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This work proposes a hierarchical encoder for image inpainting, seamlessly encoding visible and
missing features. / Bu ¢alisma, gorsel ve eksik ozellikleri yiiksek kalitede kodlayan bir hiyerarsik
kodlayici dneriyor.
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Figure A: Inpainting results of our method. Our method is able to control the inpainting style.
ISekil A: Yontemimizin inpainting sonug¢lari. Yontemimiz, inpainting tarzini kontrol edebilme
yetenegine sahiptir.

Highlights (Onemli noktalar)

» A novel hierarchical encoder is proposed to seamlessly encode both visible and missing
image features for more effective inpainting. / Goriiniir ve eksik gorsel ozellikleri
sorunsuz bir sekilde kodlamak icin yeni bir hiyerarsik kodlayici dnerilmigtir.

»  The work introduces a single-stage architecture that encodes both low-rate and high-rate
latent features, optimizing the use of StyleGAN for inpainting tasks. / StyleGAN igin i¢
boyama gérevlerini optimize etmek amaciyla, diisiik ve yiiksek oranl latent ozellikleri
kodlayan tek asamali bir mimari tanitilmistir.

> Extensive experiments show improvements over state-of-the-art models. / Kapsamii
deneyler, onerilen yontemin mevcut en son modellere gore onemli iyilestirmeler
sagladigini gostermektedir.

Aim (Amag): The aim of this work is to improve image inpainting by proposing a novel approach
that seamlessly encodes both visible and missing image features. / Bu ¢alismanin amaci, gorsel ve
eksik ozellikleri yiiksek kalitede kodlayan yeni bir yaklagim onererek i¢c boyama islemini
gelistirmektir.

Originality (Ozgiinliik): The originality of this work lies in the hierarchical encoder and single-
stage architecture. / Bu ¢alismamin ézgiinliigii, hiyerarsik kodlayict ve tek asamali mimaride
yatmaktadir.

Results (Bulgular): The results of this work show significant improvements in image inpainting
performance compared to state-of-the-art models. / Bu c¢alismanin sonuglari, mevcut en son
modellere gére i¢ boyama performansinda énemli iyilestirmeler géstermektedir.

Conclusion (Sonug): The conclusion of this work is that the proposed hierarchical encoder and
single-stage architecture significantly enhance the effectiveness of image inpainting. / Bu
calismanin sonucu, onerilen hiyerarsik kodlayici ve tek asamali mimarinin, i¢ boyama etkinligini
onemli él¢iide artirdigidr.
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Image inpainting, the process of removing unwanted pixels and seamlessly replacing them with
new ones, poses significant challenges requiring algorithms to understand image context and
generate realistic replacements. With applications ranging from content generation to image
editing, image inpainting has garnered significant interest. Traditional approaches involve
training deep neural network models from scratch using binary masks to identify regions for
inpainting. Recent advancements have shown the feasibility of leveraging well-trained image
generation models, such as StyleGANSs, for inpainting tasks. However, effectively embedding
images into StyleGAN’s latent space and addressing the challenges of diverse inpainting remain
key obstacles. In this work, we propose a hierarchical encoder tailored to encode visible and
missing features seamlessly. Additionally, we introduce a single-stage architecture capable of
encoding both low-rate and high-rate latent features used by StyleGAN. While low-rate latent
features offer a comprehensive understanding of images, high-rate latent features excel in
transmitting intricate details to the generator. Through extensive experiments, we demonstrate
significant improvements over state-of-the-art models for image inpainting, highlighting the
efficacy of our approach.

