions is easier, while 

larger masks make the task more challenging. To 

assess different scenarios, we use three mask 

settings: an "easy" setting with mask ranges from 

0.0 to 0.4, a "hard" setting with ranges from 0.4 to 

1.0, and a third setting where the full range (0.0-1.0) 

is used. We generate the masks one time for the 

validation set and use them in all our evaluations.  

 

For evaluation metrics, we employ the Frechet 

Inception Distance (FID) [35] to assess realism, 

comparing the distribution of target images with 

inpainted images. If the inpainting is successful, 

there should not be visible boundaries between the 

erased and unerased pixels and the images should 

look like realistic faces since they are trained on 

FFHQ. FID is an important metric to assess the 

model’s performance on these inpainting 

requirements.  

We also evaluate the performance using the Learned 

Perceptual Image Patch Similarity (LPIPS) score 

[37], which compares the ground-truth original 

images with the inpainted images in feature level.  

 

Baselines. To begin, we benchmark our method 

against state-of-the-art image inversion techniques 

including pSp [34], HFGI [17], and HyperStyle 

[36]. Utilizing the authors’ released code, we train 

these models for inpainting tasks, augmenting the 

input with an additional channel for masks. The pSp 

model generates W+ predictions for image 

generation. In contrast, HFGI and HyperStyle 

employ a two-stage training approach. Initially, an 

encoder produces W+ predictions, followed by a 

second encoder that processes both the input image 

and StyleGAN-generated image with W+ 

predictions. The objective is to encode missing 

information into higher-rate latent codes. 

Subsequently, we conduct experiments with state-

of-the-art image inpainting models for further 

comparisons. We perform inferences using 

CoModGAN’s pretrained models [33], which 

propose training a StyleGAN-like model from 

scratch with co-modulation and skip connections 

tailored for inpainting tasks. Additionally, we 

utilize InvertFill [24] and DivInv [9] which are 

based on pretrained StyleGAN models. While 

DivInv serves as the closest comparison to our 

work, we surpass its performance with our enhanced 

hierarchical encoding architecture and streamlined 

single-stage high-rate feature bypassing. Our 

approach achieves superior results compared to 

theirs. 
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Figure 4. Inpainting results of our method. (Yöntemimizin iç boyama sonuçları.) 

 

Qualitative Results. Fig. 4 shows the results of our 

methods on the FFHQ valdiation dataset. Our 

method achieves realistic inpainting results with 

small and large masks even when the mask is almost 

as large as the full image as shown in the second 

example from first row.  

 

We also present inpainting and editing results in 

Figure 1. The images in the second row are 

generated by inpainting, following the framework 

outlined in Figure 2. The encoder and mapping 

networks produce, 𝑊𝑒𝑛𝑐 and 𝑊𝑟𝑎𝑛𝑑, respectively. 

These codes pass through the MLP layers to 

generate the final 𝑊𝑜𝑢𝑡 , which is used in the 

StyleGAN generator to produce the resulting 

images. In the third row, we apply edits to these  

𝑊𝑜𝑢𝑡  codes.   Specifically, we leverage the 

directions learned by InterFaceGAN [18], which are 

derived from an SVM trained in the W+ latent space 

of StyleGAN for attributes like hair color. The SVM 

is fitted using latent samples from images pf people 

with blonde and non-blonde hair, yielding a 

direction vector that can modify the hair color to 

blonde. In the third row's results, we apply a step in 

this direction by adding the direction vector to the  

𝑊𝑜𝑢𝑡 from the second row. As a result, the hair 

color changes to blonde. Other than the addition we 

perform on 𝑊𝑜𝑢𝑡, we follow the exact same set-ups, 

and the features go through the skip encoder in the 

same way.  Since we use a pretrained StyleGAN, 

our method seamlessly incorporates its existing 

editing capabilities within the inpainting pipeline. 