StyleGAN Tersine Cevirisi ile Gorsel I¢ Boyama icin Hiyerarsik Kodlama
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Gorsel i¢c boyama, istenmeyen piksellerin kaldirilmasi ve bunlarin yerini yeni piksellerle sorunsuz
bir sekilde doldurma siireci, algoritmalarin gorsel baglami anlamasini ve gercekei yerine
koymalar iiretmesini gerektiren énemli zorluklar sunar. igerik iiretiminden gérsel diizenlemeye
kadar pek ¢ok uygulama alani bulunan gérsel i¢ boyama, énemli bir ilgi gérmistiir. Geleneksel
yaklagimlar, i¢ boyama icin bolgeleri belirlemek amaciyla ikili maskeler kullanarak derin sinir
ag1 modellerinin sifirdan egitilmesini igerir. Son gelismeler, iyi egitilmis gorsel iiretim
modellerinin (6rnegin, StyleGAN'ler) i¢ boyama goérevlerinde kullanilabilirligini gdstermistir.
Ancak, gorselleri StyleGAN'n latent uzayina etkin bir sekilde yerlestirme ve gesitli i¢ boyama
zorluklarini agma, hala ana engelleri olugturmaktadir. Bu ¢alismada, goriiniir ve eksik 6zellikleri
sorunsuz bir sekilde kodlamak igin tasarlanmis hiyerarsik bir kodlayict onermekteyiz. Ayrica,
StyleGAN tarafindan kullanilan diisiik ve yiiksek oranli latent 6zellikleri kodlayabilen tek agamali
bir mimari tanitmaktayiz. Diigiikk oranli latent ozellikler, gorsellerin kapsamli bir sekilde
anlagilmasin1  saglarken, yiikksek oranli latent Ozellikler, karmasik detaylarin {ireticiye
iletilmesinde miikkemmel sonuglar elde etmektedir. Bu makalede, kapsamli deneylerle, i¢ boyama
icin mevcut en son modellere gore onemli iyilestirmeler sagladigimizi ve yaklagimimizin
etkinligini vurgulamaktayiz.

1. INTRODUCTION (GIRiS)

Image inpainting involves the removal of unwanted
pixels and their replacement with new ones in a
manner that renders the alterations
indistinguishable. This task presents significant
challenges, requiring the algorithm to comprehend
the context of the image based on the available
unerased partial data and generate new pixels that
seamlessly blend with the surrounding content. Due

to its broad range of applications spanning from
content generation to image editing, image
inpainting algorithms have garnered considerable
interest. The complexity of the task, coupled with
its potential for enabling various applications, has
made it a popular subject of research [1-9].

Traditionally, deep neural network models have
been trained from scratch for image inpainting
tasks. Binary masks are employed to delineate the
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regions to be erased, after which images are
multiplied by these masks to nullify the unwanted
pixels. Leveraging paired data comprising erased
and original images, networks are trained using
various loss objectives, including pixel-wise
reconstruction and adversarial losses [1-5, 10].
While previous models were randomly initialized
and trained from scratch for this task, recent
approaches demonstrate the feasibility of leveraging
well-trained image generation models for inpainting
tasks [6, 9]. These image generation models are
trained on large-scale image datasets with
substantial computational resources [7, 11— 15].
They possess the capability to generate images with
realistic  details, indicating rich  feature
representations and a robust implicit understanding
of images, rendering them suitable candidates for
inpainting tasks.

Among generative models, StyleGANs [11, 13]
have been extensively explored for both image
editing [16-23] and inpainting tasks [9, 24, 25].
Successfully utilizing StyleGAN for editing and
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inpainting presents a key challenge: correctly
embedding a given image into StyleGAN’s latent
space so that the input image can be reconstructed
via StyleGAN from the embedded vector. In the
case of inpainting, there is an additional challenge:
embedding the erased image into StyleGAN’s latent
space. While previous methods only embedded
erased images and inpainted them with StyleGAN
in a deterministic manner [24, 25], a recent method
demonstrates the possibility of achieving diverse
results by augmenting the embedded latent vectors
with sampled ones [9]. Therefore, for diverse
inpainting, another challenge arises: the encoder
must encode the visible features of the input image
while also being aware of the missing ones,
allowing the new sampled codes to complete the
features. For instance, when erasing a person’s hair,
the encoder must encode all the facial features
except the hair and be able to incorporate hair
features from the sampled codes. This enables
different hair colors and styles to be encoded among
different samples, resulting in the generation of
various images, as illustrated in Figure 1.

Figure 1. Inpainting results of our method. Our method is able to control the inpainting style via

InterFaceGAN directions [18] for StyleGAN. (Yéntemimizin i¢ boyama sonuglari. Yéntemimiz, StyleGAN igin
InterFaceGAN yo6nlendirmeleri [18] araciligiyla i¢ boyama tarzini kontrol edebilme yetenegine sahiptir.)

In this work, we introduce a hierarchical encoder
tailored to the intricate task of encoding visible
features while seamlessly integrating missing
features from sampled ones. Furthermore, we
propose a single-stage  architecture that
encompasses encoding both low-rate and high-rate
latent features utilized by StyleGAN. While low-
rate latent features possess a comprehensive
understanding of images, they may not capture all
intricate details due to an inherent information
bottleneck. While high-rate latent features may lack
robust feature extraction capabilities necessary for
understanding the context required for realistic

inpaintings, they excel in transmitting intricate
image details to the generator.

In summary, our main contributions are as follows:

e We present a novel hierarchical encoder
designed specifically for the complex task
of encoding visible features while
seamlessly integrating missing features
obtained from sampled data. This encoder
is tailored to address the challenges
inherent in inpainting tasks, where the
reconstruction of images necessitates a
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comprehensive understanding of both
visible and missing features.

e We propose a single-stage architecture
capable of encoding both low-rate and high-
rate latent features utilized by StyleGAN.
While low-rate latent features offer a
thorough understanding of images, they
may lack the capacity to capture fine details
due to inherent limitations of the low
dimension. Conversely, high-rate latent
features, while potentially deficient in
robust feature extraction capabilities
necessary for contextual understanding,
excel in transmitting high-frequency image
details to the generator, thereby enhancing
the realism of the inpainted images.

e We conduct comprehensive experiments to
evaluate the effectiveness of our
framework. Our results demonstrate
significant improvements over state-of-the-
art models for image inpainting,
showcasing the efficacy of our approach in
addressing the challenges inherent in this
task.

2. RELATED WORK (ILGILI CALISMALAR)

Image inpainting is a widely studied area owing to
its diverse applications in image editing, object
removal, and image extension [3, 26-29]. Effective
inpainting requires a thorough understanding of
context, prompting researchers to propose various
techniques such as contextual encodings and
semantic attention modules. These methods aim to
guide the generation of erased pixels based on the
valid (unerased) pixels [1, 4, 28, 30-32].
Additionally, specialized convolutional layers have
been introduced to handle valid and invalid (erased)
pixels differently, enhancing the encoding of valid
pixel information [2, 3, 5]. Various approaches,
including sketches, brush strokes, and semantic
masks, have also been explored to guide image
inpainting algorithms [3, 10, 26, 27]. These methods
typically employ an encoder-decoder structure
trained from scratch for the inpainting task.

In recent years, significant progress has been made
in image generation methods, specifically by
GANs, which involve sampling a point from a
Gaussian distribution and learning to map it to a
realistic image [7, 11-15]. This progress has
sparked interest in utilizing the image generation
capabilities of these networks for inpainting tasks.

Initially, architectural inspiration was drawn from
these methods. For instance, CoModGAN [33] pro-

posed a StyleGAN-like architecture trained for
inpainting, demonstrating  successful  diverse
inpainting results while still being trained from
scratch for the task. Subsequently, well-trained
image  generation algorithms, especially
StyleGANv2, have been directly applied to
inpainting [9, 24, 25]. Among these approaches, Yu
et al. [24] learned an encoder to project images into
the W+ space of StyleGAN. The encoder predicts
W+ from erased images, from which an image is
generated via StyleGAN, minimizing pixel-wise
and feature-wise distances between the generated
and unerased original image. This leads to
deterministic outputs since only one W+ code is
encoded for erased images. Wang et al. [25] adopted
a similar approach, embedding the image into a
deterministic latent code using an encoder.

Our work is primarily related to diverse inpainting
with GAN inversion [9]. Yildirim et al. [9]
demonstrated that encoded latent codes can be
mixed with sampled ones to achieve diversity in
inpainting results. While their method uses a feed-
forward architecture, we employ a hierarchical
approach to achieve diverse inpainting with higher-
quality results. Additionally, our single stage
architecture is more efficient and achieves better
results.

3. MATERIALS AND METHODS (MATERYAL
VE METOD)

3.1. Architecture (Mimari)

In this work, we develop a StyleGAN-based image
inpainting model. Our approach incorporates two
key mechanisms to enhance the model’s
performance: augmenting missing features through
the mapping network and facilitating seamless
inpaintings by allowing high-rate latent features to
bypass from the encoder directly to the StyleGAN
generator. This section provides an in-depth
explanation of both contributions.