Quantitative Results. We present the quantitative 

results in Table 1, where we compare our model 

with competing methods across three evaluation 

scenarios, as detailed in the Dataset and Metrics 

section. When considering all mask types—both 
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easy and difficult—the models designed for GAN 

inversion (pSp, HFGI, HyperStyle) perform worse 

than others, despite being trained for the inpainting 

task. On the other hand, models specifically 

designed for inpainting, such as CoModGAN and 

InvertFill, perform better, though still significantly 

worse than our approach. DivInversion is the closest 

competitor to our method, but we achieve nearly a 

20% improvement, reducing the FID score from 

5.92 to 4.85. A similar improvement is observed in 

the LPIPS score. 

 

When the erased area is small (i.e., for easier 

masks), deterministic models like pSp, HFGI, 

HyperStyle, and InvertFill perform well, as they can 

recover most of the information from the unerased 

regions. In this scenario, InvertFill outperforms our 

model, with both models surpassing CoModGAN 

and DivInversion. Our method achieves the second-

best result, coming close to InvertFill’s 

performance. However, as the difficulty level 

increases, deterministic models begin to struggle, 

while our approach continues to outperform them 

by significant margins. 

Table 1. Quantitative results of our and competing methods on FFHQ validation dataset. Best results are 

highlighted in bold. (FFHQ doğrulama veri kümesindeki bizim ve rakip yöntemlerin nicel sonuçları. En iyi sonuçlar kalın 

yazı ile vurgulanmıştır.) 

 All Masks (0.0-1.0)  Easy Masks (0.0-0.4) Difficult Masks  (0.4-1.0) 

Models FID LPIPS FID LPIPS FID LPIPS 

pSp[34] 8.23 0.272 3.15 0.164 9.63 0.374 

HFGI [17] 7.66 0.214 2.24 0.152 8.87 0.352 

HyperStyle [36] 7.46 0.208 3.08 0.159 8.67 0.337 

CoModGAN [33] 7.35 0.151 4.68 0.170 7.13 0.230 

InvertFill [24] 7.45 0.152 1.13 0.123 9.58 0.235 

DivInversion [9] 5.92 0.153 2.26 0.145 6.23 0.223 

Ours 4.85 0.144 1.87 0.135 5.72 0.209 

 

Ablation Study. We present the results of our 

ablation study in Table 2. Our work starts with 

DivInversion [9] and proposes a hierarchical 

encoder and single-stage architecture. We start 

presenting the results of DivInversion - First stage 

model which only encodes features in W+ space. 

This set-up is comparable with our hierarchical W+ 

encoding. Hierarchical encoder improves the FID 

from 16.65 to 13.61. Next, we compare the methods 

that also incorporate feature encodings in F+ space. 

DivInversion as well as many other methods 

propose a two-stage architecture, which goes 

through StyleGAN generator twice. First, they 

generate an image from W+ encoding, and then the 

second encoder takes this generated image and 

erased image to also predict F+ features, and final 

image is generated via StyleGAN again. First, we 

compare our hierarchical encoding in the two-stage 

architecture to validate the effectiveness of this 

encoding mechanism. As shown in Table 2, with 

this encoding FID’s improve from 5.92 to 5.20. 

Next, we replace the two-stage pipeline with our 

single stage one that predicts the W+ and F+ 

features with a single pass in the encoder which 

further improves the FID to 4.85. 

 

Table 2. Ablation study conducted on all masks. 
(Tüm maskeler üzerinde yapılan ablation çalışması.) 

Models FID 

DivInversion - First Stage  16.65 

Hierarchical - W+ encoding  13.61 

DivInversion - Two Stage  5.92 

Hierarchical - Two Stage  5.20 

Hierarchical - W+ and F+ encoding  4.85 

 

4. CONCLUSIONS (SONUÇLAR) 

In conclusion, image inpainting is vital for 

numerous applications, from editing to object 

removal. While traditional methods start from 

scratch, recent advances exploit pretrained models 

like StyleGANs. Our work is also built on 

pretrained StyleGAN because of its rich internal 

representations. In this work, we introduce a 

hierarchical encoder and single-stage architecture 
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that tackle the complexities of encoding visible and 

missing features. Our experiments confirm 

substantial enhancements over existing models. Our 

model is able to fill the erased areas even when they 

are as large as the whole image. Additionally, by 

using the editing directions explored via 

InterFaceGAN [18], we can edit images during 

inpainting as given in Figure 1. 
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