Firstly, like previous inpainting methods [5, 9], we
generate binary masks M with 1s defining the valid
pixels and Os defining the pixels we would like to
erase. An input image, I, is erased by replacing the
pixels we would like to erase with 0s. This is
achieved by simply taking the dot product of mask
and input image, I, =M O 1. We follow the
approach of Yildirim et. al. [9] and use
StyleGAN2’s [13] mapping and generator networks
to sample latent codes and synthesize images,
respectively. These modules are pretrained and we
do not tune them in our trainings.
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Figure 2. Overview of the proposed hierarchical image encoding framework. Through a hierarchical
mixing mechanism, our model integrates visible information from masked images with missing
details derived from mapped latent codes. The method sequentially generates output styles,

ensuring awareness of previously determined styles. (Onerilen hiyerarsik gorsel kodlama gergevesinin
genel bakist. Hiyerarsik bir karistirma mekanizmasi araciligtyla, modelimiz maskelenmis gorsellerden goriiniir bilgiyi,
haritalanmig latent kodlardan tiiretilen eksik detaylarla birlestirir. Yontem, ¢iktilar1 sirastyla iiretir ve daha 6nce

belirlenen stillerin farkinda olmay1 saglar.)

Our encoder receives the erased image along with
its corresponding mask, as illustrated in Fig. 2. We
employ a straightforward encoder architecture
based on [34] to map our erased images onto the
latent space W *. Nonetheless, merely encoding the
erased images might not suffice for effective
inpainting. For instance, if the erased regions
correspond to essential facial features such as eyes
or hair, the encoded features may lack crucial
information about these elements. Hence, we
establish a secondary pathway to supplement the
absent features from the erased image. This
secondary pathway leverages StyleGAN’s mapping
network to sample random z vectors and derive
corresponding W™ codes, which naturally align
with StyleGAN’s latent space. The encoded latent
code, We™¢, and the mapped latent code, W""¢ |
are both inputted into the mixing mechanism as
shown in Figure 2.

In this paper, we propose a novel hierarhical mixing
mechanism different than previous works. We
anticipate the mixing network to integrate the
visible information from the masked image with the
absent details derived from the mapped latent codes.
To mix the 14 x 512 sampled W"*"? with the 28 x
512 encoded We™, we set 14 MLP (Multi-layer
perceptron) layers. We employ a 28 x 512 feature
encoding scheme with a specific purpose in mind.
Among these features, half (14 x 512) are dedicated
to representing the image features themselves, while
the remaining half are tasked with indicating which
features have been accurately encoded and which
have been affected by image erasure. Therefore, for

each style code embedding, we use a single channel
from W74 and two channels from W™, Initially,
we produce W °%t for the coarse layers, representing
the style codes directed towards StyleGAN’s lowest
resolution feature layers. Precisely, we first
generate the W% intended for the initial adaptive
instance normallzatlon layer of StyleGAN via a
MLP that takes the first channel of W7%"4 and first
two channels of wene, wyend and W |
respectively. After that, in addition to the second
channel of W4 and the next two channels of
wene wrend and wEne, we feed WL to the next
linear Iayer By proceeding in this manner, the
mixing mechanism remains cognizant of the styles
that have been determined thus far. We generate the
subsequent output styles sequentially using this
approach. In our experiments, we show that using
this hierarchical encoding greatly improves the
results. MLP consists of two-layer linear networks.
The first linear layer receives 3 x 512 input features
and outputs 1 x 512 features. There is a ReLU
activation following the first linear layer and the
second linear layer has input and output dimensions
setto 1 x 512.

Our second contribution is to achieve seamless
inpaintings by allowing high-rate latent features to
bypass from the encoder directly to the StyleGAN
generator. Previous methods leveraging StyleGAN
for image editing [22, 34] and inpainting [9]
recognize the limitations of using low-rate latent
codes of W* . These codes often lack sufficient
information to fully represent the image for the
generator. The W codes, being of size 14 x 512,
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are considerably smaller than the input image size
of 3 x 256 x 256. This information bottleneck often
leads to the loss of many details in the final
generation if only W+ codes are employed. To
address this issue, we utilize a skip encoder
network, depicted in Figure 3, to convey high-detail
image information into the generation pipeline.
Previously, to address the same issue, Divinv [9]
proposed taking the generated image from
StyleGAN and feeding it into a second encoder and
generation pipeline to achieve the final results. This
second encoder and generation process incorporated
skip connections. In this study, we introduce a more
streamlined architecture, delivering high-rate
features to the StyleGAN generator within a single-
stage framework. Unlike previous methods, we

<>

z ~N(0,1)

l

Encoder

Masked Image

Mixing
Mechanism

eliminate the need to generate images first and
encode them again. Instead, we leverage the
pretrained encoder and invoke the StyleGAN
generator only once. We do that via a UNet
architecture of Skip encoder operating within a
spatial dimension of 64 x 64. By simultaneously
inputting both the encoded and generated features,
the Skip encoder can identify the absent high-rate
details from the image generation and incorporate
them into the generation process. This feature space
is referred to as F* in the ablation study. The output
of the skip encoder serves as the features for
StyleGAN. We achieve that by replacing the 64 x
64 generated features with the output of the Skip
encoder.

StyleGAN
Generator
(fixed)

G)

Generated Image

Mask (M)

64x64 Generated Features

Skip

Encoder

64x64 Encoded Features

Figure 3. Architecture overview: Our study introduces an architecture, delivering high-rate features to the
StyleGAN generator in a single-stage framework. Unlike prior methods, we bypass the generation-then-
encoding process, instead leveraging a pretrained encoder and invoking the StyleGAN generator once.
This is facilitated by the Skip encoder, operating within a spatial dimension of 64 x 64. By
simultaneously inputting both encoded and generated features, the Skip encoder detects missing high-rate

details in image generation, integrating them into the

process. The output of the Skip encoder replaces the

64 x 64 generated features, serving as input features for StyleGAN. The detailed depiction of the Mixing
mechanism in this figure has been omitted for brevity. For a comprehensive understanding of the Mixing

mechanism, please refer to Figure 2. (Mimari Genel Bakisi: Calismamiz, StyleGAN fiireticisine yiiksek oranli 6zellikleri
tek asamali bir ¢ergevede sunan bir mimari tanitmaktadir. Onceki yontemlerden farkl: olarak, iiretim-sonra-kodlama siirecini
atliyor ve bunun yerine 6nceden egitilmis bir kodlayici kullanarak StyleGAN iireticisini bir kez ¢agirtyoruz. Bu, 64 x 64
boyutunda bir uzaysal boyutta ¢alisan Skip kodlayici ile saglanmaktadir. Hem kodlanmis hem de iiretilmis 6zellikleri ayn1 anda
girdiler olarak vererek, Skip kodlayici, gorsel tiretimindeki eksik yiiksek oranli detaylari tespit eder ve bunlar siirece entegre
eder. Skip kodlayicisinin giktisi, 64 x 64 boyutundaki iiretilmis 6zelliklerin yerine geger ve StyleGAN i¢in giris 6zellikleri olarak
kullanilir. Bu sekildeki Mixing mekanizmasinin ayritili tasviri kisalik agisindan ¢ikarilmistir. Mixing mekanizmasinin kapsamli

bir sekilde anlagilmasi igin
3.2. Training Objectives (Mimari)

We train the framework with a combination of
reconstruction and adversarial losses. Our
framework outputs a generated image, I°.
Additionally, we obtain a final image by I/ =
M QO I+ (1-M) © I°. The resulting image
guarantees that unerased pixels remain unchanged
throughout the process, as they are directly sourced
from the input image. We adhere to the training
pipeline outlined by Yildirim et al. [9], which

litfen Sekil 2'ye bakmniz.)

comprises two image generation stages. Initially,
we sample a latent code z and generate an image,
which is then subjected to erasure before being fed
into the encoder. Subsequently, we either utilize the
same z for the mapping network destined for the
mixing mechanism or sample a new z. In the first
scenario, where the same z is used, the model has
access to the image features and is tasked with
faithfully reproducing the original image pixel by
pixel. Conversely, in the second scenario, a different
z is sampled, and the model is solely expected to
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accurately generate the unerased pixels while
producing realistic overall images. We refer to the
first and second settings network generations as I

and 12, respectively.

Reconstruction Losses. To ensure accurate pixel
reconstruction, we employ a combination of L2 and
perceptual losses. Specifically, we utilize perceptual
losses derived from VGG (®) across various feature
layers (j) when comparing images. For 12, where the
objective is to generate overall images, losses are
applied to each pixel individually. Conversely, for
I?, which is tasked solely with faithfully
reproducing unerased pixels, a mask is applied to
exclude losses contributed from erased pixels as
given below.

Lyrg = llg = Igll2 + 119;UIg) — ¢; U]l

Ly = ||(M0119) _Igellz
+1l¢;(M O I2) — ;U2

Adversarial Losses. We anticipate that these final
images should exhibit realism, therefore, we

employ adversarial guidance on both I; and I[. To
achieve this, we utilize the pretrained discriminator

from StyleGAN training, denoted as D, and train it
alongside the encoder and mixing network.

Laay = 21log D(I,) + log(1 — D(I;)) +log(1
-p(il)

Full Objective. Our final objective is the weighted
sum of the adversarial and reconstruction losses as
given below.

AaLadv + ArgLrg + Arrer

We use the same training hyperparameters as
Yildirim et al. [9] without any tuning, in order to
emphasize the improvements resulting solely from
architectural enhancements. The parameters are A,=
8 x10-2, 4,4=1,and 4,,. = 1.

3. EXPERIMENTS (DENEYLER)

Dataset and Metric. We utilize the FFHQ human
face dataset by Karras et al. [11], employing both
their train and validation splits.

To evaluate the models, we use masks of varying
sizes to control the percentage of the image that is
erased. A mask with a range of 0 means the input
image is not erased at all, while a range of 1.0

indicates the entire image is erased. The mask size
determines the difficulty of the task: inpainting
images with smaller erased regions is easier, while
larger masks make the task more challenging. To
assess different scenarios, we use three mask
settings: an "easy" setting with mask ranges from
0.0 to 0.4, a "hard" setting with ranges from 0.4 to
1.0, and a third setting where the full range (0.0-1.0)
is used. We generate the masks one time for the
validation set and use them in all our evaluations.

For evaluation metrics, we employ the Frechet
Inception Distance (FID) [35] to assess realism,
comparing the distribution of target images with
inpainted images. If the inpainting is successful,
there should not be visible boundaries between the
erased and unerased pixels and the images should
look like realistic faces since they are trained on
FFHQ. FID is an important metric to assess the
model’s performance on these inpainting
requirements.

We also evaluate the performance using the Learned
Perceptual Image Patch Similarity (LPIPS) score
[37], which compares the ground-truth original
images with the inpainted images in feature level.

Baselines. To begin, we benchmark our method
against state-of-the-art image inversion techniques
including pSp [34], HFGI [17], and HyperStyle
[36]. Utilizing the authors’ released code, we train
these models for inpainting tasks, augmenting the
input with an additional channel for masks. The pSp
model generates W+ predictions for image
generation. In contrast, HFGI and HyperStyle
employ a two-stage training approach. Initially, an
encoder produces W+ predictions, followed by a
second encoder that processes both the input image
and StyleGAN-generated image with W+
predictions. The objective is to encode missing
information into  higher-rate  latent  codes.
Subsequently, we conduct experiments with state-
of-the-art image inpainting models for further
comparisons. We perform inferences using
CoModGAN’s pretrained models [33], which
propose training a StyleGAN-like model from
scratch with co-modulation and skip connections
tailored for inpainting tasks. Additionally, we
utilize InvertFill [24] and Divinv [9] which are
based on pretrained StyleGAN models. While
Divinv serves as the closest comparison to our
work, we surpass its performance with our enhanced
hierarchical encoding architecture and streamlined
single-stage high-rate feature bypassing. Our
approach achieves superior results compared to
theirs.
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Input Results Input Results Input

Results

Figure 4. Inpainting results of our method. (Yontemimizin i¢ boyama sonuglari.)

Qualitative Results. Fig. 4 shows the results of our
methods on the FFHQ valdiation dataset. Our
method achieves realistic inpainting results with
small and large masks even when the mask is almost
as large as the full image as shown in the second
example from first row.

We also present inpainting and editing results in
Figure 1. The images in the second row are
generated by inpainting, following the framework
outlined in Figure 2. The encoder and mapping
networks produce, W e and W74 respectively.
These codes pass through the MLP layers to
generate the final W% | which is used in the
StyleGAN generator to produce the resulting
images. In the third row, we apply edits to these
Weut  codes. Specifically, we leverage the
directions learned by InterFaceGAN [18], which are

derived from an SVM trained in the W+ latent space
of StyleGAN for attributes like hair color. The SVM
is fitted using latent samples from images pf people
with blonde and non-blonde hair, yielding a
direction vector that can modify the hair color to
blonde. In the third row's results, we apply a step in
this direction by adding the direction vector to the
Wout from the second row. As a result, the hair
color changes to blonde. Other than the addition we
perform on W 2%t we follow the exact same set-ups,
and the features go through the skip encoder in the
same way. Since we use a pretrained StyleGAN,
our method seamlessly incorporates its existing
editing capabilities within the inpainting pipeline.

Quantitative Results. We present the quantitative
results in Table 1, where we compare our model
with competing methods across three evaluation
scenarios, as detailed in the Dataset and Metrics
section. When considering all mask types—both
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easy and difficult—the models designed for GAN
inversion (pSp, HFGI, HyperStyle) perform worse
than others, despite being trained for the inpainting
task. On the other hand, models specifically
designed for inpainting, such as CoModGAN and
InvertFill, perform better, though still significantly
worse than our approach. Divinversion is the closest
competitor to our method, but we achieve nearly a
20% improvement, reducing the FID score from
5.92 to 4.85. A similar improvement is observed in
the LPIPS score.

When the erased area is small (i.e., for easier
masks), deterministic models like pSp, HFGI,
HyperStyle, and InvertFill perform well, as they can
recover most of the information from the unerased
regions. In this scenario, InvertFill outperforms our
model, with both models surpassing CoModGAN
and Divlinversion. Our method achieves the second-
best result, coming close to InvertFill’s
performance. However, as the difficulty level
increases, deterministic models begin to struggle,
while our approach continues to outperform them
by significant margins.

Table 1. Quantitative results of our and competing methods on FFHQ validation dataset. Best results are

highlighted in bold. (FFHQ dogrulama veri kiimesindeki bizim ve rakip yontemlerin nicel sonuglart. En iyi sonuglar kalin
yazi ile vurgulanmugtir.)

All Masks (0.0-1.0) Easy Masks (0.0-0.4) Difficult Masks (0.4-1.0)
Models FID LPIPS FID LPIPS FID LPIPS
pSp[34] 8.23 0.272 3.15 0.164 9.63 0.374
HFGI [17] 7.66 0.214 2.24 0.152 8.87 0.352
HyperStyle [36] 7.46 0.208 3.08 0.159 8.67 0.337
CoModGAN [33] 7.35 0.151 4.68 0.170 7.13 0.230
InvertFill [24] 7.45 0.152 1.13 0.123 9.58 0.235
Divinversion [9] 5.92 0.153 2.26 0.145 6.23 0.223
Ours 4.85 0.144 1.87 0.135 5.72 0.209

Ablation Study. We present the results of our
ablation study in Table 2. Our work starts with
Divinversion [9] and proposes a hierarchical
encoder and single-stage architecture. We start
presenting the results of Divinversion - First stage
model which only encodes features in W+ space.
This set-up is comparable with our hierarchical W+
encoding. Hierarchical encoder improves the FID
from 16.65 to 13.61. Next, we compare the methods
that also incorporate feature encodings in F+ space.
Divinversion as well as many other methods
propose a two-stage architecture, which goes
through StyleGAN generator twice. First, they
generate an image from W+ encoding, and then the
second encoder takes this generated image and
erased image to also predict F+ features, and final
image is generated via StyleGAN again. First, we
compare our hierarchical encoding in the two-stage
architecture to validate the effectiveness of this
encoding mechanism. As shown in Table 2, with
this encoding FID’s improve from 5.92 to 5.20.
Next, we replace the two-stage pipeline with our
single stage one that predicts the W+ and F+
features with a single pass in the encoder which
further improves the FID to 4.85.

Table 2. Ablation study conducted on all masks.
(Ttm maskeler izerinde yapilan ablation ¢aligmasi.)

Models FID
DivInversion - First Stage 16.65
Hierarchical - W+ encoding 13.61
DivInversion - Two Stage 5.92
Hierarchical - Two Stage 5.20
Hierarchical - W+ and F+ encoding | 4.85

4. CONCLUSIONS (SONUCLAR)

In conclusion, image inpainting is vital for

numerous applications, from editing to object
removal. While traditional methods start from
scratch, recent advances exploit pretrained models
like StyleGANs. Our work is also built on
pretrained StyleGAN because of its rich internal
representations. In this work, we introduce a
hierarchical encoder and single-stage architecture
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that tackle the complexities of encoding visible and
missing features. Our experiments confirm
substantial enhancements over existing models. Our
model is able to fill the erased areas even when they
are as large as the whole image. Additionally, by
using the editing directions explored via
InterFaceGAN [18], we can edit images during
inpainting as given in Figure 1.
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